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Opening Remark and Credit

About more than 380 years ago.....In 1629..

Solve for x :

[
f (x + d)− f (x)

d

]
d=0

= 0

...We can hardly expect to find a more general method to
get the maximum or minimum points on a curve.....

Pierre de Fermat
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First Order/Gradient Based Methods: Why?

A main drawback: Can be very slow for producing high accuracy
solutions....But... also share many advantages:

Use minimal information, e.g., (f , f ′) (as opposed to more
sophisticated methods).

Often lead to very simple and ”cheap” iterative schemes.

Complexity/iteration mildly dependent (e.g., linear) in problem’s
dimension.

Suitable when high accuracy is not crucial [in many large scale
applications, the data is anyway corrupted or known only roughly..]

For very large scale problems with medium accuracy requirements,
gradient based methods often remain the only practical alternative.
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Polynomial versus Gradient Methods

Convex problems are polynomially solvable within ε accuracy:

Running Time ≤ Poly(Problem’s size,# of accuracy digits).

Theoretically: this means that large scale problems can be solved
to high accuracy with polynomial methods, such as IPM.

Practically: Running time is dimension-dependent and grows
nonlinearly with problem’s dimension. For IPM which are Newton’s
type methods: ∼ O(n3).

Example: reported on PET problem using best IPM (Ben-Tal,
Nemirovsky, Margalit (2002)):

n = 250, 000, CPU /Iteration: ∼ 2.5 Hours

n = 2, 000, 000, CPU/Iteration: ∼ 2 weeks!!

Thus, a ”single iteration” can last forever!

Marc Teboulle – Tel Aviv University, First Order Algorithms for Convex Minimization 4



Gradient-Based Algorithms

Widely used in applications....

Clustering Analysis: The k-means algorithm

Neuro-computing: The backpropagation algorithm

Statistical Estimation: The EM (Expectation-Maximization)
algorithm.

Machine Learning: SVM, Regularized regression, etc...

Signal and Image Processing: Sparse Recovery, Denoising and
Deblurring Schemes, Total Variation minimization...

Matrix minimization Problems....and much more...
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Objectives and Outline

1 Convey basic ideas to Build and Analyze Gradient-Based
Schemes

2 Exploit Structures for Various Classes of Smooth
and Nonsmooth Convex Minimization Problems

Outline

I. Gradient/Subgradient Algorithms: Basic Results
II. Mathematical Tools for Convergence Analysis
III. Fast Gradient-Based Methods
IV. Gradient Schemes based on Non-Euclidean Distances

Applications and examples illustrating ideas and methods
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Quick Recalls on Convex Functions

Throughout, E stands for a finite dimensional vector space.

Let f : E→ (−∞,+∞] be proper, closed (lsc) convex function,
with dom f = {x |f (x) < +∞} its effective domain.

Proper: dom f 6= ∅ and f (x) > −∞, ∀x ∈ E.
Closed and Convex: Its epigraph is a closed convex set

epi f := {(x, α) ∈ E× R |α ≥ f (x)}.

Extended valued functions are useful for handling constraints:

inf{h(x) : x ∈ C} ⇐⇒ inf{f (x) : x ∈ E}, f := h + δC

where δC (x) = 0 if x ∈ C and +∞ if x /∈ C is the indicator of C .

For any closed convex set C ⊂ E, (intC ), ri C denotes its (interior)
relative interior.
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Subdifferentiability of Convex Functions

g ∈ E is a subgradient of f at x if:

f (z) ≥ f (x) + 〈g, z− x〉, ∀z

Subdifferential of f at x = Set of all subgradients:

∂f (x) = {g ∈ E | f (z) ≥ f (x) + 〈g, z− x〉, ∀z ∈ E}.

∂f (x) is a closed convex set (possibly empty) as an infinite
intersection of closed half-spaces.

If x ∈ int dom f , ∂f (x) is nonempty and bounded.

When f is differentiable, ∂f (x) ≡ {∇f (x)} ≡ {f ′(x)}.
f is σ-strongly convex iff f (·)− σ‖ · ‖2/2 is convex, i.e.,

〈u− v, x− y〉 ≥ σ‖x− y‖2, u ∈ ∂f (x), v ∈ ∂f (y), (σ > 0).

f ∗(y) = sup{〈x, y〉 − f (x) : x ∈ E}, its convex conjugate.
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A Generic Optimization Model

(M) min {F (x) = f (x) + g(x) : x ∈ E}

E is a finite dimensional Euclidean space with inner product 〈·, ·〉
and norm ‖ · ‖ = 〈·, ·〉1/2.

g : E→ (−∞,∞] is proper closed and convex, assumed
subdifferentiable over dom g assumed closed.

f : E→ R is continuously differentiable on E, with gradient
∇f ≡ f ′.

We assume that (M) is solvable, i.e.,

X∗ := argmin f 6= ∅, and for x∗ ∈ X∗, set F∗ := F (x∗).

The model (M) is rich enough to recover various classes of
smooth/nonsmooth convex minimization problems.
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Examples of (M) min {F (x) = f (x) + g(x) : x ∈ E}

Differentiable Unconstrained Minimization: Pick g ≡ 0,

min {f (x) : x ∈ E} .

Constrained Convex Minimization: Pick g = δC ,

min {f (x) : x ∈ C} , C ⊆ E a closed convex set

Convex Program min{h0(x) : hi (x) ≤ 0, i = 1, . . . ,m}

f (x) := h0(x), g(x) :=
m∑

i=1

δ(−∞,0](hi (x)).

Nonsmooth Convex Minimization: Pick f ≡ 0, min {g(x) : x ∈ E}

More “specific” examples arising in various applications, later on ....
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The Gradient Method – Cauchy 1847..
We begin with the simplest unconstrained minimization problem of a
continuously differentiable function f on E (set g ≡ 0 in (M)):

(U) min{f (x) : x ∈ E}.

The basic gradient method generates a sequence {xk} via

x0 ∈ E, xk = xk−1 − tk∇f (xk−1) (k ≥ 1)

with suitable step size tk > 0: fixed; backtracking line search; exact
line search; diminishing step-size: tk → 0,

∑
tk =∞.

This is a descent method:

x+ = x + td; 〈d,∇f (x)〉 < 0, d := −∇f (x) 6= 0.

Explicit discretization of dx(t)/dt +∇f (x(t)) = 0, x(0) = x0.

xk − xk−1

h
= −∇f (xk−1), (increment h > 0).
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Backtracking Line Search – BLS

A simple inexact line search to find t for descent methods:

min
t
φ(t) := f (x + td), (e.g., here d := −∇f (x))).

Sufficient decrease + rules out too short steps.

1 Initialize: Choose t̄ > 0, (e.g., t̄ = 1), α, β ∈ (0, 1) Set t = t̄

2 Until
(∗) f (x + td) ≤ f (x) + αt〈d,∇f (x)〉

set t ← βt, (e.g., β = 1/2).

• BLS procedure warrants sufficient decrease.

