A new look at nonnegativity on closed sets

Jean B. Lasserre

LAAS-CNRS and Institute of Mathematics, Toulouse, France

IPAM, UCLA September 2010

- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^n$ from the knowledge of defining polynomials
- → inner approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- → outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds

- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^n$ from the knowledge of defining polynomials
- → inner approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- → outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds

- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^n$ from the knowledge of defining polynomials
- → inner approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- → outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds

- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^n$ from the knowledge of defining polynomials
- → inner approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- → outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds

- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^n$ from the knowledge of defining polynomials
- → inner approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- → outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds

- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^n$ from the knowledge of defining polynomials
- → inner approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- → outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds

- Positivstellensatze for semi-algebraic sets $K \subset \mathbb{R}^n$ from the knowledge of defining polynomials
- → inner approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite relaxations yield lower bounds
- Another look at nonnegativity from knowledge of a measure supported on K.
- → outer approximations of the cone of polynomials nonnegative on K
- Optimization: Semidefinite approximations yield upper bounds

Let $\subseteq \mathbb{R}^n$ be closed

A basic question is:

Characterize the continuous functions $f: \mathbb{R}^n \to \mathbb{R}$ that are nonnegative on **K**

and if possible

a characterization amenable to practical computation!

Because then

Positivstellensatze for basic semi-algebraic sets

Let $\mathbf{K} := \{\mathbf{x} \in \mathbb{R}^n : g_j(\mathbf{x}) \ge 0, \quad j = 1, ..., m\}$, for some polynomials $(g_j) \subset \mathbb{R}[\mathbf{x}]$.

Here, knowledge on K is through its defining polynomials $(g_i) \subset \mathbb{R}[\mathbf{x}]$.

Let $\mathcal{C}(\mathbf{K})_d$ be the CONVEX cone of polynomials of degree at most d, nonnegative on \mathbf{K} , and \mathcal{C}_d the CONVEX cone of polynomials of degree at most d, nonnegative on \mathbb{R}^n .

Define

$$\mathbf{x} \mapsto g_J(\mathbf{x}) := \prod_{k \in J} g_k(\mathbf{x}), \qquad J \subseteq \{1, \ldots, m\}.$$

The preordering associated with () is the set

$$P(g) := \left\{ \sum_{J\subseteq \{1,\ldots,m\}} \sigma_J g_J : \sigma_J \in \Sigma[\mathbf{x}] \right\}$$

The quadratic module associated with () is the set

$$Q(g) := \left\{ \sum_{j=1}^m \sigma_j \, g_j \, : \, \sigma_j \in \Sigma[\mathbf{x}] \,
ight\}$$

Of course every element of P(g) or Q(g) is nonnegative on K, and the σ_J (or the σ_i) provide certificates of nonnegativity on K.

The preordering associated with () is the set

$$P(g) := \left\{ \sum_{J\subseteq \{1,\ldots,m\}} \sigma_J g_J : \sigma_J \in \Sigma[\mathbf{x}] \right\}$$

The quadratic module associated with () is the set

$$Q(g) := \left\{ \sum_{j=1}^m \sigma_j g_j : \sigma_j \in \Sigma[\mathbf{x}] \right\}$$

Of course every element of P(g) or Q(g) is nonnegative on K, and the σ_J (or the σ_j) provide certificates of nonnegativity on K.

Truncated versions

The k-truncated preordering associated with $\binom{n}{k}$ is the set

$$P_k(g) \,:=\, \left\{\, \sum_{J\subseteq \{1,\ldots,m\}} {\sigma_J\,g_J}\,:\, \, \sigma_J \in \Sigma[\mathbf{x}], \, \deg \sigma_J\,g_J \leq 2k \,
ight\}$$

The k-truncated quadratic module associated with () is the set

$$Q_k(g) := \left\{ \sum_{j=1}^m \sigma_j \, g_j \, : \, \sigma_j \in \Sigma[\mathbf{x}], \deg \sigma_J \, g_J \leq 2k \, \right\}$$

Truncated versions

The k-truncated preordering associated with (\mathbf{g}) is the set

$$P_k(g) \,:=\, \left\{\, \sum_{J\subseteq \{1,\ldots,m\}} {\sigma_J\,g_J}\,:\, {\sigma_J}\in \Sigma[\mathbf{x}],\, \deg {\sigma_J\,g_J} \leq 2k\,
ight\}$$

The k-truncated quadratic module associated with (v_i) is the set

$$Q_k(g) \,:=\, \left\{\, \sum_{j=1}^m \sigma_j \,g_j \,:\, \sigma_j \in \Sigma[\mathbf{x}], \deg \sigma_J \,g_J \leq 2k \,
ight\}$$

d-Truncated versions

One may also define the convex cones

$$P_k^d(g) := P_k(g) \cap \mathbb{R}[\mathbf{x}]_d$$

 $Q_k^d(g) := Q_k(g) \cap \mathbb{R}[\mathbf{x}]_d$

$$Q_k^d(\underline{g}) := Q_k(\underline{g}) \cap \mathbb{R}[\mathbf{x}]_d$$

Observe that

$$Q_k^d(g) \subset P_k^d(g) \subset \mathcal{C}(\mathbf{K})_d,$$

and so, the convex cones $Q_k^d(g)$ and $P_k^d(g)$ provide inner approximations of $\mathcal{C}(\mathbf{K})_d$.

... and ... `TESTING` whether
$$f \in P_k^d(\)$$
, or $f \in Q_k^d(\)$

IS SOLVING an SDP!

