Positivity, Sums of Squares and Positivstellensätze for Noncommutative *-Algebras

Konrad Schmüdgen (Universität Leipzig)

October, 2009

Contents

- 1. A Strict Positivstellensatz for the Weyl Algebra
- 2. Positivity in the Noncommutative Setting
- 3. Noncommutative Positivstellensätze
- 3.1 Version 1 of Artin's Theorem
- 3.2 Version 2 of Artin's Theorem
- 3.3 Version 3 of Artin's Theorem
 - 4. Another Strict Positivstellensatz

Artin's theorem and Reznick's theorem

Let us abbreviate: $\mathbb{R}[x] = \mathbb{R}[x_1, \dots, x_d]$,

 $\sum \mathbb{R}[x]^2$: set of all finite sums of squares p^2 , where $p \in \mathbb{R}[x]$.

Artin's theorem (1927) on the solution of Hilbert 17th problem:

Let $p(x_1,\ldots,p_d)\in\mathbb{R}[x]$. Suppose that $p(t)\geq 0$ for all $t\in\mathbb{R}^d$.

Then p is a sum of squares of rational functions, that is, there exists a $q \in \mathbb{R}[x]$, $q \neq 0$, such that $q^2p \in \sum \mathbb{R}[x]^2$.

If one knows more about p, what can be said about the denominator q? \Longrightarrow Archimedean Positivstellensatz (1991)

Reznick's theorem (1995):

Let $p \in \mathbb{R}[x]$ be a homogeneous polynomial.

Suppose that p(t) > 0 for all $t \in \mathbb{R}^d$, $t \neq 0$.

Then there exists $n \in \mathbb{N}$ such that $(x_1^2 + \cdots + x_d^2)^n$ $p \in \sum \mathbb{R}[x]^2$.

A Strict Positivstellensatz for Polynomials

Theorem:

$$p(x_1, x_2) = \sum_{j,k} \gamma_{jl} x_1^j x_2^j = \sum_{n=0}^{d_2} f_n(x_1) x_2^n = \sum_{k=0}^{d_1} g_k(x_2) x_1^k.$$

Suppose:

- (i) $p(t_1, t_2) > 0$ for all $(t_1, t_2) \in \mathbb{R}^2$.
- (ii) $\gamma_{d_1,d_2} > 0$, $f_{d_2}(t) > 0$ and $g_{d_1}(t) > 0$ for all $t \in \mathbb{R}$.

Let \mathcal{M} be the set of all finite products of $x_1 \pm i$ and $x_2 \pm i$.

Then there exists $c \in \mathcal{M}$ such that $\overline{c}pc \in \sum \mathbb{R}[x_1, x_2]^2$.

Can be derived from the Archimedean Positivstellensatz applied to the "fraction algebra" generated by $(x_1 \pm i)^{-1}$ and $(x_2 \pm i)^{-1}$.

A Strict Positivstellensatz for the Weyl Algebra

Let \mathcal{A} is the algebra of differential operators acting on $C_0^{\infty}(\mathbb{R})$:

$$a = \sum_{k=0}^{n} g_k(x) \left(\frac{d}{dx}\right)^k, \quad g_k \in \mathbb{C}[x].$$

Set $p := i \frac{d}{dx}$ and q = x. Each element $a \in \mathcal{A}$, $a \neq 0$, can be written as

$$a = \sum_{j=0}^{d_1} \sum_{l=0}^{d_2} \gamma_{jl} p^j q^l = \sum_{n=0}^{d_2} f_n(p) q^n = \sum_{k=0}^{d_1} g_k(q) p^k,$$

where $\gamma_{jl} \in \mathbb{C}$, $f_n(p) \in \mathbb{C}[p]$, $g_k(q) \in \mathbb{C}[q]$ uniquely determined by a. Set $d(a) = (d_1, d_2)$ if there are $j_0, l_0 \in \mathbb{N}_0$ such that $\gamma_{d_1, l_0} \neq 0$ and $\gamma_{j_0, d_2} \neq 0$.

