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1 Spectrahedra and rigidly convex sets.
2 Spectrahedra = rigidly convex sets?
3 Counterexamples to RZ-polynomials = determinantal polynomials.
4 Counterexample to powers of RZ-polynomials = determinantal

polynomials.
5 Further directions.



I A set S ⊆ Rn is a spectrahedron if there are symmetric m ×m
matrices, A0,A1, . . . ,An, such that

S = {x ∈ Rn : A0 + x1A1 + · · ·+ xnAn is positive semidefinite}.

I Can we describe spectrahedra algebraically?
I S is convex.
I S is a closed semialgebraic set.
I All faces of S are exposed, that is, intersections of S with a

supporting hyperplane.



Is the tv-screen a spectrahedron?

Spectrahedra and their properties
Let S ⊆ Rn be a spectrahedron. Then

! S is convex,
! S is a basic closed semialgebraic set, and
! all faces of S are exposed.

This three properties do not characterize spectrahedra. We will now
learn about another property of polyhedra called rigid convexity which is
strictly stronger and which is conjectured to characterize spectrahedra.

The basic closed semialgebraic set {x ∈ R2 | x4
1 + x4

2 ≤ 1} is convex
and has only exposed faces

but we will see that it is not a
spectrahedron. The reason for this will be that it is not rigidly convex.

x1

x2
x4
1 + x4

2 ≤ 1

No it fails to be rigidly convex!



I Let us assume that A0 = I, the identity matrix, and

S = {x ∈ Rn : I + x1A1 + · · ·+ xnAn is positive semidefinite}.

p(x) = det(I + x1A1 + · · ·+ xnAn)

I Then S is the closure of the connected component of

{x ∈ Rn : p(x) 6= 0}

that contains the origin. S = Cp (algebraic interior).



Real Zero polynomial (RZ polynomial)
A polynomial p(x) ∈ R[x1, . . . , xn] is a real zero polynomial if for all
µ ∈ C and x ∈ Rn

p(µx) = 0 implies µ is real

I If p(x) = det(I + x1A1 + · · ·+ xnAn), then p(x) is a RZ polynomial:

p(µx) = det(I + µ(x1A1 + · · ·+ xnAn)) = det(I + µA),

and det(I + tA) has only real zeros.



I S is rigidly convex if S = Cp, where p is a RZ polynomial.
I Hence spectrahedra are rigidly convex.
I Rigidly convex sets are convex (Gårding).
I Their faces are exposed.
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Conjecture (Helton and Vinnikov)
A set is a spectrahedron if and only if it is rigidly convex.

Solved for n = 2

Theorem (Helton and Vinnikov)
Let p(x , y) be a RZ polynomial such that p(0,0) = 1 and deg p = d .
Then there are symmetric d × d matrices A,B such that

p(x , y) = det(I + xA + yB).

What about n > 2?



I The space of all RZ polynomials of degree d in n variables has
nonempty interior (Nuij).

I Hence the dimension of the space of RZ polynomials with
p(0) = 1 is

(n+d
n

)
− 1.

I The space of all determinantal polynomials
det(I + x1A1 + · · ·+ xnAn) has dimension at most n

(d+1
2

)
.

I Hence if d > 2, an exact analog of the Helton–Vinnikov theorem
does not hold. But we could allow matrices of a larger size.

Conjecture (Helton and Vinnikov)
Let p(x1, . . . , xn) be any RZ polynomial such that p(0) = 1. Then there
are symmetric matrices A1, . . . ,An such that

p(x) = det(I + x1A1 + · · ·+ xnAn).



A homogeneous polynomial h(x) ∈ R[x1, . . . , xn] is hyperbolic with
respect to e ∈ Rn if

I h(e) 6= 0, and
I for each x ∈ Rn and µ ∈ C

h(x + µe) = 0 implies µ is real.

The hyperbolicity cone, Λ++, of h at e is the connected component of

{x ∈ Rn : p(x) 6= 0}

which contains e.



I e′ ∈ Λ++ if and only if all zeros of t 7→ h(e′ + te) are negativ.
I Λ++ is convex (Gårding).
I The space of all degree d polynomials that are hyperbolic with

respect to a fixed e ∈ Rn has nonempty interior (Nuij).
I A homogeneous polynomial h(x , y , z), with h(e1,e2,e3) = 1 and

deg h = d is hyperbolic with respect e if and only if there are
symmetric d × d matrices A,B,C such that e1A + e2B + e3C = I
and

p(x , y , z) = det(xA + yB + zC).