Provides the basis of moment-sos relaxations for polynomial programming!

Observe that

$$Q_k^d(g) \subset P_k^d(g) \subset \mathcal{C}(\mathbf{K})_d,$$

and so, the convex cones $Q_k^d(g)$ and $P_k^d(g)$ provide inner approximations of $\mathcal{C}(\mathbf{K})_d$.

... and ... **TESTING** whether
$$f \in P_k^d(\mathfrak{g})$$
, or $f \in Q_k^d(\mathfrak{g})$

IS SOLVING an SDP!

Provides the basis of moment-sos relaxations for polynomial programming!

Observe that

$$Q_k^d(g) \subset P_k^d(g) \subset \mathcal{C}(\mathbf{K})_d,$$

and so, the convex cones $Q_k^d(g)$ and $P_k^d(g)$ provide inner approximations of $\mathcal{C}(\mathbf{K})_d$.

... and ... **TESTING** whether
$$f \in P_k^d(\mathfrak{g})$$
, or $f \in Q_k^d(\mathfrak{g})$

IS SOLVING an SDP!

Provides the basis of moment-sos relaxations for polynomial programming!

$$f \geq 0$$
 on $K \Leftrightarrow hf = f^{2s} + p$

for some integer s, and polynomials h, $p \in P(g)$.

Moreover, bounds for s and degrees of h, p exist!

Hence, GIVEN $f \in \mathbb{R}[\mathbf{x}]_d$, cheking whether $f \geq 0$ on

- .. its size is out of reach!!! (hence try small degree certificates)
- it does not provide a NICE characterization of $\mathcal{C}(\mathbf{K})_d$, and
- not very practical for optimization purpose

$$f \geq 0$$
 on $K \Leftrightarrow hf = f^{2s} + p$

for some integer s, and polynomials h, $p \in P(g)$.

Moreover, bounds for s and degrees of h, p exist!

Hence, GIVEN $f \in \mathbb{R}[\mathbf{x}]_d$, cheking whether $f \geq 0$ on

- .. its size is out of reach!!! (hence try small degree certificates)
- it does not provide a NICE characterization of $\mathcal{C}(\mathbf{K})_d$, and
- not very practical for optimization purpose

$$f \geq 0$$
 on $K \Leftrightarrow hf = f^{2s} + p$

for some integer s, and polynomials h, $p \in P(g)$.

Moreover, bounds for s and degrees of h, p exist!

Hence, GIVEN $f \in \mathbb{R}[\mathbf{x}]_d$, cheking whether $f \geq 0$ on

- .. its size is out of reach!!! (hence try small degree certificates)
- it does not provide a NICE characterization of $\mathcal{C}(\mathbf{K})_d$, and
- not very practical for optimization purpose

$$f \geq 0$$
 on $K \Leftrightarrow hf = f^{2s} + p$

for some integer s, and polynomials h, $p \in P(g)$.

Moreover, bounds for s and degrees of h, p exist!

Hence, GIVEN $f \in \mathbb{R}[\mathbf{x}]_d$, cheking whether $f \geq 0$ on

- .. its size is out of reach!!! (hence try small degree certificates)
- it does not provide a NICE characterization of $\mathcal{C}(\mathbf{K})_d$, and
- not very practical for optimization purpose

$$f \geq 0$$
 on $K \Leftrightarrow hf = f^{2s} + p$

for some integer s, and polynomials h, $p \in P(g)$.

Moreover, bounds for s and degrees of h, p exist!

Hence, GIVEN $f \in \mathbb{R}[\mathbf{x}]_d$, cheking whether $f \geq 0$ on

- .. its size is out of reach!!! (hence try small degree certificates)
- it does not provide a NICE characterization of $\mathcal{C}(\mathbf{K})_d$, and
- not very practical for optimization purpose

Note in passing that

$$f \geq 0$$
 on \mathbb{R}^n (i.e., $f \in \mathcal{C}_d$) \Leftrightarrow $hf = p$

for some integer s, and polynomials h, $p \in P(g)$.

But again, it does not provide a nice characterization of the convex cone \mathcal{C}_d

Note in passing that

$$f \geq 0$$
 on \mathbb{R}^n $(i.e., f \in \mathcal{C}_d) \Leftrightarrow hf = p$

for some integer s, and polynomials h, $p \in P(g)$. But again, it does not provide a nice characterization of the convex cone \mathcal{C}_d

Schmüdgen's Positivstellensatz

[K compact and f > 0 on K] $\Rightarrow f \in P_k(g)$

for some integer k.

Putinar Positivstellensatz

Assume that for some M > 0, the quadratic polynomial $\mathbf{x} \mapsto M - \|\mathbf{x}\|^2$ is in Q(g). Then:

[K compact and f > 0 on K] $\Rightarrow f \in Q_k(g)$

for some integer *k*.

Schmüdgen's Positivstellensatz

[K compact and f > 0 on K] $\Rightarrow f \in P_k(g)$

for some integer k.

Putinar Positivstellensatz

Assume that for some M > 0, the quadratic polynomial $\mathbf{x} \mapsto M - ||\mathbf{x}||^2$ is in Q(g). Then:

[K compact and f > 0 on K] $\Rightarrow f \in Q_k(g)$

for some integer k.

Schmüdgen's Positivstellensatz

[K compact and f > 0 on K] $\Rightarrow f \in P_k(g)$

for some integer k.