• Not too short, since within factor β of previous step t/β which is
rejected when violating (*), that is for being too long.
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Convergence of Algorithms: A Remark

Traditionally, in numerical analysis of optimization algorithms the
focus is on pointwise convergence of {xk} and its asymptotic rate of
convergence.

Here, we depart from ”tradition” and focus on non-asymptotic
global rate of convergence and efficiency, measured in terms of
function values, for all k ≥ 1:

F (xk)− F∗ ≤
Γ

kθ
, (Γ > 0, θ > 0)

We are interested in solving approximately a problem to a given
accuracy ε > 0, i.e., to find an xk s.t.

F (xk)− F∗ ≤ ε.

Thus, # iterations for such an approximation is O(ε−1/θ).
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Gradient Method: Classical Results

Assumption f is C 1,1
L(f ) over E, i.e., with gradient Lipschitz:

∃L(f ) > 0 : ‖∇f (x)−∇f (y)‖ ≤ L(f )‖x− y‖, ∀x, y.

For f ∈ C 1,1
L(f ). The sequence generated by GM with either constant stepsize

or via BLS satisfies:

min
1≤s≤k

‖∇f (xs−1)‖ ≤ 1√
k

(
2α2L(f )(f (x0)− f∗)

β

)1/2

.

In other words ∇f (xk)→ 0 at a rate of O(1/
√

k).

Mildly depends on dimension.

No results for {xk}..or even.. {f (xk)}...
Assuming that f is also convex, we get more...
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Gradient Method for Convex f

For f ∈ C 1,1
L(f ) and convex,the sequence generated by GM with either constant

step size or BLS satisfies for all k ≥ 1:

f (xk)− f (x∗) ≤ αL(f )‖x∗ − x0‖2

2k
.

Thus, # iterations for f (xk)− f (x∗) ≤ ε is O(1/ε)...

Can be very slow even for low accuracy requirements...
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Constrained Problem: Gradient Projection Method

For the constrained problem (e.g., g := δC in (M)):

(P) min {f (x) : x ∈ C} , C ⊆ E closed convex

The gradient projection method (GPM)

x0 ∈ E, xk = ΠC (xk−1 − tk∇f (xk−1)), k ≥ 1

orthogonal projection operator ΠC (x) = argmin
z∈C

‖z− x‖2.

In the convex case, under same assumptions as (GM), (f ∈ C 1,1) we
have the same convergence result.

# iterations for f (xk)− f (x∗) ≤ ε is O(1/ε)
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Simplest Method for NSO: Subgradient Method

Nondifferentiable Convex (P) inf{g(x) : x ∈ C} = g∗

Subgradient Scheme: Shor (63), Polyak (65)

γk−1 ∈ ∂g(xk−1), xk = ΠC (xk−1 − tkγ
k−1), (tk > 0, a stepsize)

Subgradient scheme is not a descent method.

Assuming that g is Lipschitz, with constant M > 0,i.e.,

‖g(x)− g(y)‖ ≤ M‖x− y‖,∀x, y (⇔ ‖γ‖ ≤ M, γ ∈ ∂g(x))

For diminishing step size ts → 0,
∑

ts =∞ we have

gbest(x) := min
1≤s≤k

g(xs)→ g∗.

What about the rate of convergence in the nonsmooth case?
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Rate of Convergence of SM

A typical result: assume C convex compact. Take

tk =
Diam(C )√

k
; Diam(C ) := max

x,y∈C
‖x− y‖ <∞,

Then, min
1≤s≤k

g(xs)− g∗ ≤ O(1)M
Diam(C )√

k

Thus, to find an approximate ε solution: O(1/ε2)

Key Advantages: rate nearly independent of problem’s dimension.
Simple, when projections are easy to compute...

Main Drawback of SM: too slow...needs k ≥ ε−2 iterations.

Can we improve the situation of SM?...Later on by exploiting the
structure/geometry of the constraint set C ...
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Building Gradient-Based Schemes

Our objective is to solve

(M) min {F (x) = f (x) + g(x) : x ∈ E} , f smooth, g nonsmooth

Initial interpretation of GM: go towards the direction of the negative
gradient of the objective.

This cannot be extended to F := f + g , since g is nonsmooth.

Good approximation models for solving (M)

Fixed point methods on corresponding optimality conditions

The Proximal Framework

Majorization-Minimization approach
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A Quadratic Approximation Model
Simplest case of (M), unconstrained minimization of f ∈ C 1:

(U) min{f (x) : x ∈ E}.

Simplest idea: Use the quadratic model

qt(x, y) := f (y) + 〈x− y,∇f (y)〉+
1

2t
‖x− y‖2, t > 0.

Namely, use the linearized part of f at some given point y.
Regularized with a quadratic proximity term that would measure the
”local error” in the approximation.
This leads to a (strongly) convex approximation for (U):

(Ût) min {qt(x, y) : x ∈ E} .

Now, fixing y := xk−1 ∈ E, the unique minimizer xk solving (Ûtk )

xk = argmin {qtk (x, xk−1) : x ∈ E} .

Therefore, optimality condition yields exactly the gradient method:

∇qtk (xk , xk−1) = 0 =⇒ xk = xk−1 − tk∇f (xk−1).
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Gradient Projection Method
Simple algebra =⇒

qt(x, y) = f (y) + 〈x− y,∇f (y)〉+
1

2t
‖x− y‖2,

=
1

2t
‖x− (y − t∇f (y))‖2 − t

2
‖∇f (y)‖2 + f (y).

Allows to easily pass from the unconstrained minimization problem
(U) to constrained model:

(P) min {f (x) : x ∈ C} ,

Ignoring the constant terms (in y := xk−1) leads to solve (P) via:

xk = argmin
x∈C

1

2
‖x− (xk−1 − tk∇f (xk−1))‖2

, k = 1, . . .

which recovers the Gradient Projection Method (GPM):

xk = ΠC (xk−1 − tk∇f (xk−1)).
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Back to general Model(M): Smooth+Nonsmooth
Naturally suggest to consider the following approximation in place of
f (x) + g(x):

q(x, y) = f (y) + 〈x− y,∇f (y)〉+
1

2t
‖x− y‖2 + g(x).

That is, leaving the nonsmooth part g(·) untouched.
In accordance with previous framework, the scheme reads:

xk = argmin
x∈E

{
g(x) +

1

2tk
‖x− (xk−1 − tk∇f (xk−1))‖2

}
This reveals the fundamental proximal operator. For any t > 0,
the proximal map associated with g at z is defined by

proxt(g)(z) = argmin
u∈E

{
g(u) +

1

2t
‖u− z‖2

}
.

Thus, the scheme is a proximal step at a gradient iteration for f will
be called the proximal gradient method, and reads as:

xk = proxtk (g)(xk−1 − tk∇f (xk−1)).
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The Fixed Point Approach for (M)
Alternative derivation of the prox-grad via the optimality condition:
x∗ ∈ argmin{f (x) + g(x)} iff 0 ∈ ∇f (x∗) + ∂g(x∗).