Examples.
I Let X = (xij)

n
i,j=1, where xij = xji are variables. Then det(X ) is

hyperbolic with respect to I.

det(X − µI) = characteristic polynomial.

I The hyperbolicity cone is the cone of positive definite matrices.
I h(x) = x2

1 − x2
2 − · · · − x2

n , is hyperbolic with respect to
(1,0, . . . ,0)T .

I The hyperbolicity cone is the Lorentz cone

{x ∈ Rn : x1 > 0 and x2
2 + · · ·+ x2

n ≤ x2
1}.



I If h(x) is hyperbolic with respect to e, then p(x) = h(x + e) is a RZ
polynomial:

p(xt) = h(tx + e) = tdh(x + t−1e).

Theorem (B.)
Let h(x) be a hyperbolic polynomial with respect to e, and let
p(x) = h(x + e). If p admits a representation

p(x) = det(I + x1A1 + · · ·+ xnAn)

where Aj is symmetric (hermitian) and of size N × N for all j , then p
admits a representation

p(x) = det(I + x1B1 + · · ·+ xnBn)

where Bj is symmetric (hermitian) and of size d × d for all j , and d is
the degree of h and p.



I Hence a count of parameters provides counterexamples to the
Helton–Vinnikov conjecture.

I A relaxation of the conjecture is:

Conjecture
Let p(x1, . . . , xn) be any RZ polynomial such that p(0) = 1. Then there
are symmetric matrices A1, . . . ,An and an integer N > 0 such that

p(x)N = det(I + x1A1 + · · ·+ xnAn).

I To disprove it we relate the problem to an old problem in matroid
theory, namely representability of (poly-) matroids.



A polymatroid on a finite set E is a function r : 2E → N such that
I r(∅) = 0;
I If S ⊆ T ⊆ E , then r(S) ≤ r(T );
I r is submodular, that is,

r(S ∪ T ) + r(S ∩ T ) ≤ r(S) + r(T ),

for all subsets S and T of E .
I Let V1, . . . ,Vn be subspaces of a vectorspace V over a field K .

Then the function r : 2{1,...,n} → N defined by

r(S) = dim

∑
j∈S

Vj


is a polymatroid, where

∑
j∈S Vj is the smallest subspace

containing ∪j∈SVj . These are called K -linear polymatroids.



I Suppose that V1, . . . ,Vn ⊂ Cm, and A1, . . . ,An are PSD hermitian
matrices such that Im(Ai) = Vi , then

r(S) = dim

∑
j∈S

Vj

 = rank

∑
j∈S

Aj

 = deg det

I + t

∑
j∈S

Aj



Theorem (Gurvits, B.)
Let h be a hyperbolic polynomial with respect to e, and let
e1, . . . ,en ∈ Λ+. Then r : 2{1,...,n} → N defined by

r(S) = deg h

e + t

∑
j∈S

ej


is a polymatroid. Call it a hyperbolic polymatroid.



Obstructions to K -linearity.

Ingleton’s inequalities (1969)

Suppose that r : 2{1,...,n} → N is a K -linear polymatroid. Then

r(S1 ∪ S2) + r(S1 ∪ S3 ∪ S4) + r(S3) + r(S4) + r(S2 ∪ S3 ∪ S4) ≤
r(S1 ∪ S3) + r(S1 ∪ S4) + r(S2 ∪ S3) + r(S2 ∪ S4) + r(S3 ∪ S4)

for all S1,S2,S3,S4 ∈ 2{1,...,n}.



Let B be the collection of all subsets of size 4 of {1, . . . ,8} such that
the corresponding vertices do not lie in an affine plane in the following
figure

The Vámos cube

Let further

h(x) =
∑
B∈B

∏
j∈B

xj = x1x2x3x5 + x1x2x3x6 + · · · .



Theorem (Wagner-Wei, 2009)

h(x) is hyperbolic with hyperbolicity cone containing R8
++.

Theorem (Ingleton, 1969)
The polymatroid associated to h(x) (with e1, . . . ,en the standard basis
vectors) fails to satisfy Ingleton’s inequalities.

I Hence the rank function of h(x)N does not satisfy Ingleton’s
inequalities.