Putinar Positivstellensatz

Assume that for some M > 0, the quadratic polynomial $\mathbf{x} \mapsto M - ||\mathbf{x}||^2$ is in Q(g). Then:

[K compact and f > 0 on K] $\Rightarrow f \in Q_k(g)$

for some integer k.

Observe that if $f \ge 0$ on **K** then for every $\epsilon > 0$, there exists k such that $f + \epsilon \in Q_k^d(g)$ (or $f + \epsilon \in Q_k^d(g)$) for some k ...

And so, the previous Positivstellensatze state that

$$\overline{\left(\bigcup_{k=0}^{\infty} P_k^d(g)\right)} = {}^{\mathcal{C}}(\mathbf{K})_d$$

and if $\mathbf{x} \mapsto M - \|\mathbf{x}\|^2$ is in Q(g)

$$\overline{\left(\bigcup_{k=0}^{\infty}Q_{k}^{d}(g)\right)}=\textcolor{red}{\mathcal{C}(\mathbf{K})_{d}}$$

Duality

Given a sequence $\mathbf{y} = (\mathbf{y}_{\alpha}), \ \alpha \in \mathbb{N}^n$, define the linear functional $L_{\mathbf{y}} : \mathbb{R}[\mathbf{x}] \to \mathbb{R}$ by:

$$f(=\sum_{\alpha}f_{\alpha}\mathbf{x}^{\alpha})\mapsto L_{\mathbf{y}}(f):=\sum_{\alpha}f_{\alpha}\mathbf{y}_{\alpha}, \qquad \forall f\in\mathbb{R}[\mathbf{x}]$$

A sequence **y** has a representing Borel measure on **K** if there exists a finite Borel measure μ supported on **K**, such that

$$\mathbf{y}_{\alpha} = \int_{\mathbf{K}} \mathbf{x}^{\alpha} \, \mathbf{d}\mu(\mathbf{x}), \qquad \forall \alpha \in \mathbb{N}^{n}.$$

Theorem (Dual version of Putinar's theorem)

Let **K** be compact and assume that the polynomial $M - \|\mathbf{x}\|^2$ belongs to Q(g). Then **y** has a representing mesure supported on **K** if

$$L_{\mathbf{y}}(h^2) \geq 0, \quad L_{\mathbf{y}}(h^2 g_j) \geq 0, \quad \forall h \in \mathbb{R}[\mathbf{x}]$$

Moment matrix $M_k(\mathbf{y})$

with rows and columns indexed in $\mathbb{N}_k^n = \{\alpha \in \mathbb{N}^n : \sum_i \alpha_i \leq k\}$.

$$M_k(\mathbf{y})(\alpha,\beta) := L_{\mathbf{y}}(\mathbf{x}^{\alpha+\beta}) = \mathbf{y}_{\alpha+\beta}, \quad \alpha,\beta \in \mathbb{N}_k^n$$

For instance in
$$\mathbb{R}^2$$
: $M_1(y) = \begin{bmatrix} y_{00} & y_{10} & y_{01} \\ - & - & - \\ y_{10} & y_{20} & y_{11} \\ y_{01} & y_{11} & y_{02} \end{bmatrix}$

Then
$$\left[L_{\mathbf{y}}(f^2) \geq 0, \forall f, \deg(f) \leq k\right] \Leftrightarrow M_k(\mathbf{y}) \geq 0$$

Localizing matrix $M_r(\theta y)$ with respect to $\theta \in \mathbb{R}[\mathbf{x}]$

With
$$\mathbf{x} \mapsto \theta(\mathbf{x}) = \sum_{\gamma} \theta_{\gamma} \mathbf{x}^{\gamma}$$

$$M_r(\theta \mathbf{y})(\alpha, \beta) = L_{\mathbf{y}}(\theta \mathbf{x}^{\alpha+\beta}) = \sum_{\gamma \in \mathbb{N}^n} \theta_{\gamma} \mathbf{y}_{\alpha+\beta+\gamma}, \quad \alpha, \beta \in \mathbb{N}_k^n$$

For instance, in \mathbb{R}^2 , and with $X \mapsto \theta(\mathbf{x}) := 1 - x_1^2 - x_2^2$,

$$\mathbf{M}_{1}(\theta \mathbf{y}) = \begin{bmatrix} y_{00} - y_{20} - y_{02}, & y_{10} - y_{30} - y_{12}, & y_{01} - y_{21} - y_{03} \\ y_{10} - y_{30} - y_{12}, & y_{20} - y_{40} - y_{22}, & y_{11} - y_{21} - y_{12} \\ y_{01} - y_{21} - y_{03}, & y_{11} - y_{21} - y_{12}, & y_{02} - y_{22} - y_{04} \end{bmatrix}.$$

Then
$$\left[L_{\mathbf{y}}(f^2 \theta) \geq 0, \forall f, \deg(f) \leq k \right] \Leftrightarrow M_{k}(\theta y) \succeq 0$$

Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem

$$f^* = \min\{f(\mathbf{x}) : \mathbf{x} \in \mathbf{K}\}$$

For every j, let $v_j := \lceil \deg(g_j)/2 \rceil$.