A Strict Positivstellensatz for the Weyl Algebra

Theorem: K.S. Crelle (2010)

Let $a \in \mathcal{A}$, $a \neq 0$, and $d(a) = (d_1, d_2)$.

Let S be the set of all finite products of $p \pm i$, $q \pm i$.

(I) Suppose that there exists $\varepsilon > 0$ such that $a \ge \varepsilon$, that is,

$$\int_{-\infty}^{\infty} (af)(x)\overline{f(x)}dx \geq \varepsilon \int_{-\infty}^{\infty} |f(x)|^2 dx, \quad f \in C_0^{\infty}(\mathbb{R}).$$

(II) $\gamma_{d_1,d_2} > 0$, $f_{d_2}(t) > 0$ and $g_{d_1}(t) > 0$ for $t \in \mathbb{R}$.

Then there exists an element $s \in \mathcal{S}$ such that

$$s^*as \in \sum \mathcal{A}^2$$
.

$$s^* = (p-i)(q+i)$$
 if $s = (q-i)(p+i)$, that is, $p^* = p$, $q^* = q$.

 $\sum A^2$: finite sums of elements b^*b , where $b \in A$.

A Strict Positivstellensatz for the Weyl Algebra

Idea of proof: "fraction algebra" generated by $(p \pm i)^{-1}$ and $(q \pm i)^{-1}$.

Possible Application: "Noncommutative Optimization"

Elements a of the algebra $\mathcal A$ act as differential operators

Idea:

Use Positivstellensatz to compute the **infimum of the spectrum** of a.

First attempt: J. Cimpric (2009)

What are positive polynomials?

When is $p \in \mathbb{R}[x_1, \dots, x_d]$ positive (nonnegative)?

Answer 1:

p is positive if p is a sum of squares (of rational functions).

Answer 2:

p is positive if p is positive in all orderings of the field $\mathbb{R}(x_1, \dots, x_d)$.

Answer 3:

p is positive if $p(t_1, \ldots, t_d) \ge 0$ for all $(t_1, \ldots, t_d) \in \mathbb{R}^d$.

Question:

How to generalize these concepts to noncommutative algebras?

Star Algebras

Let $\mathcal A$ be a complex or real unital algebra and let $\mathbb K=\mathbb C$ or $\mathbb K=\mathbb R.$ Question:

How do to define "positive elements" of A?

First Step:

An algebra involution on A is needed!

An **algebra involution** of \mathcal{A} is a mapping $a \to a^*$ of \mathcal{A} into \mathcal{A} such that $(\lambda a + \mu b)^* = \bar{\lambda} a^* + \bar{\mu} b^*$, $(a^*)^* = a$ and $(ab)^* = b^* a^*$ for $a, b \in \mathcal{A}$ and $\lambda, \mu \in \mathbb{K}$.

A *-algebra is an algebra equipped with an algebra involution.

In what follows we suppose that A is a unital *-algebra.

Star Algebras

Classical Real Algebraic Geometry:

$$\mathcal{A} = \mathbb{R}[x_1, \dots, x_d], \ p^* := p \text{ or }$$
 $\mathcal{A} = \mathbb{C}[x_1, \dots, x_d], \ p^* = \overline{p}, \text{ where } \overline{p}(x) = \sum \overline{a_\alpha} x^\alpha \text{ for } p(x) = \sum a_\alpha x^\alpha.$

Positivity of the Involution

All involutions occuring in this talk satisfy the following condition:

(P): If
$$x_1^*x_1 + \cdots + x_k^*x_k = 0$$
 for $x_1, \dots, x_k \in A$, then $x_1 = \cdots = x_k = 0$.

Matrix Algebra $M_n(\mathbb{K})$:

Let B be a diagonal matrix with non-zero real diagonal entries b_k .

Define $A^* := B\overline{A^t}B^{-1}$, where $\overline{A^t} = (\overline{a_{ji}})$ for $A = (a_{ij})$.

Then $A \to A^*$ defines an involution on $M_n(\mathbb{K})$.

Condition (P) is satisfied if and only if $b_k > 0$ for all k.