Fix any t > 0, then the following equivalent statements hold:

0 ∈ t∇f (x∗)− x∗ + x∗ + t∂g(x∗),

(I + t∂g)(x∗) ∈ (I − t∇f )(x∗),

x∗ ∈ (I + t∂g)−1(I − t∇f )(x∗),

Last equation naturally calls for a fixed point scheme:

x0 ∈ E, xk = (I + tk∂g)−1(I − tk∇f )(xk−1) (tk > 0).

But (I + tk∂g)−1 = proxtk (g) i.e., this is the prox-grad.

Note: A special case of the proximal backward-forward
scheme,(Passty 77), devised for solving the general inclusion:

Find x∗ s.t. 0 ∈ T1(x∗) + T2(x∗)

T1,T2 are maximal monotone set valued maps
(with f , g convex T1 := ∇f ,T2 := ∂g).
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Majorization-Minimization - MM Approach
A popular technique in statistical-engineering literature
(other names: surrogate/transfer function, and bound optimization
technique..)

In fact MM follows the same previous approximation idea, except
that the approximation needs not to be quadratic.
Find a ”relevant” approximation to the objective function F s.t.

(i) M(x, x) = F (x) for every x ∈ E.
(ii) M(x, y) ≥ F (x) for every x, y ∈ E.

From here a natural and simple minimization scheme is

xk ∈ argmin
x∈E

M(x, xk−1) ⇒ M(xk , xk−1) ≤ M(x, xk−1), ∀x

Easy to see that this scheme produces a descent scheme for F :

F (xk)
(ii)

≤ M(xk , xk−1) ≤ M(xk−1, xk−1)
(i)
= F (xk−1).

Key question: how to generate/find a ”good” M(·, ·)?

There does not exist a universal rule to determine M. Most often
structure of the problem at hand provides helpful hints.
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II. Mathematical Tools

Properties of main computational objects

Some key generic inequalities

Serve as main vehicle to establish:
– convergence rate results of the proximal gradient method
– its special cases just discussed
– the improved versions and extensions..later on.
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The Proximal Map (Moreau - (1964))

Theorem [Moreau-(64)] Let g : E → (−∞,∞] be closed proper convex.
For any t > 0, let

gt(z) = min
u

{
g(u) +

1

2t
‖u− z‖2

}
. (1)

1 min{gt(z) : z ∈ E} = min{g(u) : u ∈ E}.
2 The minimum in (1) is attained at the unique point

proxt(g)(z) = (I + t∂g)−1(z) for every z ∈ E,

and the map (I + t∂g)−1 is single valued from E into itself.

3 The function gt(·) is C 1,1 convex on E with a 1
t -Lipschitz gradient:

∇gt(z) =
1

t
(I − proxt(g)(z)) for every z ∈ E.
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Examples

Computing proxt(g) can be very hard..If at all possible..!.?..

But, for many useful special cases can be easy...

If g ≡ δC , (C ⊆ E closed and convex), then

proxt(g)(x) = argmin
u
{δC (u) +

1

2t
‖u− x‖2}

= argmin{ 1

2t
‖u− x‖2 : u ∈ C}

= (I + t∂g)−1(x) = ΠC (x), the ortho projection on C

=⇒ gt(x) = ‖x−ΠC(x)‖2, convex and C1,1.

For some useful sets C easy to compute ΠC :

Affine sets, Simple Polyhedral Sets (halfspace, Rn
+, [l , u]n),

l2, l1, l∞ - Balls,

Ice Cream Cone, Semidefinite Cone Sn
+,

Simplex and Spectrahedron (Simplex in Sn).
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Some Calculus Rules for Computing proxt(g)

proxt(g)(x) = argmin
u

{
g(u) +

1

2t
‖u− x‖2

}
.

g(u) proxt(g)(x)
δC (u) ΠC (x)

δ∗C (u) -support function- x− ΠC (x)

dC (u)

{
x + (ΠC (x)−x)

tdC (x) if dC (x) > 1/t

x otherwise

‖Ax− b‖2/2,A ∈ Rm×n (I + t−1AT A)−1(x + t−1AT b)
‖u‖1 (-shrinkage-) sgn (xj) max{|xj | − t, 0}

‖u‖
{
‖x‖2/2t if ‖x‖ ≤ t
‖x‖ − t/2 otherwise

‖U‖∗, U ∈ Rm×n, (m ≥ n) P diag(s)QT

σ1(U) ≥ σ2(U) ≥ . . . singular values of U

Nuclear norm ‖U‖∗ =
∑

j σj(U)

Singular value decomposition

U = P diag(σ)QT , then shrinkage sj = sgn (σj) max{|σj | − t, 0}.
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The Prox-Grad Map
We adopt the following approximation model for F . For any L > 0,
and any x, y ∈ E, define

QL(x, y) := f (y) + 〈x− y,∇f (y)〉+
L

2
‖x− y‖2 + g(x),

and
pf ,g

L (y) := argmin {QL(x, y) : x ∈ E} ≡ pL(y)

Ignoring the constant terms in y, this reduces to :

pL(y) = argmin
x∈E

{
g(x) +

L

2
‖x− (y − 1

L
∇f (y))‖2

}
= prox 1

L
(g)

(
y − 1

L
∇f (y)

)
(2)

Blanket assumption: ∇f is Lipschitz on E, (f ∈ C 1,1
L(f )), namely:

∃ L(f ) > 0 : ‖∇f (x)−∇f (y)‖ ≤ L(f )‖x− y‖ for every x, y ∈ E.
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Key Inequalities–Lemma 1

Lemma 1 - [Descent Lemma] Let f : E→ (−∞,∞) be C 1,1
L(f ). Then for

any L ≥ L(f ),

f (x) ≤ f (y) + 〈x− y,∇f (y)〉+
L

2
‖x− y‖2 for every x, y ∈ E.

Proof. Mean value integral Theorem + Gradient Lipschitz.

Marc Teboulle – Tel Aviv University, First Order Algorithms for Convex Minimization 30



Key Inequalities–Lemma 2

Lemma 2 - Prox Inequality Let ξ = prox1/t(g)(z) for some z ∈ E and let
t > 0. Then for any u ∈ dom g ,

2t(g(ξ)− g(u)) ≤ 2〈u− ξ, ξ − z〉
= ‖u− z‖2 − ‖u− ξ‖2 − ‖ξ − z‖2.

Proof. Use optimality + convexity of g .
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Key Inequalities - for prox-grad pL-Lemma 3

Since pL(y) = prox1/L(g)
(
y − 1

L∇f (y)
)
, invoking previous Lemma 2, we

now obtain a useful inequality for pL.
For further reference we denote for any y ∈ E:

ξL(y) := y − 1

L
∇f (y). (3)

Lemma 3-[prox-grad] For any x ∈ dom g , y ∈ E, the prox-grad map pL

satisfies

2

L
[g(pL(y))− g(x)] ≤ ‖x−ξL(y)‖2−‖x−pL(y)‖2−‖pL(y)−ξL(y)‖2, (4)

where ξL(y) is given in (3).