Theorem

Let **K** be compact and assume that the polynomial $M - ||\mathbf{x}||^2$ belongs to Q(g). Consider the semidefinite programs:

$$\rho_{k} := \max \{ X : Y - X \in \mathcal{Q}_{k}(g) \}$$

$$\rho_{k} := \min_{\mathbf{y}} L_{\mathbf{y}}(f)$$

$$s.t. L_{\mathbf{y}}(1) = 1$$

$$M_{k}(\mathbf{y}), M_{k-v_{j}}(g_{j} \mathbf{y}) \succeq 0, \quad j = 1, \dots, m$$

Then $\rho_k^* \leq \rho_k$ for all k, and ρ_k^* , $\rho_k \uparrow f^* := \min\{f(\mathbf{x}) : \mathbf{x} \in \mathbf{K}\}$

Optimization: Hierarchy of semidefinite relaxations

Consider the global optimization problem

$$f^* = \min\{f(\mathbf{x}) : \mathbf{x} \in \mathbf{K}\}$$

For every j, let $v_j := \lceil \deg(g_j)/2 \rceil$.

Theorem

Let K be compact and assume that the polynomial $M - ||\mathbf{x}||^2$ belongs to Q(g). Consider the semidefinite programs:

$$ho_k^* := \max \left\{ \begin{array}{l} \lambda : f - \lambda \in Q_k(g) \end{array}
ight\}$$
 $ho_k := \min_{\mathbf{y}} \quad L_{\mathbf{y}}(f)$
 $s.t. \quad L_{\mathbf{y}}(1) = 1$
 $M_k(\mathbf{y}), M_{k-v_j}(g_j \mathbf{y}) \succeq 0, \quad j = 1, \dots, m$

Then $\rho_k^* \leq \rho_k$ for all k, and ρ_k^* , $\rho_k \uparrow f^* := \min\{f(\mathbf{x}) : \mathbf{x} \in \mathbf{K}\}$

Notice that the primal semidefinite program

$$\begin{array}{ll} \rho_{k} := \min_{\mathbf{y}} & L_{\mathbf{y}}(f) \\ \text{s.t.} & L_{\mathbf{y}}(1) = 1 \\ & M_{k}(\mathbf{y}), \ M_{k-v_{j}}(g_{j}\,\mathbf{y}) \succeq 0, \quad j = 1, \ldots, m \end{array}$$

is a relaxation of

$$f^* = \min_{\mu \in M(\mathbf{K})} \left\{ \int_{\mathbf{K}} f \, d\mu : \mu(\mathbf{K}) = 1 \right\}$$

where M(K) is the space of finite Borel measures on K.

Let 🌿 be an optimal solution of the primal SDF

If there is a unique global minimizer $\mathbf{x}^* \in \mathbf{K}$ then $\mu^* = \delta_{\mathbf{x}^*}$ and for every $i = 1, \dots, n$, $L_{\mathbf{v}^k}(\mathbf{x}_i) \to x_i^*$ as $k \to \infty$.

Notice that the primal semidefinite program

$$\begin{array}{ll} \rho_{k} := \min_{\mathbf{y}} & L_{\mathbf{y}}(f) \\ \text{s.t.} & L_{\mathbf{y}}(1) = 1 \\ & M_{k}(\mathbf{y}), \ M_{k-\nu_{j}}(g_{j}\,\mathbf{y}) \succeq 0, \quad j = 1, \ldots, m \end{array}$$

is a relaxation of

$$f^* = \min_{\mu \in M(\mathbf{K})} \left\{ \int_{\mathbf{K}} f \, d\mu : \mu(\mathbf{K}) = 1 \right\}$$

where M(K) is the space of finite Borel measures on K.

Let y be an optimal solution of the primal SDP

If there is a unique global minimizer $\mathbf{x}^* \in \mathbf{K}$ then $\mu^* = \delta_{\mathbf{x}^*}$ and for every $i = 1, \dots, n, L_{\mathbf{v}^k}(\mathbf{x}_i) \to x_i^*$ as $k \to \infty$.

Another look at of nonnegativity

Let $K \subseteq \mathbb{R}^n$ be an arbitrary closed set, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function.

Support of a measure

On a separable metric space X, the support $\operatorname{supp} \mu$ of a Borel measure μ is the (unique) smallest closed set such that $\mu(X \setminus \mathbf{K}) = 0$.

Here the knowledge on **K** is through a measure μ with $\sup \mu = \mathbf{K}$, and is independent of the representation of **K**.

Lemma (Let m be such that

A continuous function $f: X \to \mathbb{R}$ is nonnegative on K if and only if the signed Borel measure $\nu(B) = \int_{K \cap B} f \, d\mu$, $B \in \mathcal{B}$, is a positive measure.

Let $K \subseteq \mathbb{R}^n$ be an arbitrary closed set, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function.

Support of a measure

On a separable metric space X, the support $\operatorname{supp} \mu$ of a Borel measure μ is the (unique) smallest closed set such that $\mu(X \setminus \mathbf{K}) = 0$.

Here the knowledge on **K** is through a measure μ with $\sup \mu = \mathbf{K}$, and is independent of the representation of **K**.

Lemma (Let μ be such that supp $\mu = \mathbb{K}$)

A continuous function $\mathbf{f}:X\to\mathbb{R}$ is nonnegative on \mathbf{K} if and only if the signed Borel measure $\mathbf{v}(B)=\int_{\mathbf{K}\cap B}\mathbf{f}\,d\mu$, $B\in\mathcal{B}$, is a positive measure.

proof

The *only if part* is straightforward. For the *if part*, if ν is a positive measure then $f(\mathbf{x}) \geq 0$ for μ -almost all $\mathbf{x} \in \mathbf{K}$. That is, there is a Borel set $G \subset \mathbf{K}$ such that $\mu(G) = 0$ and $f(\mathbf{x}) \geq 0$ on $\mathbf{K} \setminus G$.