Quadratic Modules

Definition: Quadratic Modules

A quadratic module of A is a subset C of $A_h := \{a = a^* : a \in A\}$ s. t.

 $1 \in \mathcal{C}, \ \mathcal{C} + \mathcal{C} \subseteq \mathcal{C}, \ \mathbb{R}_+ \cdot \mathcal{C} \subseteq \mathcal{C} \ \text{and} \ b^* \mathcal{C} b \in \mathcal{C} \ \text{for all} \ b \in \mathcal{A}.$

Examples

1. If \mathcal{X} is a subset of \mathcal{A}_h such that $1 \in \mathcal{X}$, then

 $C_{\mathcal{X}} := \text{finite sums of elements } \mathbf{a}^* \mathbf{x} \mathbf{a}, \text{ where } \mathbf{a} \in \mathcal{A}, \ \mathbf{x} \in \mathcal{X},$

is the **quadratic module** of \mathcal{A} generated by the set \mathcal{X} .

2. The smallest quadratic module of \mathcal{A} is the set

 $\sum A^2$ of all finite sums of **squares** a^*a , where $a \in A$.

Quadratic Modules Defined by Representations

Let \mathcal{D} be a vector space equipped with a scalar product $\langle \cdot, \cdot \rangle$.

Definition: *-Representation

A *- representation of $\mathcal A$ on $\mathcal D$ is an algebra homomorphism π of $\mathcal A$ into the algebra $L(\mathcal D)$ such that $\pi(1)\varphi=\varphi$ and $\langle \pi(a)\varphi,\psi\rangle=\langle \varphi,\pi(a^*)\psi\rangle$ for all $\varphi,\psi\in\mathcal D$ and $a\in\mathcal A$.

We write $\pi(a) \geq 0$ when $\langle \pi(a)\varphi, \varphi \rangle \geq 0$ for all $\varphi \in \mathcal{D}$.

Definition: Quadratic Module $\mathcal{A}(\mathcal{S})_+$

For a family ${\mathcal S}$ of *-representations of ${\mathcal A}$, we define a $\mbox{\bf quadratic module}$

$$\mathcal{A}(\mathcal{S})_+ := \{a = a^* \in \mathcal{A} : \pi(a) \ge 0 \text{ for all } \pi \in \mathcal{S}\}.$$

Quadratic Modules Defined by *-Orderings

Let \mathbb{K} be a formally real field, \mathcal{A} a centrally simple \mathbb{K} -algebra and $a \to a^*$ an involution on \mathcal{A} . Further, let $\operatorname{tr}: \mathcal{A} \to \mathbb{K}$ be the reduced trace.

Definition (Procesi, Schacher, 1976)

A *-ordering is a preordering T on \mathbb{K} s.t. $\operatorname{tr}(b^*b) \in T$ for $b \in \mathcal{A}$.

$$\mathcal{P}_{\mathcal{A}} = \{a = a^* \in \mathcal{A} : \text{tr } (b^*b \cdot a) \in T \text{ for all } *-\text{orderings } T, \text{ all } b \in \mathcal{A}\}$$
 is a quadratic module on \mathcal{A} .

This definition applies f. i. for the matrices over rational functions.

What are Noncommutative Positivstellensätze?

Positivstellensätze

There is an interplay between quadratic modules which are defined in algebraic terms (such as $\sum \mathcal{A}^2$ or $\mathcal{C}_\mathcal{X}$) and those

which are defined by means of *-representations or *-orderings (such as $\mathcal{A}(\mathcal{S})_+$ or $\mathcal{P}_{\mathcal{A}}$).

This is one of the most interesting challenges for the theory!

Positivstellensätze show how elements of $\mathcal{A}(\mathcal{S})_+$ or $\mathcal{P}_{\mathcal{A}}$ can be representated by means of $\sum \mathcal{A}^2$ or $\mathcal{C}_{\mathcal{X}}$.

