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Matrix classes

Sufficient and P-matrices

We look at several matrix classes related to positive semidefinite (PSD) matrices.

Definition (Sufficient matrices)

A matrix M ∈ R
n×n is a column sufficient matrix if for all x ∈ R

n

xi (Mx)i ≤ 0 ∀ i = 1, . . . , n implies xi (Mx)i = 0 ∀ i = 1, . . . , n,

and row sufficient if MT is column sufficient. Matrix M is sufficient if it is both
row and column sufficient.

Definition (P-matrices)

A matrix M ∈ R
n×n is a P-matrix (resp. P0-matrix) if all its principal minors are

positive (resp. nonnegative).
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Matrix classes

P∗(κ)-matrices

Definition (P∗(κ)-matrix)

Let κ ≥ 0 be a nonnegative number. A matrix M ∈ R
n×n is a P∗(κ)-matrix if for

all x ∈ R
n

xTMx + 4κ
∑

i∈I+(x)

xi (Mx)i ≥ 0, (1)

where
I+(x) := {1 ≤ i ≤ n : xi(Mx)i > 0}.

Note that P∗(0) are the positive semidefinite (PSD) matrices.

Define P∗ :=
⋃

κ≥0P∗(κ).

The P∗ and sufficient matrices are the same [Kojima et al. (1991), Guu and
Cottle (1995), Väliaho (1996)].
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Matrix classes

Matrix classes: Venn diagram

P0

PSD

SS

RS CS
P

*
P

CS = column sufficient, RS = row sufficient, SS = skew-symmetric, PSD =
positive semidefinite.
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Matrix classes

Matrix classes: membership problem

Theorem (Tseng (2000))

The membership decision problem is co-NP complete in the Turing model for:

P and P0 matrices;

Column sufficient matrices;

Row sufficient matrices.

P. Tseng. Co-NP-completeness of some matrix classification problems. Mathematical

Programming, 88:183–192, 2000.
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LCP

The linear complementarity problem (LCP)

LCP

Given M ∈ R
n×n and q ∈ R

n, find x ∈ R
n and s ∈ R

n such that

−Mx + q = s, xi ≥ 0, si ≥ 0, xi si = 0 (i = 1, . . . , n).

Turing model complexity of LCP

Matrix class Complexity of LCP Reference

PSD P Kojima et al (1989)
P not NP-hard, unless NP=co-NP Megiddo (1988)
P∗ unknown
P0 NP-complete Kojima et al (1991)
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LCP

Complexity of LCP with sufficient matrices

LCP is NP-hard for general M , but ...

... may be solved by interior point methods if M is sufficient.

The complexity is then polynomial in n, the bitsize of (M , q), and the
handicap of M :

Definition (Handicap of a sufficient matrix)

Let M ∈ R
n×n. The handicap of M is:

κ̂(M) := inf{κ | M ∈ P∗(κ)}.

F. A. Potra and X. Liu. Predictor-corrector methods for sufficient linear complementarity
problems in a wide neighborhood of the central path. Optimization Methods & Software,
20(1):145–168, 2005.

We will show that the handicap of M can be exponential in its bit size ...

... proving that the best known complexity bounds for LCP with sufficient M
are exponential in the input size.
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Properties of the handicap

Properties of the handicap

Definition

A principal pivotal transformation of a matrix A =
(

AJJ AJK

AKJ AKK

)

where

J ∪ K = {1, . . . , n} and AJJ is nonsingular, is the matrix
(

A
−1
JJ

−A
−1
JJ

AJK

AKJ A
−1
JJ

AKK−AKJ A
−1
JJ

AJK

)

.

Theorem (Guu and Cottle (1995), Kojima et al. (1991), Väliaho (1997))

Let M ∈ R
n×n be a sufficient matrix. Then:

1 The handicaps of M and all its principal pivotal transforms are the same.

2 The handicap of M is at least as large as that of any of its proper principal
submatrices.

3 κ̂

(

m11 m12

m21 m22

)

= 1
4

[

m2
21

(
√
m11 m22+

√
m11 m22−m12 m21 )

2 − 1

]

.
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Properties of the handicap

Size of the handicap

Theorem (De Klerk-Nagy)

There exists an M ∈ P with κ̂(M) > 2
√

L(M), where L(M) is the bitsize of M.

Proof sketch: Let

M =























1 0 0 0 . . . 0 0
−1 1 0 0 . . . 0 0
−1 −1 1 0 . . . 0 0

...
. . .