Next, observe that $\mathbf{K} \setminus \overline{G} \subset \mathbf{K}$ and $\mu(\mathbf{K} \setminus \overline{G}) = \mu(\mathbf{K})$. Therefore $\overline{\mathbf{K} \setminus G} = \mathbf{K}$ by minimality of \mathbf{K} .

Hence, let $\mathbf{x} \in \mathbf{K}$ be fixed, arbitrary. As $\mathbf{K} = \mathbf{K} \setminus \overline{G}$, there is a sequence $(\mathbf{x}_k) \subset \mathbf{K} \setminus G$, $k \in \mathbb{N}$, with $\mathbf{x}_k \to \mathbf{x}$ as $k \to \infty$. But since f is continuous and $f(\mathbf{x}_k) \geq 0$ for every $k \in \mathbb{N}$, we obtain the desired result $f(\mathbf{x}) \geq 0$.

proof

The *only if part* is straightforward. For the *if part*, if ν is a positive measure then $f(\mathbf{x}) \geq 0$ for μ -almost all $\mathbf{x} \in \mathbf{K}$. That is, there is a Borel set $G \subset \mathbf{K}$ such that $\mu(G) = 0$ and $f(\mathbf{x}) \geq 0$ on $\mathbf{K} \setminus G$.

Next, observe that $\overline{\mathbf{K}} \setminus \overline{G} \subset \mathbf{K}$ and $\mu(\overline{\mathbf{K}} \setminus \overline{G}) = \mu(\mathbf{K})$. Therefore $\overline{\mathbf{K}} \setminus \overline{G} = \mathbf{K}$ by minimality of \mathbf{K} .

Hence, let $\mathbf{x} \in \mathbf{K}$ be fixed, arbitrary. As $\mathbf{K} = \overline{\mathbf{K} \setminus G}$, there is a sequence $(\mathbf{x}_k) \subset \mathbf{K} \setminus G$, $k \in \mathbb{N}$, with $\mathbf{x}_k \to \mathbf{x}$ as $k \to \infty$. But since f is continuous and $f(\mathbf{x}_k) \geq 0$ for every $k \in \mathbb{N}$, we obtain the desired result $f(\mathbf{x}) \geq 0$.

proof

The *only if part* is straightforward. For the *if part*, if ν is a positive measure then $f(\mathbf{x}) \geq 0$ for μ -almost all $\mathbf{x} \in \mathbf{K}$. That is, there is a Borel set $G \subset \mathbf{K}$ such that $\mu(G) = 0$ and $f(\mathbf{x}) \geq 0$ on $\mathbf{K} \setminus G$.

Next, observe that $\overline{\mathbf{K} \setminus G} \subset \mathbf{K}$ and $\mu(\overline{\mathbf{K} \setminus G}) = \mu(\mathbf{K})$. Therefore $\overline{\mathbf{K} \setminus G} = \mathbf{K}$ by minimality of \mathbf{K} .

Hence, let $\mathbf{x} \in \mathbf{K}$ be fixed, arbitrary. As $\mathbf{K} = \overline{\mathbf{K} \setminus G}$, there is a sequence $(\mathbf{x}_k) \subset \mathbf{K} \setminus G$, $k \in \mathbb{N}$, with $\mathbf{x}_k \to \mathbf{x}$ as $k \to \infty$. But since f is continuous and $f(\mathbf{x}_k) \geq 0$ for every $k \in \mathbb{N}$, we obtain the desired result $f(\mathbf{x}) \geq 0$.

Theorem

Let $\mathbf{K} \subseteq [-1,1]^n$ be compact and let μ be an arbitrary, fixed, finite Borel measure on \mathbf{K} with supp $\mu = \mathbf{K}$. Let f be a continuous function on \mathbb{R}^n and let $\mathbf{z} = (\mathbf{z}_{\alpha}), \, \alpha \in \mathbb{N}^n$, with

$$\mathbf{z}_{\alpha} = \int_{\mathbf{K}} \mathbf{x}^{\alpha} f(\mathbf{x}) d\mu(\mathbf{x}), \qquad \forall \, \alpha \in \mathbb{N}^{n}.$$

(a) $f \ge 0$ on **K** if and only if

$$M_k(\mathbf{z}) \succeq 0, \qquad k = 0, 1, \ldots,$$

and if $f \in \mathbb{R}[\mathbf{x}]$ then $f \geq 0$ on \mathbf{K} if and only if

$$M_k(\mathbf{f}\mathbf{y}) \succeq 0, \qquad k = 0, 1, \dots$$

(b) If in addition to be continuous, f is also concave on K, then one may replace K with co(K).

Theorem

Let $\mathbf{K} \subseteq [-1,1]^n$ be compact and let μ be an arbitrary, fixed, finite Borel measure on \mathbf{K} with supp $\mu = \mathbf{K}$. Let f be a continuous function on \mathbb{R}^n and let $\mathbf{z} = (\mathbf{z}_{\alpha}), \, \alpha \in \mathbb{N}^n$, with

$$\mathbf{z}_{\alpha} = \int_{\mathbf{K}} \mathbf{x}^{\alpha} f(\mathbf{x}) d\mu(\mathbf{x}), \qquad \forall \, \alpha \in \mathbb{N}^{n}.$$

(a) $f \ge 0$ on **K** if and only if

$$M_k(\mathbf{z}) \succeq 0, \qquad k = 0, 1, \ldots,$$

and if $f \in \mathbb{R}[\mathbf{x}]$ then $f \geq 0$ on \mathbf{K} if and only if

$$M_k(f \mathbf{y}) \succeq 0, \qquad k = 0, 1, \dots$$

(b) If in addition to be continuous, f is also concave on K, then one may replace K with co(K).