Artin's theorem:
$$\mathcal{A} = \mathbb{R}[x]$$
, $\mathcal{S} = \{\pi_t(p) = p(t); t \in \mathbb{R}^d\}$

 $p \in \mathcal{A}(\mathcal{S})_+$, that is $p \geq 0$ on \mathbb{R}^d , iff $q^2 p \in \sum \mathcal{A}^2$ for some $q \in \mathcal{A}$, $q \neq 0$.

Role of the Family ${\cal S}$ of Representations

Theorem: K.S. 1979

If \mathcal{A} is the commutative polynomial algebra $\mathbb{C}[x_1,\ldots,x_d]$, the Weyl algebra $\mathcal{W}(d)$, the enveloping algebra $\mathcal{E}(g)$ or the free polynomial algebra $\mathbb{C}< x_1,\ldots,x_d>$, then $\sum \mathcal{A}^2$ is closed in the finest locally convex topology on \mathcal{A} .

Corollary:

Let \mathcal{A} be one of the above four *-algebras and let $a \in \mathcal{A}$. Then: $a \in \sum \mathcal{A}^2$ if and only if $\pi(a) \geq 0$ for all *-representations π of \mathcal{A} .

 $\mathcal{A} = \mathbb{C} < x_1, \dots, x_d >$: This is Helton's theorem.

In order to get an interesting theory on has to select an appropriate class of "good" representations!

Some Interesting Examples

Example 1: Commutative Polynomial Algebra $\mathbb{R}[x]$

$$\mathcal{S}:=\{\pi_t:t\in\mathbb{R}\}$$
, where $\pi_t(p)=p(t)$, or

$$\mathcal{S} = \{\pi_{\mu}\}, \text{ where } \pi_{\mu}(p)q = p \cdot q \text{ for } p, q \in \mathbb{R}[x] \subseteq L^{2}(\mathbb{R}^{d}, \mu).$$

Example 2: Weyl Algebra

$$\mathcal{W} = \mathbb{C} < a, a^* | aa^* - a^*a = 1 > = \mathbb{C} q$$

$$S = \{\pi_0\}$$
, where π_0 is the **Bargmann-Fock representation**

$$\pi_0(a)e_n=n^{1/2}e_{n-1},\ \pi_0(a^*)e_n=(n+1)^{1/2}e_{n+1}\ ext{on}\ I^2(\mathbb{N}_0)$$

or the Schrödinger representation

$$\pi_0(q)f = xf(x), \ \pi_0(p)f = -if'(x) \text{ on } L^2(\mathbb{R}).$$

Some Interesting Examples

Example 3: Enveloping algebra $\mathcal{E}(g)$ of a real Lie algebra g with involution $x^* = -x$ for $x \in g$

 $S = \{dU; U \text{ unitary representation of } G\}$

Example 4: Free polynomial algebra $A = \mathbb{C} < x_1, \dots, x_d >$, $x_i^* = x_j$.

If X_1, \ldots, X_d are **arbitrary** bounded self-adjoint operators, then there is a *-representation π such that $\pi(x_1) = X_1, \ldots, \pi(x_d) = X_d$.

Given $f = (f_1, \cdot, f_k), f_k \in \mathbb{C} \langle x_1, \dots, x_d \rangle$,

let \mathcal{S}_f be the set of all bounded *-representations π such that

$$f_i(\pi(x_1), \cdots, \pi(x_d)) \ge 0, \quad j=1, \cdots, k.$$

⇒ "Free semialgebraic geometry" of B. Helton and his coworkers

What about Artin's Theorem in the Noncommutative Case?

Artin's Theorem on the solution of Hilbert's 17th problem:

For each nonnegative polynomial p on \mathbb{R}^d there exists a nonzero polynomial $q \in \mathbb{R}[x]$ such that $q^2p \in \sum \mathbb{R}[x]^2$.

For a noncommutative *-algebra ${\cal A}$ it is natural to generalize the latter to

$$c^*ac \in \sum \mathcal{A}^2$$
.

This will be our version 2 of Artin's theorem.

What about Artin's Theorem in the Noncommutative Case?