Proof. Follows from Lemma 2:

2t(g(ξ)− g(u)) ≤ ‖u− z‖2 − ‖u− ξ‖2 − ‖ξ − z‖2,

with t := 1
L , ; ξ := pL(y), u := x; z := ξL(y).

Marc Teboulle – Tel Aviv University, First Order Algorithms for Convex Minimization 32



Main Pillar I in Analysis - Proposition I

Our last result combines all the above to produce one of the main pillar
of the analysis.

Proposition I Let x ∈ dom g , y ∈ E and let L > 0 be such that the
inequality

F (pL(y)) ≤ Q(pL(y), y). (5)

is satisfied. Then

2

L
(F (x)− F (pL(y)) ≥ ‖x− pL(y)‖2 − ‖x− y‖2.

Note: Thanks to the descent lemma condition (5) is always satisfied for
pL(y) with L ≥ L(f ).
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The Proximal Gradient Method

The proximal gradient method with a constant stepsize rule.

Proximal Gradient Method with Constant Stepsize
Input: L = L(f ) - A Lipschitz constant of ∇f .
Step 0. Take x0 ∈ E.
Step k. (k ≥ 1) Compute

xk = pL(xk−1) = argmin
x∈E

{
g(x) +

L

2
‖x− (xk−1 −

1

L
∇f (xk−1))‖2

}

An evident possible drawback of the above scheme is that the
Lipschitz constant L(f ) is not always known or not easily
computable.

This issue can be resolved with an easy backtracking stepsize rule.
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Prox-Grad Method with Backtracking Step Rule

Proximal Gradient Method with Backtracking
Step 0. Take L0 > 0, some η > 1 and x0 ∈ E.
Step k. (k ≥ 1) Find the smallest nonnegative integer ik such that
with, L̄ = ηik Lk−1:

F (pL̄(xk−1)) ≤ QL̄(pL̄(xk−1), xk−1)). (6)

Set Lk = ηik Lk−1 and compute

xk = pLk
(xk−1) = argmin

x∈E

{
g(x) +

Lk

2
‖x− (xk−1 −

1

Lk
∇f (xk−1))‖2

}
.

.
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Rate of Convergence of Prox-Grad

Theorem - [Rate of Convergence of Prox-Grad]
Let {xk} be the sequence generated by the proximal gradient method
with either a constant (α = 1) or a backtracking stepsize rule (α =
η). Then for every k ≥ 1:

F (xk)− F (x∗) ≤ αL(f )‖x0 − x∗‖2

2k

for every optimal solution x∗.

Thus, to solve (M), the proximal gradient method converges at a
sublinear rate in function values.

# iterations for F (xk)− F (x∗) ≤ ε is O(1/ε).

Note: The sequence {xk} can be proven to converge to solution x∗

provided a step size is in (0, 2/L).
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Special Cases

With g ≡ 0 and g = δC , our model (M) recovers the basic gradient
and gradient projection methods respectively.

With f = 0 in (M), this is the Proximal Minimization Algorithm
described next.
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Proximal Minimization Algorithm-PMA
Set f ≡ 0, in (M), i.e., we solve the convex nonsmooth problem

min{g(x) : x ∈ E}.

PG reduces to Proximal Minimization Algorithm (Martinet (70)):

x0 ∈ E, xk = argmin
x∈E

{
g(x) +

1

2tk
‖x− xk−1‖2

}
.

This an implicit discretization of 0 ∈ dx(t)/dt + ∂g(x(t)), x(0) = x0.

Theorem Let xk be the sequence generated by PMA, and set σk =
∑k

s=1 ts .

Then, g(xk)− g(x) ≤ ‖x0 − x‖2/2σk ,∀x ∈ E.

In particular, if σk → ∞ then g(xk) ↓ g∗ = infx g(x) and if X∗ 6= ∅, then
xk converges to some point in X∗.

This algorithm is ”better” than SM...But is non-implementable, unless g
is ”simple”. Nevertheless, very useful when combined with duality:
−→ Augmented Lagrangians Methods.
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III-Fast Gradient Schemes – Improving Complexity

Previous explicit methods are simple but are often too slow.

For Prox-Grad and Gradient methods: a complexity rate of O(1/k)

For Subgradient Methods: complexity rate of O(1/
√

k).

Can we do better to solve the nonsmooth problem (M)?

(M) min{F (x) := f (x) + g(x) : x ∈ E}.

Can we devise a method with:
♠ the same computational effort/simplicty as Prox-Grad .
♠ a Faster global rate of convergence.
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Yes we Can...

Answer: Yes, through an “equally simple” scheme

♣ xk+1 = argmin
x

QL(x, yk), ←↩ yk instead of xk

The new point yk will be smartly chosen and easy to compute.

Idea: From an old algorithm of Nesterov (1983) designed for
minimizing a smooth convex function, and proven to be an
“optimal” first order method (Yudin-Nemirovsky (80)).

But, here our problem (M) is nonsmooth. Yet, we can derive a
faster algorithm than PG for the general NSO problem (M).

Y. Nesterov. A method for solving the convex programming problem with
convergence rate O(1/k2). Dokl. Akad. Nauk SSSR, 269(3):543–547,
(1983).
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A Fast Prox-Grad Algorithm - [BT09]
An equally simple algorithm as prox-grad. (Here L(f ) is known).

FPG with constant stepsize
Input: L = L(f ) - A Lipschitz constant of ∇f .
Step 0. Take y1 = x0 ∈ E, t1 = 1.
Step k. (k ≥ 1) Compute

xk = argmin
x∈E

{
g(x) +

L

2
‖x− (yk −

1

L
∇f (yk))‖2

}
xk ≡ pL(yk), ←↩ main computation as Prox-Grad

• tk+1 =
1 +

√
1 + 4t2

k

2
,

•• yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1).

Additional computation for FPG in (•) and (••) is clearly marginal.

With g = 0, this is the smooth Fast Gradient of Nesterov (83);
With tk ≡ 1,∀k we recover ProxGrag (PG).
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Knowledge of L(f ) is not Necessary

FPG with backtracking
Step 0. Take L0 > 0, some η > 1 and x0 ∈ E. Set y1 = x0, t1 = 1.
Step k. (k ≥ 1) Find the smallest nonnegative integers ik such that with
i = ik , L̄ = ηik Lk−1:

F (pL̄(yk)) ≤ QL̄(pL̄(yk), yk).

Set Lk = ηik Lk−1 and compute

xk = pLk
(yk),

tk+1 =
1 +

√
1 + 4t2

k

2
,

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1).
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Theorem - Global Rate of Convergence FPG

Theorem – [BT09] Let {xk} be generated by FPG. Then for any k ≥ 1

F (xk)− F (x∗) ≤ 2αL(f )‖x0 − x∗‖2

(k + 1)2
,

where α = 1 for the constant stepsize setting and α = η for the backtracking
stepsize setting.

# of iterations to reach F (x̃)− F∗ ≤ ε is ∼ O(1/
√
ε).

Clearly improves PG by a square root factor.