Theorem

Let $\mathbf{K} \subseteq [-1,1]^n$ be compact and let μ be an arbitrary, fixed, finite Borel measure on \mathbf{K} with supp $\mu = \mathbf{K}$. Let f be a continuous function on \mathbb{R}^n and let $\mathbf{z} = (\mathbf{z}_{\alpha}), \, \alpha \in \mathbb{N}^n$, with

$$\mathbf{z}_{\alpha} = \int_{\mathbf{K}} \mathbf{x}^{\alpha} f(\mathbf{x}) d\mu(\mathbf{x}), \qquad \forall \, \alpha \in \mathbb{N}^{n}.$$

(a) $f \ge 0$ on **K** if and only if

$$M_k(\mathbf{z}) \succeq 0, \qquad k = 0, 1, \ldots,$$

and if $f \in \mathbb{R}[\mathbf{x}]$ then $f \geq 0$ on \mathbf{K} if and only if

$$M_k(f \mathbf{y}) \succeq 0, \qquad k = 0, 1, \dots$$

(b) If in addition to be continuous, f is also concave on K, then one may replace K with co(K).

Sketch of proof

Consider the signed measure $d\nu = f d\mu$. As $K \subseteq [-1, 1]^n$,

$$|\mathbf{Z}_{\alpha}| \, = \, \left| \int_{\mathbf{K}} \mathbf{x}^{\alpha} \mathbf{f} \mathbf{d} \boldsymbol{\mu} \right| \, \leq \, \int_{\mathbf{K}} |\mathbf{f}| \mathbf{d} \boldsymbol{\mu} = \|\mathbf{f}\|_1, \qquad \forall \alpha \in \mathbb{N}^n.$$

and so z is the moment sequence of a finite (positive) Borel measure ψ on $[-1,1]^n$.

As **K** is compact this implies $\nu=\psi$, and so, ν is a positive Borel measure, and with support equal to **K**.

By the Lemma that we have seen, $f \ge 0$ on **K**. \square

Sketch of proof

Consider the signed measure $d\nu = f d\mu$. As $K \subseteq [-1, 1]^n$,

$$|\mathbf{Z}_{\alpha}| \, = \, \left| \int_{\mathbf{K}} \mathbf{x}^{\alpha} \mathbf{f} \mathbf{d} \boldsymbol{\mu} \right| \, \leq \, \int_{\mathbf{K}} |\mathbf{f}| \mathbf{d} \boldsymbol{\mu} = \|\mathbf{f}\|_1, \qquad \forall \alpha \in \mathbb{N}^n.$$

and so \mathbf{z} is the moment sequence of a finite (positive) Borel measure ψ on $[-1,1]^n$.

As **K** is compact this implies $\nu = \psi$, and so, ν is a positive Borel measure, and with support equal to **K**.

By the Lemma that we have seen, $f \ge 0$ on **K**. \square

Sketch of proof

Consider the signed measure $d\nu = f d\mu$. As $K \subseteq [-1, 1]^n$,

$$|\mathbf{Z}_{\alpha}| \, = \, \left| \int_{\mathbf{K}} \mathbf{x}^{\alpha} \mathbf{f} \mathbf{d} \boldsymbol{\mu} \right| \, \leq \, \int_{\mathbf{K}} |\mathbf{f}| \mathbf{d} \boldsymbol{\mu} = \|\mathbf{f}\|_1, \qquad \forall \alpha \in \mathbb{N}^n.$$

and so \mathbf{z} is the moment sequence of a finite (positive) Borel measure ψ on $[-1,1]^n$.

As **K** is compact this implies $\nu = \psi$, and so, ν is a positive Borel measure, and with support equal to **K**.

By the Lemma that we have seen, $f \ge 0$ on **K**.

Let identify $f \in \mathbb{R}[\mathbf{x}]_d$ with its vector of coefficient $f \in \mathbb{R}^{s(d)}$, with $s(d) = \binom{n+d}{n}$.

Observe that, for every $k = 1, \dots$

 $\Delta_k := \{ f \in \mathbb{R}^{s(d)} : M_k(f \mathbf{y}) \succeq 0 \}$ is a spectrahedron in $\mathbb{R}^{s(d)}$,

that is. ...

one obtains a nested hierarchy of spectrahedra

$$\Delta_0 \supset \Delta_1 \cdots \supset \Delta_k \cdots \supset \mathcal{C}(\mathbf{K})_d$$

with no lifting, that provide tighter and tighter outer approximations of $C(\mathbf{K})_d$.

Let identify $f \in \mathbb{R}[\mathbf{x}]_d$ with its vector of coefficient $f \in \mathbb{R}^{s(d)}$, with $s(d) = \binom{n+d}{n}$.

Observe that, for every $k = 1, \ldots$

 $\Delta_k := \{ f \in \mathbb{R}^{s(d)} : M_k(f \mathbf{y}) \succeq 0 \}$ is a spectrahedron in $\mathbb{R}^{s(d)}$,

that is, ...

one obtains a nested hierarchy of spectrahedra

$$\Delta_0 \supset \Delta_1 \cdots \supset \Delta_k \cdots \supset \mathcal{C}(\mathbf{K})_d$$
,

with no lifting, that provide tighter and tighter outer approximations of $\mathcal{C}(\mathbf{K})_d$.