One might also think of

$$\sum_{k} c_{k}^{*} a c_{k} \in \sum \mathcal{A}^{2},$$

but it can be shown that such a condition corresponds to a Nichtnegativstellensatz rather than a Positivstellensatz.

Positivstellensatz: $\langle \pi(a)\varphi, \varphi \rangle \neq 0$ for all vectors φ .

Nichtnegativstellensatz: $\langle \pi(a)\varphi, \varphi \rangle > 0$ for at least one vector φ .

That is, $\pi(a) \leq 0$ does **not** hold.

An Essential Difference

In the commutative case $q^2p\in\sum\mathbb{R}[t]^2$ implies that $p\geq 0$ on \mathbb{R}^d .

However, in the noncommutative case such a converse is not true.

Example: Weyl algebra

Let \mathcal{A} be the Weyl algebra \mathcal{W} and $\mathcal{S}=\{\pi_0\}$, see Example 2 above.

Set $N=a^*a$. Since $aa^*-a^*a=1$, we have

$$a(N-1)a^* = N^2 + a^*a \in \sum A^2$$
.

But $\pi_0(N-1)$ has the eigenvalue -1, so it is not nonnegative,

since $\langle \pi_0(N-1)e_0, e_0 \rangle = -1$ for the vacuum vector e_0 .

One needs additional conditions to ensure that then $c \in \mathcal{A}(S)_+$.

Version 1 of Artin's Theorem: Denominatorfree

Version 1: Denominator Free

For any $a=a^*\in \mathcal{A}$ such that $\pi(a)\geq 0$ for all $\pi\in \mathcal{S}$ we have

$$a \in \sum A^2$$
.

Examples of Version 1

Let ${\mathcal S}$ be the family of all *-representaions.

Each element $a \in \mathcal{A}(\mathcal{S})_+$ is a square $a = b^*b$, where $b \in \mathcal{A}$.

This assertion holds for the following algebras:

- $\mathbb{C} < z, z^{-1}|z^*z = zz^* = 1 >$ trigonometric polynomials (Riesz-Fejer theorem 1915)
- $\mathbb{C} < s, s^* | s^* s = 1 >$ *-algebra generated by an isometry (Noncommutative Riesz-Fejer theorem: Y. Savchuk, K.S. 2010).
- $\mathbb{C} < x_1, x_1^*, \dots, x_d, x_d^*|$ $x_k^* x_k = 1,$ $x_1 x_1^* + \dots + x_d x_d^* = 1 >$ Algebraic Cuntz algebra (Zimmermann 2010)
- M_n(ℂ[x₁]) matrices of polynomials in one variable (Djokovic 1976)

In particular, version 1 holds for each of these algebras.

Examples of Version 1

Version 1 holds, that is, $\mathcal{A}(\mathcal{S})_+ \subseteq \sum \mathcal{A}^2$.

Version 1 holds for each of the following algebras:

- $\mathbb{R}[C]$ **coordinate algebra** of an irreducible smooth affine **curve** C which has at least one **nonreal** point at infinity. (C. Scheiderer)
 - Example: $x^3 + y^3 + 1 = 0 \Longrightarrow \text{version } 1 \text{ holds.}$

Example: $y^3 = x^2$. Then $y \notin \sum A^2$, so version 1 does not hold!

- $\mathbb{C} < x_1, x_1^*, \dots, x_d, x_d^* | x_1^* x_1 + \dots + x_d^* x_d = 1 >$ Spherical Isometries (Helton/McCullough/Putinar)
- $\mathbb{C}[G]$ group algebra of a free group G with involution $g^* = g^{-1}$.

Version 2 of Artin's Theorem: With Denominators

Let \mathcal{A}° be the set of $a \in \mathcal{A}$ which are not zero divisors.

Version 2: With Denominators

For any $a=a^*\in \mathcal{A}$ such that $\pi(a)\geq 0$ for all $\pi\in \mathcal{S}$ there exists a $c\in \mathcal{A}^\circ$ such that

$$c^*ac \in \sum A^2$$
.