−1 −1 −1 −1 . . . −1 1























then κ̂(M) ≥ 22n−8 − 1
4 (via the theorem on the previous slide).

Etienne de Klerk and Marianna Nagy (Tilburg Uni.) Computing the handicap of a sufficient matrix IPAM 2010 9 / 22



Properties of the handicap

Complexity of computing the handicap

Consider the following decision problem:

Decision problem

Input: an integer n > 0, an integer n× n matrix M with bit size L(M), and a
positive integer t;

Question: Is κ̂(M) > t?

Conjecture

If M is sufficient, there is an upper bound on κ̂(M) with bit size polynomial in
L(M).

Theorem (De Klerk-Nagy)

The decision problem is in NP in the Turing model. If the conjecture holds, the
decision problem is NP-complete.

Etienne de Klerk and Marianna Nagy (Tilburg Uni.) Computing the handicap of a sufficient matrix IPAM 2010 10 / 22



Properties of the handicap

Computing the handicap

There is an algorithm to compute the handicap of a sufficient M :

H. Väliaho. Determining the handicap of a sufficient matrix. Linear Algebra and Its Applications,
253:279–298, 1997.

Theorem (De Klerk-Nagy)

The complexity of the Väliaho algorithm is lower bounded by 1
56

n.

In practice, the algorithm is prohibitively slow if n ≥ 7 ...

this motivates an alternative approach using sum-of-squares of polynomials
and semidefinite programming.
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Computing the handicap via SDP

Computing the handicap (ctd.)

Recall that, if M ∈ P∗(κ) then

xTMx + 4κ
∑

i∈I+(x)

xi (Mx)i ≥ 0 ∀x ∈ R
n
,

where
I+(x) := {1 ≤ i ≤ n : xi(Mx)i > 0}.

Lemma

Let M ∈ R
n×n and

pκ(x , α) := xTMx + 4 κ

n
∑

i=1

αi .

One has:
κ̂(M) = inf

{

κ ≥ 0 : pκ(x , α) ≥ 0, ∀ (x , α) ∈ K
}

,

where K :=
{

(x , α) : ‖x‖ = 1, α ≥ x◦Mx , ‖α‖ ≤ ‖M‖2, α ≥ 0
}

.
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Computing the handicap via SDP

Computing the handicap (ctd.)

Lemma

Let M ∈ R
n×n a P-matrix and

pκ(x , α) := xTMx + 4 κ

n
∑

i=1

αi .

One has:
κ̂(M) = inf

{

κ ≥ 0 : pκ(x , α) > 0, ∀ (x , α) ∈ K
}

,

where K :=
{

(x , α) : ‖x‖ = 1, α ≥ x◦Mx , ‖α‖ ≤ ‖M‖2, α ≥ 0
}

.

Now we can use Putinar’s positivstellensatz for polynomials positive on
compact semialgebraic sets ...

... and Lasserre’s approach to obtain semidefinite programming
approximations.
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Computing the handicap via SDP

Putinar’s positivstellensatz

Consider semi-algebraic set defined by polynomials gi (i = 1, . . . ,m):

K =
{

x ∈ R
k : gi(x) ≥ 0 (i = 1, . . . ,m)

}

.

Quadratic module:

The quadratic module generated by functions g1, . . . , gm is defined as

M(g1, . . . , gm) =







s0 +
m
∑

j=1

sjgj : sj sums of squares, j = 0, . . . ,m







.

Theorem (Putinar):

For a given polynomial p one has p(x) > 0 for all x ∈ K iff p ∈ M(g1, . . . , gm),
provided that M(g1, . . . , gm) is Archimedean.

M. Putinar. Positive polynomials on compact semi-algebraic sets. Ind. Univ. Math. J.

42:969–984, 1993.
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Computing the handicap via SDP

Lasserre’s approach

Truncated quadratic module:

Given an integer t > 0, the truncated quadratic module of degree 2t generated by
functions g1, . . . , gm is defined as

Mt(g1, . . . , gm) :=







s0 +
m
∑

j=1

sjgj : sj sums of squares, (j = 0, . . . ,m)







degree(gjsj) ≤ 2t (j = 0, . . . ,m), degree(s0) ≤ 2t.

Approach of Lasserre:

For a given polynomial p the question: ”Is p ∈ Mt(g1, . . . , gm)?”, may be
formulated as a semidefinite program (SDP).