So we get the sandwich $P_k^d(\mathbf{c}) \subset \mathcal{C}(\mathbf{c})_d \subset \Delta_k$ for all k, and

$$\overline{\left(\bigcup_{k=0}^{\infty} P_k^d(g)\right)} = {\color{red}\mathcal{C}(\mathbf{K})_d} = \left(\bigcap_{k=0}^{\infty} \Delta_k\right)$$

Inner approximations representation dependent

Outer approximations independent of representation

Application to optimization

Theorem (A hierarchy of upper bounds)

Let $\mathbf{f} \in \mathbb{R}[\mathbf{x}]_d$ be fixed and $\mathbf{K} \subset \mathbb{R}^n$ be closed. Let μ be such that $\operatorname{supp} \mu = \mathbf{K}$ and with moment sequence $\mathbf{y} = (\mathbf{y}_{\alpha}), \ \alpha \in \mathbb{N}^n$. Consider the hierarchy of semidefinite programs:

$$u_{k} = \min_{\sigma} \left\{ \int_{\mathbf{K}} \mathbf{f} \underbrace{\sigma \frac{d\mu}{d\nu}}_{d\nu} : \int_{\mathbf{K}} \underbrace{\sigma \frac{d\mu}{d\nu}}_{d\nu} = 1; \ \sigma \in \Sigma[\mathbf{x}]_{d} \right\},$$

$$u_k^* = \max_{\lambda} \{ \lambda : M_k(f - \lambda, \mathbf{y}) \succeq 0 \}$$

=
$$\max_{\lambda} \{ \lambda : \lambda M_k(\mathbf{y}) \preceq M_k(f, \mathbf{y}) \}$$

Then $u_k^*, u_k \downarrow f^* = \min_{\mathbf{x}} \{ f(\mathbf{x}) : \mathbf{x} \in \mathbf{K} \}.$

recall that

$$f^* = \min_{\psi} \{ \int_{\mathbf{K}} f \, d\psi : \psi(\mathbf{K}) = 1, \ \psi(\mathbb{R}^n \setminus \mathbf{K}) = 0 \}$$
 whereas

$$u_k = \min_{\nu} \{ \int_{\mathbf{K}} \mathbf{f} \underbrace{\sigma \mathbf{d} \mu}_{\mathbf{d} \nu} : \nu(\mathbf{K}) = 1, \ \nu(\mathbb{R}^n \setminus \mathbf{K}) = 0; \ \sigma \in \Sigma[\mathbf{x}]_k \}$$

that is, one optimizes over the subspace of Borel probability measures absolutely continuous with respect to μ , and with density $\sigma \in \Sigma[\mathbf{x}]_k$.

recall that

$$f^* = \min_{\psi} \{ \int_{\mathbf{K}} f \, d\psi : \psi(\mathbf{K}) = 1, \ \psi(\mathbb{R}^n \setminus \mathbf{K}) = 0 \}$$
whereas
$$u_k = \min_{\nu} \{ \int_{\mathbf{K}} f \, \frac{\sigma d\mu}{d\nu} : \nu(\mathbf{K}) = 1, \ \nu(\mathbb{R}^n \setminus \mathbf{K}) = 0; \ \sigma \in \Sigma[\mathbf{x}]_k \}$$

that is, one optimizes over the subspace of Borel probability measures absolutely continuous with respect to μ , and with density $\sigma \in \Sigma[\mathbf{x}]_k$.

recall that

$$f^* = \min_{\psi} \{ \int_{\mathbf{K}} f \, d\psi : \psi(\mathbf{K}) = 1, \ \psi(\mathbb{R}^n \setminus \mathbf{K}) = 0 \}$$
whereas
$$u_k = \min_{\nu} \{ \int_{\mathbf{K}} f \, \underbrace{\sigma d\mu}_{d\nu} : \nu(\mathbf{K}) = 1, \ \nu(\mathbb{R}^n \setminus \mathbf{K}) = 0; \ \sigma \in \Sigma[\mathbf{x}]_k \}$$

that is, one optimizes over the subspace of Borel probability measures absolutely continuous with respect to μ , and with density $\sigma \in \Sigma[\mathbf{x}]_k$.

recall that

$$\begin{array}{ll} f^* &=& \min_{\psi} \{ \int_{\mathbf{K}} f \, d\psi \, : \, \psi(\mathbf{K}) = 1, \, \psi(\mathbb{R}^n \setminus \mathbf{K}) = 0 \} \\ & \quad \text{whereas} \\ u_k &=& \min_{\nu} \{ \int_{\mathbf{K}} f \, \underbrace{\sigma d\mu}_{d\nu} \, : \, \nu(\mathbf{K}) = 1, \, \nu(\mathbb{R}^n \setminus \mathbf{K}) = 0; \, \sigma \in \Sigma[\mathbf{x}]_k \} \end{array}$$

that is, one optimizes over the subspace of Borel probability measures absolutely continuous with respect to μ , and with density $\sigma \in \Sigma[\mathbf{x}]_k$.

 \bullet Also works for non-compact closed sets but then μ has to satisfy Carleman-type sufficient condition which limits the growth of the moments. For example, take

$$extbf{d}\mu = \mathrm{e}^{\parallel \mathbf{x} \parallel^2/2}\, extbf{d}\mathbf{x}$$

- The sequences of upper bounds (u_k, u_k^*) complement the sequences of lower bounds (ρ_k, ρ_k^*) obtained from SDP-relaxations.
- Of course, for practical computation, the previous semidefinite relaxations require knowledge of the moment sequence $\mathbf{y} = (\mathbf{y}_{\alpha}), \ \alpha \in \mathbb{N}^{n}$.