Example 1: Matrices of Poynomials

Gondard/Ribenboim (1974), Procesi/Schacher (1976)

$$\mathcal{A} = M_n(\mathbb{R}[x_1, \dots, x_d])$$
 and $\mathcal{S} = \{\pi_t((a_{ij})) = (a_{ij}(t)); t \in \mathbb{R}^d\}$. Then version 2 holds.

There is a proof based on Schur complements of matrices.

This method can be extended to matrices over noncommutative algebras.

Version 2 of Artin's Theorem: With Denominators

Let \mathcal{A} be a unital *-algebra of operators on a pre-Hilbert space. Suppose $\mathcal{A}\setminus\{0\}$ satisfies a right Ore condition.

Theorem: Savchuk, K.S. (2010)

If A satisfies version 2, then also $M_n(A)$.

Let σ be a *-automorphim of order n of A.

If A satisfies version 2, so does the cross product algebra $A \times_{\alpha} \mathbb{Z}_n$.

If σ is an *-automorphism of order 3, then $\mathcal{A} \times_{\alpha} \mathbb{Z}_3$ is the set of matrices

$$\left(\begin{array}{ccc} a & b & c \\ \sigma(c) & \sigma(a) & \sigma(b) \\ \sigma^2(b) & \sigma^2(c) & \sigma^2(a) \end{array}\right), \ a,b,c \in \mathcal{A}.$$

Some Open Problems

Problem 1:

Suppose version 1 holds for A. Does it hold for the algebra $M_n(A)$?

Example: Let A the polynomial algebra on the 2-sphere

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

Then version 1 holds for A (C. Scheiderer).

Subproblem 1.1:

Does version 1 hold for $M_n(A)$?

An afffirmative answer would imply a number of other Positivstellensätze! For instance it would imply the following:

Let $A \in M_n(\mathbb{C}[x,y])$. If $A \ge 0$ on the unit circle $\{x^2 + y^2 \le 1\}$, then

$$A \in \sum M_n(\mathbb{C}[x,y])^2 + (1-x^2-y^2) \sum M_n(\mathbb{C}[x,y])^2.$$

Some Open Problems

Let ${\mathcal A}$ be the *-algebra of operators

$$a = \sum_{k_1, \dots, k_d} f_k(x) \left(\frac{\partial}{\partial x_1}\right)^{k_1} \dots \left(\frac{\partial}{\partial x_d}\right)^{k_d}, \quad f_k \in \mathbb{C}[x].$$

Problem 2:

Does Version 2 of Artin's Theorem hold for the Weyl Algebra?

Suppose $\langle a\varphi, \varphi \rangle \geq 0$ for $\varphi \in C_0^{\infty}(\mathbb{R}^d)$. Does there exist $c \in \mathcal{A}^{\circ}$ s. t.

$$c^*ac \in \sum \mathcal{A}^2$$
?

A Version of a Noncommutative Stengle Theorem

Suppose $\langle a\varphi, \varphi \rangle \geq 0$ for $\varphi \in C_0^{\infty}(0, +\infty)$. Does there exist $c \in A^{\circ}$ s. t.

$$c^*ac \in \sum A^2 + x \sum A^2$$
?

Version 3: An Example

C.Procesi and M.Schacher (1976) asked if version 1 holds for a **centrally simple algebra** A, that is,

$$\mathcal{P}_{\mathcal{A}}\subseteq\sum\mathcal{A}^{2}$$
 ?

No! Counterexample: Klep/Unger (2008).

We give another counterexample and propose a new type of Positivstellensatz.

Let $\mathfrak A$ the *-subalgebra of $M_3(\mathbb C[x,y,z])$ generated by the matrix

$$A = \left(\begin{array}{ccc} 0 & 0 & z \\ x & 0 & 0 \\ 0 & y & 0 \end{array} \right).$$

Let \mathcal{A} be the localization of \mathfrak{A} by $Z(\mathcal{A})$.

Version 3: An Example

Proposition:

- $A^*A \cdot AA^* \in \mathcal{P}_{\Delta}$.
- There is no $C \in \mathcal{A}^{\circ}$ such that $C^*(A^*A^2A^*)C \in \sum \mathcal{A}^2$.