Do we practically achieve this theoretical rate?..Example Soon
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Main Pillar II in Analysis - Proposition II

Proposition II-Recursion The sequences {xk , yk} generated via the
fast proximal gradient method with either a constant or backtracking
stepsize rule satisfy for every k ≥ 1

2

Lk
t2
k vk −

2

Lk+1
t2
k+1vk+1 ≥ ‖uk+1‖2 − ‖uk‖2,

where

vk := F (xk)− F (x∗),

uk := tkxk − (tk − 1)xk−1 − x∗.

Proof relies on Proposition I and the recursion for {tk}.
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A Different O(1/k2) algorithm for solving (M)

Nesterov (2007): Gradient methods for minimizing composite objective
function. CORE Report. Available at
http://www.ecore.beDPs/dp1191313936.pdf.

◦ Same iteration complexity bound O(1/k2) like FPG.
◦ Depends on the accumulated history of past gradient iterates
◦ Requires two prox operations at each iteration.
◦ Totally different nontrivial convergence analysis.
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Application: Linear Inverse Problems

Problem: Find x ∈ C ⊂ E which ”best” solves A(x) ≈ b, A : E→ F,
where b (observable output), and A (Blurring matrix) are known.

Approach: via Regularization Models
• g(x) is a ”regularizer” (one – or sum of functions)
• d(b,A(x)) some ”proximity” measure from b to A(x)

min {g(x) : A(x) = b, x ∈ C}
min {g(x) : d(b,A(x)) ≤ ε, x ∈ C}
min {d(b,A(x)) : g(x) ≤ δ, x ∈ C}
min {d(b,A(x)) + λg(x) : x ∈ C} (λ > 0)←−

• Intensive research activities over the last 50 years...Now, more...with
Sparse Optimization problems..
• Choices for g(·), d(·, ·) depends on the application at hand.
Nonsmooth regularizers are particularly useful.
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Special Cases: f (x) = d(b,A(x)) := ‖A(x)− b‖2

g = λ‖ · ‖1 - l1-regularized convex problem.

min
x
{f (x) + λ‖Lx‖1}

L - identity, differential operator, wavelet.

g = TV (·) - Total Variation-based regularization
(Rudin-Osher-Fatemi (92)).

min
x
{f (x) + λTV (x)}

1-dim: TV (x) =
∑

i |xi − xi+1|
2-dim:
isotropic: TV(x) =

∑
i

∑
j

√
(xi,j − xi+1,j)2 + (xi,j − xi,j+1)2

anisotropic: TV(x) =
∑

i

∑
j(|xi,j − xi+1,j |+ |xi,j − xi,j+1|)

In Image Processing:
When A = I , this is called image denoising=prox
When A 6= I , this is Image Deblurring.
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Example l1 regularization -PG = ISTA

min
x
{‖Ax− b‖2 + λ‖x‖1} ≡ min

x
{f (x) + g(x)}

The proximal map of g(x) = λ‖x‖1 is simply:

proxt(g)(y) = argmin
u

{
1

2t
‖u− y‖2 + λ‖u‖1

}
= T λt(y),

where T α : Rn → Rn is the shrinkage or soft threshold operator:

T α(x)i = (|xi | − α)+sgn (xi ). (7)

The Prox Grad method is the so-called Iterative Shrinkage/Thresholding
Algorithm (ISTA).

Other names in the signal processing literature include for example:
threshold Landweber method, iterative denoising, deconvolution
algorithms...
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PG=ISTA and FPG=FISTA

ISTA with Constant Stepsize L = L(f ) = 2λmax(AT A). Lipschitz
constant of ∇f

x0 ∈ E, xk = T λ/L
(

xk−1 −
2

L
AT (Axk−1 − b)

)

FISTA with constant stepsize L = λmax(AT A).
y1 = x0 ∈ E, t1 = 1.

xk = T λ/L
(

yk −
2

L
AT (Ayk − b)

)
,

tk+1 =
1 +

√
1 + 4t2

k

2
,

yk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1).

Marc Teboulle – Tel Aviv University, First Order Algorithms for Convex Minimization 49

A Numerical Example: l1-Image Deblurring

min
x
{‖Ax− b‖2 + λ‖x‖1}

Comparing ISTA versus FISTA on Problems
• dimension d like
d = 256× 256 = 65, 536, or/and 512× 512 = 262, 144.
• The d × d matrix A is dense (Gaussian blurring times inverse of
two-stage Haar wavelet transform).
• All problems solved with fixed λ and Gaussian noise.
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Deblurring of the Cameraman

original blurred and noisy
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1000 Iterations of ISTA versus 200 of FISTA

ISTA: 1000 Iterations FISTA: 200 Iterations
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Original Versus Deblurring via FISTA

Original FISTA:1000 Iterations
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Function Values errors F (xk)− F (x∗)
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Example 2: l1 versus TV Regularization

Main difference between l1 and TV regularization:

prox of l1 - simple and explicit (shrinkage/soft threshold).

prox of TV - TV-denoising problem requires an iterative method:

g=TV

xk+1 = D

(
xk −

2

L
AT (Axk − b),

2λ

L

)
.

where D(w, t) = argmin
x

{
‖x−w‖2 + 2tTV(x)

}
Here:

Prox operation ⇔ TV-based denoising

No analytic expression in this case. Still can be solved very
efficiently by solving a smooth dual formulation by a fast gradient
method.
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Total Variation-Based Denoising via Dual

(DenP) min
x∈C
{‖x− b‖2

F + 2λTV(x)}, A ≡ I

Nonsmootness handled via the dual approach – Chambolle (04).
Result: Let (p,q) ∈ P be the optimal solution of the dual problem

min
{

h(p,q) ≡ −‖HC (b− λL(p,q))‖2
F + ‖b− λL(p,q)‖2

F : (p,q) ∈ P
}

where HC (x) = x− PC (x) for every x ∈ Rm×n.

Optimal solution of (DenP): x = PC (b− λL(p,q)).

The dual h ∈ C 1,1 is convex:
∇h(p,q) = −2λLT PC (b− λL(p,q)), Lh ≤ 16λ2.

Gradient Projection can be applied on dual h (Chambolle (04),
(05)).

Here we can thus apply a “Fast Gradient Projection” (FGP)
(FISTA with g = 0)
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A Fast Denoising Method – Algorithm FGP(b, λ,N)

Input: b - observed image, λ - reg. param., N - Number of iterations.
Output: x∗ - An optimal solution of DenP (up to a tolerance).

Step 0. Take (r1, s1) = (p0,q0) = (0(m−1)×n, 0m×(n−1)), t1 = 1.
Step k. (k = 1, . . . ,N) Compute

(pk ,qk) = PP

[
(rk , sk) +

1

8λ
LT (PC [b− λL(rk , sk)])

]
,

tk+1 =
1 +

√
1 + 4t2

k

2
,

(rk+1, sk+1) = (pk ,qk) +

(
tk − 1

tk+1

)
(pk − pk−1,qk − qk−1).