J.B. Lasserre. Global optimization with polynomials and the problem of moments. SIOPT,
11:296–817, 2001.
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Computing the handicap via SDP

SDP formulation

κ(t) := inf κ

subject to

xTMx + 4κ

n
∑

i=1

αi = s0(x , α) +

n
∑

j=1

(

αj − xj(Mx)j

)

sj(x , α)

+ +

n
∑

j=1

αj sn+j(x , α) +

(

‖M‖22 −
n
∑

i=1

α
2
i

)

s2n+1(x , α)

+

(

1−
n
∑

i=1

x2i

)

r(x , α)

sj(x , α) sums of squares, j = 0, . . . , 2n + 1

deg(s0) ≤ 2t,
deg(sj) ≤ 2t − 2, j = 1, . . . , 2n+ 1

r ∈ R[x , α], deg(r) ≤ 2t − 2
κ ≥ 0.
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Computing the handicap via SDP

SDP approximation of the handicap: properties

For fixed t, κ(t) may be computed in polynomial time within any fixed accuracy.

Theorem (De Klerk-Nagy)

Let M ∈ R
n×n with handicap κ̂(M) Then:

1 κ(t) = ∞ for all t ∈ N if M is not sufficient;

2 κ(t) ≥ κ(t+1) ≥ κ̂(M) if κ(t) is finite;

3 κ̂(M) = limt→∞ κ(t) if M is a P-matrix;

4 0 = κ̂(M) = κ(1) if M is PSD;

5 κ̂(M) = κ(1) if n = 2;

6 κ(1) < ∞ iff ∃ a diagonal matrix D (positive diagonal entries) such that DM
is PSD.
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Computing the handicap via SDP

Numerical examples

We compared our approach numerically to the algorithm of Väliaho for small
matrices (n ≤ 7).

The SDP problems with optimal values κ(t) (t = 1, 2, . . .) were solved using
SeDumi and Gloptipoly.

D. Henrion, J. B. Lasserre, J. Loefberg. GloptiPoly 3: moments, optimization and semidefinite
programming. Optimization Methods and Software, 24:4-5, 761–779, 2009.

The test matrices were all P-matrices (with finite handicap).

s = 1 in the next table means Gloptipoly could verify global optimality, i.e.
the handicap is obtained exactly.
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Computing the handicap via SDP

Numerical examples

Order of SOS relaxation (t) Väliaho’s
Matrix 1 2 algorithm

M2 (n = 3)
s=0

κ
(1) = 6
0.2s

s=1

κ
(2) = 6
0.6s

κ̂ = 6
0.3s

M3 (n = 3)

s=−1

κ
(1) = ∞

(infeasible)
0.2s

s=1

κ
(2) = 0.91886

0.5s

κ̂ = 0.91886
0.3s

M4 (n = 3)
s=0

κ
(1) = 0.08986

0.1s

s=1

κ
(2) = 0.08986

0.4s

κ̂ = 0.08986
0.6s

M5 (n = 3)
s=0

κ
(1) = 0.03987

0.2s

s=1

κ
(2) = 0.03987

0.4s

κ̂ = 0.03987
0.6s

M6 (n = 6)
s=0

κ
(1) = 15.75

0.3s

s=1

κ
(2) = 15.75
138.7s

κ̂ = 15.75
1737.7s

M7 (n = 7)
s=0

κ
(1) = 0.039866

0.3s

s=1

κ
(2) = 0.039866

413.1s

—
> 12h
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Conclusions

Conclusions and summary

We have shown that the handicap of a sufficient matrix M may be
exponential in the bit size of M ...

that implies the best known complexity bounds for LCP’s with sufficient
matrices are exponential in the input size.

Lasserre’s sum-of-squares approach may be used to compute the handicap ...

and is a better choice in practice than Väliaho’s algorithm.
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Conclusions

Almost the End

Further reading:

Preprint at Optimization Online.

One more conjecture ...
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Conjecture

A conjecture by Monique Laurent and myself

Identity:

x1x2 +
1
8 = 1

2

(

x1 + x2 − 1
2

)2

+ 1
2 (x1 − x21 ) +

1
2 (x2 − x22 ).

Thus x1x2 +
1
8 belongs to the truncated quadratic module of degree 2 generated

by x1 − x21 , x2 − x22 .

Question:

What is the smallest constant Cn > 0 so that
∏n

i=1 xi + Cn belongs to the
truncated quadratic module of degree n generated by x1 − x21 , . . . , xn − x2n?

Conjecture:Cn =
1

n(n+2) . (We know that Cn ≤ 1.)

Conjecture from:

E. de Klerk, M. Laurent. Error bounds for some semidefinite programming approaches to
polynomial minimization on the hypercube. SIOPT, to appear.
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