That is, version 2 does not hold!

"Positivstellensatz":

For every $V \in \mathcal{P}_{\mathcal{A}}$ there exist $Y_i, Z_i \in \mathcal{A}$ such that

$$V = \sum_{i} Y_{i}^{*} Y_{i} + \sum_{j} Z_{j}^{*} (A^{*} A^{2} A^{*}) Z_{j}.$$
 (1)

 $A^*A \cdot AA^* = AA^* \cdot A^*A$ is a product of two commuting squares, but not a sum of squares.

Version 3 of Artin's Theorem: NC Sums of Squares

Denominators Sets \mathcal{D}_a and Right Hand Sides \sum_{nc}

Let $a \in \mathcal{A}_h$. We form a set $\mathcal{D}_a \subseteq \mathcal{A}_h$ such that $a \in \mathcal{D}_a$ and

- (i) If $b \in \mathcal{D}_a$ and $x \in \mathcal{A}$, then $x^*bx \in \mathcal{D}_a$.
- (ii) If $c = \sum_j c_j^* c_j$ commutes with $b \in \mathcal{D}_a$, then $cb \in \mathcal{D}_a$.

Let \sum_{nc} be the set of finite sums of elements of \mathcal{D}_1 , that is, \sum_{nc} is the smallest set containing the unit 1 which is closed under sums and operations (i) and (ii).

If \mathcal{A} is a *-algebra of bounded operators on a Hilbert space and $a \geq 0$, then all elements of \mathcal{D}_a and \sum_{nc} are positive operators.

 \sum_{nc} is a "noncommutative preorder".

Version 3 of Artin's Theorem: NC Sums of Squares

Version 3: Most General Denominators and Right Hand Sides

Suppose that $a=a^*\in\mathcal{A}$ such that $\pi(a)\geq 0$ for all $\pi\in\mathcal{S}$.

Then there exist a $s_a \in \mathcal{D}_a$ such that $s_a \in \sum_{nc}$.

Example:

$$x^*(c_1^*c_1+c_2^*c_2)ax = y_1^*(c_3^*c_3(c_4^*c_4+c_5^*c_5))y_1+\cdots$$

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A} = \mathbb{C} < extit{a}, extit{a}^*|$ $extit{a} extit{a}^* - extit{a}^* extit{a} = 1 >$

Fock representation $ae_n = n^{1/2}e_{n-1}$, $a^*e_n = (n+1)^{1/2}e_{n+1}$ on $I^2(\mathbb{N}_0)$.

Let $N := a^*a$ and $f(N) \in \mathbb{C}[N]$. Then $Ne_n = ne_n$ and we have:

$$f \in \mathcal{A}(\mathcal{S})_+$$
 iff $f(n) \geq 0$ for all $n \in \mathbb{N}_0$.

$$f \in \sum A^2$$
 iff $f \in N \sum^2 + N(N-1) \sum^2 + \cdots + N(N-1) \cdots (N-k) \sum^2$.

From this it follows that $(N-1)(N-2) \in \mathcal{A}(S)_+ \setminus \sum \mathcal{A}^2$.

An Example Concerning Versions 1, 2 and 3

Weyl Algebra $\mathcal{A} = \mathbb{C} < extit{a}, extit{a}^* | extit{a} extit{a}^* - extit{a}^* extit{a} = 1 > 0$

We have $a^{*k}a^k = N(N-1)\cdots(N-(k-1))$.

If $f \in \mathcal{A}(S)_+$, then version 3 holds for f, there are $c_1, \dots, c_k \in \sum \mathcal{A}^2$ such that $c_i f = f c_i$, $c_i c_k = c_k c_i$, and $c_1 \dots c_k f \in \sum \mathcal{A}^2$.