Set x∗ = PC [b− λL(pN ,qN)]

Projections on P are exact formula. For C as usual when ”simple”.
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Total Variation-Based Deblurring

minx∈C ‖A(x)− b‖2
F + 2λTV(x)

f (x) ≡ ‖A(x)− b‖2, g(x) ≡ 2λTV(x) + δC (x), E = Rm×n.

Deblurring is of course more challenging than denoising.

An equivalent smooth optimization problem via its dual needs to
invert the operator ATA...In general not viable.

No analytical expression for ”prox” step in FISTA...But again duality
helps..

To avoid this difficulty, the TV deblurring problem can be treated in two
steps through the denoising problem solved via dual with FGP:

DC (z, α) := argmin{‖x− z‖2 + 2αTV(x) : x ∈ C} (Denoisingstep)

pL(Y) = DC

(
Y − 2

L
AT (A(Y)− b),

2λ

L

)
(FISTAstep).
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FPG=FISTA is NOT a Monotone Method!

FISTA is not a monotone method.

In practice, ”almost always” monotone.

No effect on the convergence properties when the prox operation
can be computed exactly.

Might have severe effects when the prox-subproblems cannot be
solved exactly, e.g., for TV based deblurring.
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MFISTA: Monotone FISTA

Input: L ≥ L(f ) - An upper bound on the Lipschitz constant of ∇f .
Step 0. Take y1 = x0 ∈ E, t1 = 1.
Step k. (k ≥ 1) Compute

zk = pL(yk),

tk+1 =
1 +

√
1 + 4t2

k

2
,

xk = argmin{F (x) : x = zk , xk−1}

yk+1 = xk +

(
tk

tk+1

)
(zk − xk) +

(
tk − 1

tk+1

)
(xk − xk−1).

With Same Rate of Convergence as FPG!
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Lena and 3 Reconstructions – N=100 Iterations

Blurred and Noisy ISTA(F100 = 0.606)

MFISTA(F100 = 0.466)
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Applications/Limitations of FISTA for (M)

(M) min{f (x) + g(x) : x ∈ E}

The smooth convex function can be of any type f ∈ C 1,1 with available
gradient.

As long as the prox of the nonsmooth function g

pL(y) = argmin
x∈E

{
g(x) +

L

2
‖x− (y − 1

L
∇f (y))‖2

}
can be computed analytically or easily/efficiently, via some other
approach (e.g., dual for TV),
FISTA (MFISTA) is useful and efficient.

As seen previously, (see Prox-Calculus Table) FISTA covers some
interesting models in

Signal/image recovery problems

Matrix minimization problems arising in many machine learning
models, (e.g., nuclear matrix norm regularization, multi-task
learning, matrix classification, matrix completion problems.)
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IV-Gradient Schemes with Non-Euclidean Distances

All previous schemes were based on using the squared Euclidean
distance for measuring proximity of two points in E
It is useful to exploit the geometry of the constraints

This is done by selecting a “distance-like” function that sometimes
can reduce computational costs or even improve the rate of
convergence.

1 Mirror Descent Algorithms

2 More on Fast Gradient Schemes

3 Building Gradient Schemes via Algorithms for Variational Inequalities
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A Proximal Distance-Like Function

Exploiting the Geometry of C

Usual gradient method reads:

y = argmin
ξ∈C

{t〈ξ,∇f (x)〉+
1

2
‖ξ − x‖2}, t > 0.

Replace ‖ · ‖2 by some distance-like d(·, ·) that better exploits C
(e.g., allows for deriving explicit and simple formula) through a
Projection-Like Map:

p(g, x) := argmin
v
{〈v, g〉+ d(v, x)}.

Minimal required properties for d :

d(·, v) is a convex function, ∀v
d(·, ·) ≥ 0, and d(u, v) = 0 iff u = v ∀u, v.
• d is not a distance: no symmetry or/and triangle inequality
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Two Generic Families for Proximal Distances d

Bregman type distances - based on kernel ψ:

Dψ(x, y) = ψ(x)− ψ(y)− 〈x− y,∇ψ(y)〉, ψ strongly convex

Φ-divergence type distances - based on 1-d kernel φ convex

dϕ(x, y) :=
n∑

j=1

y r
j ϕ(

xj

yj
) +

σ

2
‖x− y‖2, r = 1, 2; ϕ convex on R.

The choice of d should be dictated to

♠ best match the constraints of a given problem
♠ to simplify the projection-like computation.
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Examples

Example 1 The choice ψ(z) = 1
2‖z‖

2 yields the usual squared
Euclidean norm distance Dψ(x, y) = 1

2‖x− y‖2.

Example 2 The entropy-like distance defined on the simplex,

ψ(z) =
d∑

j=1

zj ln zj , for z ∈ ∆d = {z ∈ Rd :
d∑

j=1

zj = 1, z > 0}.

In that case, Dψ(x, y) =
∑d

j=1 xj ln
xj

yj
and the following holds:

Dψ(x, y) ≥ 1

2
‖x− y‖2

1 for every x, y ∈ ∆d ,

namely, Dψ is 1-strongly convex with respect to the l1 norm.

More examples soon...
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Pythagoras...Without Squares...

A very simple but key property of Bregman distances.
Plays a crucial role in the analysis of any optimization method based on
Bregman distances.

Lemma (The three points identity - C.-T(93))
For any three points x, y ∈ int(domψ) and z ∈ domψ, the following three
points identity holds true

Dψ(z, y)− Dψ(z, x)− Dψ(x, y) = 〈z− x,∇ψ(x)−∇ψ(y)〉.

With ψ(u) = ‖u‖2/2 we recover the classical identity:

‖z− y‖2 − ‖z− x‖2 − ‖x− y‖2 = 2〈z− x, x− y〉.
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The Mirror Descent Algorithm-MDA

min{g(x) : x ∈ C} Convex Nonsmooth

Originated from functional analytic arguments in infinite dimensional
setting between primal-dual spaces.
A. S. Nemirovsky and D. B. Yudin. Problem complexity and method
efficiency in optimization Wiley-Interscience Publication, (1983).

In (Beck-Teboulle-2003) we have shown that the (MDA) can be
simply viewed as a subgradient method with a strongly convex
Bregman proximal distance:

xk+1 = argmin
x
{〈x, vk〉+

1

tk
Dψ(x, xk)}, vk ∈ ∂g(xk), tk > 0.

Example: Convex Minimization over the Unit Simplex ∆n. Use
the entropy kernel defined on ∆n (is 1-strongly convex w.r.t ‖ · ‖1).
Exploiting geometry of constraints can improve performance of SM.
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Convex Minimization over the Unit Simplex ∆n

inf{g(x) : x ∈ ∆n}, ∆n = {x ∈ Rn : eT x = 1, x ≥ 0}

EMDA: Start with x0 = n−1e. For k ≥ 1 generate

xk
j =

xk−1
j exp(−tkvk−1

j )∑n
i=1 xk−1

i exp(−tkvk−1
i )

, j = 1, . . . , n tk :=

√
2 log n

Lg

√
k
,

where vk−1 := (vk−1
1 , . . . , vk−1

n ) ∈ ∂g(xk−1).