I Thus we cannot have

h(x + e)N = det(I + x1A1 + · · ·+ · · · x8A8)



How is Wagner-Wei’s theorem proved?
I Let H = {z ∈ C : Im(z) > 0}.
I A homogenous real polynomial h(x) is hyperbolic with Rn

++ ⊆ Λ++

if and only if it satisfies

z ∈ Hn =⇒ h(z) 6= 0. (∗)

I Indeed, if P(x + iy) = 0 for some x + iy ∈ Hn, then P cannot be
hyperbolic with Rn

++ ⊆ Λ++ since then all zeros of t 7→ P(x + ty)
are real.

I Conversely, if P fails to be hyperbolic with respect to some
y ∈ Rn

+, then there is an x ∈ Rn for which t 7→ P(x + ty) has a
non-real zero a + bi , where b > 0.

I But then z = x + ay + iby ∈ H and P(z) = 0.
I A polynomial P(x) ∈ R[x1, . . . , xn] satisfying (∗) is called stable.



Theorem (B.)
Suppose P(x) ∈ R[x1, . . . , xn] has degree at most one in each variable.
Then P is stable if and only if

∂P
∂xi

∂P
∂xj
− ∂2P
∂xi∂xj

≥ 0, for all x ∈ Rn and 1 ≤ i < j ≤ n.

I Wagner and Wei proved that the above polynomials are SOS for
our choice of h.
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calculation verifies that

∆M{1, 2}

=
1

4
(y3y4y5 + y3y4y6 + y3y4y7 + y3y4y8 + y3y5y7 + y3y5y8

+y3y6y7 + y3y6y8 + y4y5y7 + y4y5y8 + y4y6y7

+y4y6y8 + y5y6y7 + y5y6y8 + y5y7y8 + y6y7y8)
2

+
1

4
(y3y4y5 + y3y4y6 + y3y4y7 + y3y4y8

+y3y5y7 + y3y5y8 + y4y6y7 + y4y6y8)
2

+
1

4
(y3y4y5 + y3y4y6 + y3y4y7 + y3y4y8

+y3y6y7 + y3y6y8 + y4y5y8 + y4y5y7)
2

+
1

4
(y3y4y5 + y3y4y6 + y3y4y7 + y3y4y8

−y6y7y8 − y5y7y8 − y5y6y7 − y5y6y8)
2

+
1

8
(y3y6y7 − y3y5y8 + y4y6y7 − y4y5y8 + y6y7y8 − y5y6y8)

2

+
1

8
(y3y5y7 − y3y6y8 − y4y6y8 + y4y5y7 + y5y7y8 − y5y6y8)

2

+
1

8
(y3y5y7 + y3y6y7 + y4y6y8 + y4y5y8 + y5y6y7 + y5y7y8)

2

+
1

8
(y3y5y8 + y3y6y8 + y4y6y7 + y4y5y7 + y5y6y7 + y6y7y8)

2

+
1

8
(y3y6y7 − y3y5y8 + y4y6y7 − y4y5y8 + y5y6y7 − y5y7y8)

2

+
1

8
(y3y5y7 − y3y6y8 − y4y6y8 + y4y5y7 + y5y6y7 − y6y7y8)

2

+
1

8
(y3y5y7 + y3y6y7 + y4y6y8 + y4y5y8 + y5y6y8 + y6y7y8)

2

+
1

8
(y3y5y8 + y3y6y8 + y4y6y7 + y4y5y7 + y5y6y8 + y5y7y8)

2

By Theorem 3, it follows that V8 is strongly Rayleigh.
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I Netzer and Thom have very recently improved on some of our
results:

I They find a degree two polynomial that does not have a
determinantal representation.

I They prove that for each quadratic polynomial, some power of it
has a determinantal representation.



I If h is a hyperbolic polynomial with respect to e ∈ Λ++, define a
rank function rankh : Rn → N by

rankh(x) = deg p(e + tx).

I Does not depend on the choice of e ∈ Λ++.
I Let Λ+ be the closure of the hyperbolicity cone of h.
I the rank is constant on open line segments.
I The rank drops when going from the relative interior of a face to its

boundary.

Theorem (Gurvits, B.)
Let u, v ,w ∈ Λ+, then

rank(u + v + w) + rank(w) ≤ rank(u + w) + rank(v + w)



Problem 1. Given the closure of a hyperbolicity cone Λ+, what are the
possible rank functions on Λ+?

Problem 2. Describe properties of the rank function on positive
semidefinite matrices that are not valid for hyperbolicity cones in
general.

Problem 3. Suppose that h is an irreducible hyperbolic polynomial and
that

rhN = det(x1A1 + · · ·+ xnAn)

where r is is nonzero on Λ++. How can the zero set of r intersect Λ+?