For instance, for $f = (N-1)(N-2) \in \mathcal{A}(\mathcal{S})_+$, we have

$$(a^*a)f = N(N-1)(N-2) = a^{*3}a^3.$$

Positivstellensätze for some CSA

Definition

An **centrally simple algebra** $\mathfrak A$ over $\mathbb K$ is called **cyclic algebra** if there exists a Galois extension $\mathbb L/\mathbb K$ with the group $\mathbb Z/n\mathbb Z$ and fixed elements $e\in \mathfrak A,\ a\in \mathbb K^\circ$ such that

$$\mathfrak{A} = \mathbb{L} \cdot 1 \oplus \mathbb{L} \cdot e \oplus \dots \mathbb{L} \cdot e^{n-1}, \ e^n = a \cdot 1, \ \text{and}$$

$$\lambda \cdot e = e \cdot \sigma(\lambda) \text{ for } \lambda \in \mathbb{L},$$

where σ is a fixed automorphism of \mathbb{L} which generates \mathbb{L}/\mathbb{K} .

Note that \mathfrak{A} is a $\mathbb{Z}/n\mathbb{Z}$ -graded algebra:

$$\mathfrak{A} = \bigoplus_{k=0}^{n-1} \mathfrak{A}_k$$
, where $\mathfrak{A}_k = \mathbb{L} \cdot e^k$.

Positivstellensätze for some CSA

Let \mathcal{A} be a complex *-algebra of operators on a pre-Hilbert space s. t.:

- center Z(A) is an integral domain,
- $\mathfrak A$ obtained from localization of $\mathcal A$ by $Z(\mathcal A)$ is a **cyclic algebra**;
- $\bullet \ \mathfrak{A}_{k}^{*} = \mathfrak{A}_{-k}.$

Let $\mathcal M$ be the quadratic module generated by the elements

$$e^*e, (e^*)^2e^2, \dots, (e^*)^{n-1}e^{n-1} \in \sum A^2$$

and their products. (These products are no longer squares!)

Theorem: Yu.Savchuk, K. S. (2010)

 $\pi(X) \ge 0$ for all bounded *-representations π if and only if $X \in \mathcal{M}$.

A Strict Positivstellensatz for the Enveloping Algebra of the ax + b-Group

Let $\mathcal A$ is the complex universal enveloping algebra of the Lie algebra of the affine group of the real line. Then $\mathcal A$ is the unital *-algebra with two generators $a=a^*$ and $b=b^*$ and defining relation

$$ab - ba = ib$$
.

Each nonzero element $c \in A$ can be written as

$$c = \sum_{j=0}^{d_1} \sum_{l=0}^{d_2} \gamma_{jl} a^j b^l = \sum_{n=0}^{d_2} f_n(a) b^n = \sum_{k=0}^{d_1} g_k(b) a^n.$$

Here $\gamma_{jl} \in \mathbb{C}$ and $f_n(a)$, $g_k(b)$ are polynomials uniquely determined by c. Set $d(c)=(d_1,d_2)$ if there are $j_0, l_0 \in \mathbb{N}_0$ such that $\gamma_{d_1,l_0}\neq 0$ and $\gamma_{j_0,d_2}\neq 0$.

A Strict Positivstellensatz for the Enveloping Algebra of the ax + b-Group

Let α and β be reals such that $\alpha < -1$, $\beta \neq 0$ and α is not an integer. Let \mathcal{S} denote the unital monoid generated by $b \pm \beta i$; $a \pm (\alpha + n)i$, $n \in \mathbb{Z}$.

Theorem: K.S. Crelle (2010)

Let $c=c^* \in A$, $c \neq 0$, $d(c)=(2n_1,2n_2)$, where $n_1, n_2 \in \mathbb{N}_0$. Assume :

(I)There is a bounded selfadjoint operators $T_{\pm}>0$ on $L^2(\mathbb{R})$ such that

$$\pi_{\pm}(c) = \sum_{k=0}^{2n_1} g_k(\pm e^x) \left(i\frac{d}{dx}\right)^k \geq T_{\pm}.$$

(II) $\gamma_{2n_1,2n_2} > 0$. The polynomials $f_{2n_2}(\cdot + n_2i)$ and g_{2n_1} are positive on \mathbb{R} .

Then there exists an element $s \in \mathcal{S}$ such that

$$s^*cs \in \sum A^2$$
.