Theorem The sequence generated by EMDA satisfies for all k ≥ 1

min
1≤s≤k

f (xs)−min
x∈∆

f (x) ≤
√

2 log n
max1≤s≤k ||vs ||∞√

k

This outperforms the classical subgradient (based on ‖·‖2), by a factor
of (n/ log n)1/2, which for large n can make a huge difference!....

Marc Teboulle – Tel Aviv University, First Order Algorithms for Convex Minimization 69

A Fast Non-Euclidean Gradient Method

For the smooth convex case min{f (x) : x ∈ C}, f ∈ C 1,1

[Auslender-Teboulle (06)].

A Fast Non-Euclidean Gradient Method
Input: L = L(f ), σ > 0, ψ, σ-strongly convex.
Step 0: Take x0, z0 ∈ ri(domψ), t0 = 1

Step k: Compute yk = (1− t−1
k )xk + t−1

k zk

zk+1 = argmin
x

{
〈x,∇f (yk)〉+

L

σtk
Dψ(x, zk)

}
,

xk+1 = (1− t−1
k )xk + t−1

k zk+1,

tk+1 =
1 +

√
1 + 4t2

k

2
,

Extension of this algorithm for the general model (M) to produce FPG
with Bregman distance can be obtained along the same methodology
developed for FPG.
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Complexity of Non-Euclidean FPG

Theorem
Let {xk , yk , zk} be generated by the previous algorithm. Then for all
k ≥ 1,

f (xk)− f (x∗) ≤ 4LDψ(x∗, x0)

σ(k + 1)2
,

Two other schemes :

One requires past history of all gradients + 2 prox: one quadratic,
and one based on ψ;

the other also requires past history of all gradients, and 2 prox based
on ψ.

See, Nesterov. Smooth minimization of non-smooth functions.
Math. Program. Series A, Vol. 103, 127–152, (2005).
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Gradient Schemes via Variational Inequalities
X ⊂ Rn closed convex set

F : X → Rn monotone map on X , i.e.,

〈F (x)− F (y), x− y〉 ≥ 0, ∀x, y ∈ X .

VI Problem

Find x∗ ∈ X such that 〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ X .

VI extend and encompass a broad spectrum of problems:
Complementarity, Optimization, Saddle point, Equilibrium...

Here, X is assumed ”simple” for the VI.

This will be exploited to derive schemes with explicit formulas for
general constrained smooth convex problems as well as some
structured nonsmooth problems.

So, what are ”simple” constraints...?..
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Simple Constraints

”Simple” but also fundamental.. X := C ∩ V , C closure of C with

C open convex,V := {x ∈ Rn : A(x) = b}, A linear, b ∈ Rm.

Rn
+,

unit ball, box constraints,

∆n the simplex in Rn,

Sn
+ (symmetric semidefinite positive matrices),

Ln
+ the Lorentz cone,

the Spectrahedron (Simplex in Sn)
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Starting Idea: The Extra-Gradient Method
Korpelevich, G. M. Extrapolation gradient methods and their relation to
modified Lagrange functions. Ekonom. i Mat. Metody, 19 (1976), no. 4,
694–703.

Provides a ”simple cure” to difficulties, and strong assumptions
needed in the usual Projection methods for VI (e.g., F strongly
monotone on X )

xk = ΠX (xk−1 − tkF (xk−1)), tk > 0.

Extragradient Method-Korpelevich (76):

yk−1 = ΠX (xk−1 − βkF (xk−1)), xk = ΠX (xk−1 − αkF (yk−1)),

with βk = αk = 1
L (L is the Lipschtiz constant for F )

No complexity results.../or potential implications to solve
NSO/constrained problems.

Does not exploit the geometry of set X .
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Basic Model Algorithm is Very Simple

Pick some suitable prox-distance d(·, ·) and let

p(g, x) = argmin
v
{〈v, g〉+ d(v, x)}.

Extra-Gradient-Like: EGL
Given x1 ∈ C ∩ V , compute:

yk = p(βkF (xk), xk)

xk+1 = p(αkF (yk), xk)

zk =
k∑

l=1

αlyl∑k
l=1 α

l
← average comp.

with αk , βk > 0 determined within algorithm, or fixed in terms of L.

Main Computational Object: The Projection-Like Map p(·, ·)
with respect to the choice of d(·, ·).
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Main Tool for Analysis of EGL

Associate to given d(·, ·) an induced Prox Distance H(·, ·) s.t.:

〈c− b,∇1d(b, a)〉 ≤ H(c, a)− H(c,b)− γH(b, a) ∀a,b, c ∈ C ♣.

Convergence Result (Auslender-Teboulle (06)
Let {xk , yk , zk} the sequences generated by EGL. Then,

1 The sequences {xk}, {zk} are bounded and each limit point of {zk}
is a solution of (VI).

2 If H(x, y) = σ
2 ‖x− y‖2 (e.g., Φ-div. distance) then the whole

sequence {xk} converges to a solution of (VI).

3 If F is L-Lipschitz on X , we have the complexity estimate

θ(zk) = O(
1

k
),

• where θ(z) = sup{〈F (ξ), z − ξ〉 : ξ ∈ X} is the gap function.
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Examples of couple (d ,H)

C ∩ V d(x, y) H(x, y)
Rn

++

∑n
j=1−y 2

j log
xj

yj
+ xjyj − y 2

j + σ
2 ‖x− y‖2 1

2‖x− y‖2

Sn
++ − log det(xy−1) + tr(xy−1) + σ tr(x− y)2 − n H = d

Ln
++ − log xT Dnx

yT Dny + 2xT Dny
yT Dny − 2 + σ

2 ‖x− y‖2 H = d

∆n

∑n
j=1 xj log

xj

yj
+ yj − xj H = d

Σn tr(x log x− x log y + y − x) H = d

∆n := {x ∈ Rn |
n∑

j=1

xj = 1, x > 0}, Σn := {x ∈ Sn | tr(x) = 1, x � 0}.

Ln
++ := {x ∈ Rn | xn > (x2

1 + . . .+ x2
n−1)1/2}, Dn ≡ diag(−1, . . . ,−1, 1).

Cn = {x ∈ Rn : aj < xj < bj j = 1 . . . n} similar to Rn
++ (log quad)
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Computing Explicit Projections p(g, x)

C ∩ V p(g, x) or pj(g, x), j = 1, . . . , n

Rn
++ xj(ϕ

∗)
′
(−gjx

−1
j )

Sn
++ (2σ)−1(A(g, x) +

√
A(g, x)2 + 4σI )

Ln
++

1
2σ

(
(1 + wn

ζ )w̄ , (wn + ζ)
)

∆n
xj exp(−gj )∑n
i=1 xi exp(−gi )

Σn via eigenvalue decomp. reduces to similar comp. as ∆n

(ϕ∗)′(s) = (2σ)−1{(σ − 1) + s +
√

((σ − 1) + s)2 + 4σ}
A(g, x) = σx− g − x−1, τ(x) = xT Dnx

w = (−2τ(x)−1Dnx + 2σx− g)/2, w = (w̄,wn) ∈ Rn−1 × R

ζ =

(
‖w‖2 + 4σ +

√
(‖w‖2 + 4σ)2 − 4w 2

n‖w̄‖2

2

)1/2

.
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Applying EGL to Convex Minimization

Allows to easily handle general smooth convex constrained problems.