This is possible for relatively simple sets **K** like a box, a simplex, the discrete set $\{-1,1\}^n$, an ellipsoid, etc., where one can take μ to be uniformly distributed, or $\mathbf{K} = \mathbb{R}^n$ (or $\mathbf{K} = \mathbb{R}^n_+$) with

 \bullet Also works for non-compact closed sets but then μ has to satisfy Carleman-type sufficient condition which limits the growth of the moments. For example, take

$$extbf{d}\mu = \mathrm{e}^{\parallel \mathbf{x} \parallel^2/2}\, extbf{d}\mathbf{x}$$

- The sequences of upper bounds (u_k, u_k^*) complement the sequences of lower bounds (ρ_k, ρ_k^*) obtained from SDP-relaxations.
- Of course, for practical computation, the previous semidefinite relaxations require knowledge of the moment sequence $\mathbf{y} = (\mathbf{y}_{\alpha}), \ \alpha \in \mathbb{N}^{n}$.

This is possible for relatively simple sets **K** like a box, a simplex, the discrete set $\{-1,1\}^n$, an ellipsoid, etc., where one can take μ to be uniformly distributed, or $\mathbf{K} = \mathbb{R}^n$ (or $\mathbf{K} = \mathbb{R}^n_+$) with

$$egin{aligned} d\mu &= \mathrm{e}^{-\|\mathbf{x}\|^2/2} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf$$

 \bullet Also works for non-compact closed sets but then μ has to satisfy Carleman-type sufficient condition which limits the growth of the moments. For example, take

$$extbf{d}\mu = \mathrm{e}^{\parallel \mathbf{x} \parallel^2/2}\, extbf{d}\mathbf{x}$$

- The sequences of upper bounds (u_k, u_k^*) complement the sequences of lower bounds (ρ_k, ρ_k^*) obtained from SDP-relaxations.
- Of course, for practical computation, the previous semidefinite relaxations require knowledge of the moment sequence $\mathbf{v} = (\mathbf{v}_{\alpha}), \alpha \in \mathbb{N}^{n}$.

This is possible for relatively simple sets **K** like a box, a simplex, the discrete set $\{-1,1\}^n$, an ellipsoid, etc., where one can take μ to be uniformly distributed, or $\mathbf{K} = \mathbb{R}^n$ (or $\mathbf{K} = \mathbb{R}^n_+$) with

$$egin{aligned} d\mu &= \mathrm{e}^{-\|\mathbf{x}\|^2/2} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n \ d\mu &= \mathrm{e}^{-\sum_i x_i} \, d\mathbf{x}, & \mathbf{K} &= \mathbb{R}^n_+ & \mathbf{K} &= \mathbf{K}^n_+ &= \mathbf{K}^n_+$$

Some experiments

• $\mathbf{K} = \mathbb{R}^2_+$ with $d\mu = \mathrm{e}^{-\sum_i x_i} d\mathbf{x}$ so that

$$\mathbf{y}_{ij} = i! j!, \quad \forall i, j = 0, 1, \dots$$

$$\mathbf{x} \mapsto f(\mathbf{x}) := x_1^2 x_2^2 (x_1^2 + x_2^2 - 1) \text{ with } f^* = -1/27 \approx -0.037$$

$$u_k$$
 15.6 4.3 1.5 0.6 0.27 0.13 0.0666 0.03 0.017 0.008 0.004 0.0013 -0.0002 -0.0010

• $\mathbf{K} = \mathbb{R}^2_+$ and $\mathbf{x} \mapsto f(\mathbf{x}) = x_1 + (1 - x_1 x_2)^2$ with $f^* = 0$, not attained.

Some experiments

• $\mathbf{K} = \mathbb{R}^2_+$ with $d\mu = \mathrm{e}^{-\sum_i x_i} d\mathbf{x}$ so that

$$\mathbf{y}_{ij} = i! j!, \quad \forall i, j = 0, 1, \dots$$

$$\mathbf{x} \mapsto f(\mathbf{x}) := x_1^2 x_2^2 (x_1^2 + x_2^2 - 1) \text{ with } f^* = -1/27 \approx -0.037$$

$$u_k$$
 15.6 4.3 1.5 0.6 0.27 0.13 0.0666 0.03 0.017 0.008 0.004 0.0013 -0.0002 -0.0010

• $\mathbf{K} = \mathbb{R}^2_+$ and $\mathbf{x} \mapsto \mathbf{f}(\mathbf{x}) = x_1 + (1 - x_1 x_2)^2$ with $\mathbf{f}^* = 0$, not attained.

- Rapid decrease in first steps, but poor convergence
- Numerical stability problems to be expected.
- Use bases different from the monomial basis.
- Rather see this technique as a complement to lower bounds obtained from semidefinite relaxations

- Rapid decrease in first steps, but poor convergence
- Numerical stability problems to be expected.
- Use bases different from the monomial basis.
- Rather see this technique as a complement to lower bounds obtained from semidefinite relaxations

- Rapid decrease in first steps, but poor convergence
- Numerical stability problems to be expected.
- Use bases different from the monomial basis.
- Rather see this technique as a complement to lower bounds obtained from semidefinite relaxations

- Rapid decrease in first steps, but poor convergence
- Numerical stability problems to be expected.
- Use bases different from the monomial basis.
- Rather see this technique as a complement to lower bounds obtained from semidefinite relaxations

THANK YOU!