Possible, thanks to the theory of duality for variational inequalities.

Produce methods with explicit formulas at each iteration that does
not require the solution of any subproblem.

Naturally applied to Structured Nonsmooth Convex Problems:
Saddle point/minimax
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Smooth Constrained Convex Optimization

Rn, Rm, and Rp finite dim. v.s. with inner products, 〈·, ·〉n,m,p
(P) f∗ = inf{f (x) : x ∈ X ≡ S ∩ Q}
X := S ∩ Q closed convex with S ”simple”

Q = {x ∈ Rn : −G (x) ∈ K , Ax = a} a ∈ Rp, A : Rn → Rp.

K closed convex cone, int K 6= ∅; e.g .,K = Rm
+,S

m
+ , L

m
+
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Assumptions on Convex Model

• f : Rn → R convex, C 1 with a gradient locally Lipschitz on X .

•G : Rn → Rp, C 1 with derivative DG locally Lipschitz on X and
K - convex on X :

λG (x) + (1−λ)G (y)−G (λx + (1−λ)y) ∈ K ∀x, y ∈ X , ∀λ ∈ [0, 1].

Examples of K -convex G
1 G(x) = Bx− b, B : Rn → Rp

2 G(x) =
∑m

i=1 Bigi (x), Bi ∈ Sm
+ , gi : Rn → R convex; K = Sm

+ .
3 G(x) = (g1(x), . . . , gm(x)), gi convex, K = Rm

+.
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Primal-Dual Variational Inequality Associated to (P)

(P) f∗ = inf{f (x) : −G (x) ∈ K , Ax = a ∈ S}.

One can show: x∗ solves (P) iff ∃(u∗, v∗) s.t. (x∗,u∗, v∗) solves (PDVI):

Find z∗ = (x∗,u∗, v∗) ∈ Ω : 〈T (z∗), z− z∗〉 ≥ 0, ∀z ∈ Ω

with

Ω := S × (K × Rp)= ”simple” × ”Hard” × ”Affine”

The primal-dual operator is defined by

T (z) := (∇f (x) + DuG (x)(u) + A∗v,−G (x),−(Ax− a))

≡ (T1(z),T2(z),T3(z)).

with DuG (x) := 〈u,∇G (x)〉m.
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Projection-like Map for PDVI are Easy to Compute!

• Given z = (x,u, v) ∈ Ω, Ω ≡ S × (K × Rp)
• let Z := (X ,U,W ) = T (z̄) for some other given z̄ ∈ Ω.
To apply EGL for solving (PDVI), all we need is to compute
z+ := p(Z , z) for some chosen distance d(z′, z).

We choose d defined by:

d(z′, z) := d1(x′, x) + d2(u′,u) +
1

2
‖v′ − v‖2,

d1 captures the ”simple” constraints described by S

d2 captures the ”hard” constraints through projections-like map on
the cone K

Last distance captures the affine equality constraints (if any).

Since d is separable, the computation of p decomposed accordingly,
and hence z+ = (x+,u+, v+) are computed independently and easily
as follows.
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Projection-Like Map Formulas

x+ = p1(T1(z̄), x) := p1(X , x) = argmin{〈w,X 〉+ d1(w, x) : w ∈ S},
u+ = p2(T2(z̄), u) := p2(U,u) = argmin{〈w,U〉+ d2(w,u) : w ∈ K},

v+ = p3(T3(z̄), v) := p3(W , v) = argmin{〈w,W 〉+
1

2
‖w − v‖2 : w ∈ Rp}

In particular, note that one always has: v+ = v −W .

For computing x+,u+ we use the results given in the previous tables,
e.g. for S = Rn,Rn

+, Sn
+, L

n
+. Similarly, for K = Rn

+, Sn
+, and Ln

+.

No matter how complicated the constraints are in the ground
set S ∩ Q , the resulting projections-like maps for (PDVI) are given
by analytical formulas.
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Other Useful Applications of EGL

Decomposition Methods :
f (x) =

∑l
j=1 fj(xj), gi (x) =

∑l
j=1 gij(xj), X =

∏l
j=1 Xj

Particularly useful and cheap for very large scale problems, since
explicit formulas at each step are obtained.

Semidefinite programming

Second order cone programs

Bilinear matrix games

Saddle point and minimax problems
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EGL for Structured Nonsmooth Optimization

min{g(x) : x ∈ X}, convex nonsmmooth

As seen, projected subgradient methods, have complexity estimate
O( 1√

k
)

Many nonsmooth convex problems admit a saddle pt structure,

g(x) = max{Φ(x, y)| y ∈ Y }

Y convex compact “simple” in Rp; Φ convex-concave on X × Y
with a derivative DΦ Lipschitz on X × Y .

This Saddle Point Problem minx∈X maxy∈Y Φ(x , y) can be written
as a basic (VI) problem.

Hence EGL can be applied with a complexity estimate ∼ O( 1
k ).

Again, “structure” helps to get better complexity results for
another class of NSO.
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Structured Nonsmooth Optimization: Example 1

Minimizing the maximum eigenvalue of a convex combination of
n × n matrices A1, . . . ,Am,

(Eig) min
x
{g(x) := λmax(A(x)) : x ∈ ∆m}; A(x) :=

m∑
j=1

xjAj .

But, for any B ∈ Sn, λmax(B) = max{tr(ZB) : tr(Z) = 1,Z ∈ Sn
+}

Thus, (Eig) equivalent to

min
x∈∆m

max
y∈Σn

Φ(x, y) ≡ tr(y(Ax))

where Σn = {y ∈ Sn
+| tr(y) = 1} Spectrahedron.

Here DΦ is globally Lipschitz with constant L = 1
2||A||

EGL can be easily applied using Entropy-like distances.
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Structured Nonsmooth Optimization: Example 2

Computing Lovasz capacity: G graph, n vertices, m arcs A. Define

d ∈ Sn : dij = 0 ∀(i , j) ∈ A, di,j = 1 otherwise

X = {x ∈ Sn : xij = 0, ∀(i , j) 6∈ A}
Y = Σm = {y ∈ Sn

+| tr(y) = 1}, Spectrahedron

The Lovasz capacity of G is then modeled by:

min
x∈X

max
y∈Y

Φ(x , y) := tr(y(d + x)) ♠

EGL can then be applied to solve ♠ and produces a simple explicit
algorithm.

No needs to solve any optimization at each iteration!
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Conclusions

Gradient-Based Schemes can be efficiently applied to a broad class
of problems ...Old methods back alive and kicking!

Strong potential for designing simple and efficient algorithms in
many applied areas with structured optimization models.

Further needs for simple and efficient schemes that can cope with
curse of dimensionality and Nonconvex/Nonsmooth settings.

...........Optimizers are not (yet..) out of job..........!
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Thank you for listening!
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