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Conic Optimization

A conic optimization (CO) problem (called also conic
program) is of the form

min
x

{
c>x + d : Ax − b ∈ K

}
, (1)

where x ∈ Rn is the decision vector, K ⊂ Rm is a closed
pointed convex cone with a nonempty interior, and
x 7→ Ax − b is a given affine mapping from Rn to Rm.

an extremely wide variety of convex programs is covered by
just three types of cones:
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Conic Optimization

K is a non-negative orthant Rm
+ . These cones give rise to Linear Optimization problems

min
x

{
c>x : a>i x − bi ≥ 0, 1 ≤ i ≤ m

}
.

K is a direct product of Lorentz (or Second-order) cones Lk = {x ∈ Rk : xk ≥
√∑k−1

j=1 x2
j }.

These cones give rise to Conic Quadratic Optimization (called also Second Order Conic
Optimization). The Mathematical Programming form of a CQO problem is

min
x

{
c>x : ‖Ai x − bi‖2 ≤ c>i x − di , 1 ≤ i ≤ m

}
.

K is a direct product of semidefinite cones Sk
+. The family of semidefinite cones gives rise to

Semidefinite Optimization (SDO) – optimization programs of the form

min
x

{
c>x + d : Ai x − Bi � 0, 1 ≤ i ≤ m

}
,

where

x 7→ Ai x − Bi ≡
n∑

j=1

xj A
ij − Bi

is an affine mapping from Rn to Ski (so that Aij and Bi are symmetric ki × ki matrices), and A � 0
means that A is a symmetric positive semidefinite matrix.
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Robust Conic Problems

Assume the data in the conic problem are uncertain.
Specifically, we let A = A(ζ), b = b(ζ) be affine functions of
ζ ∈ Z, where Z is a convex uncertainty set.

Then, the robust version of the generic conic program is:

min
x

{
c>x + d : A(ζ)x − b(ζ) ∈ K , ∀ζ ∈ Z

}
. (2)

The objective is assumed to be certain, without loss of
generality.
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Robust Conic Problems

A general solvable case: polytopic uncertainty

Assume Z = co{ζ(1), . . . , ζ(N)}.
Then the robust conic problem (2) is solvable exactly as:

min
x

{
c>x + d : A(ζ(i))x − b(ζ(i)) ∈ K , i = 1, . . . ,N

}
.

Proof: Let x be feasible for the above problem, and write a generic point in Z as a convex combination
ζ =

∑N
i=1 θiζ

(i) , θi ≥ 0,
∑N

i=1 θi = 1. Recall A(ζ), b(ζ) are affine in ζ:

(A(ζ), b(ζ)) = (A0, b0) +
L∑
`=1

ζ`(A`, b`).

Then,

A(ζ)x − b(ζ) =
N∑

i=1

θi

(
A(ζ(i))x − b(ζ(i))

)
,

from which the statement immediately follows.

Next discuss further solvable cases, for specific cones (Lorentz cones, semidefinite cones).
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Robust Second Order Cone (SOC)
Optimization

Consider robust SOC problems of the form:

min
x

c>x

‖Ai (ζi )x − bi (ζi )‖2 ≤ ci (ζi )
>x − di (ζi ), ∀ζi ∈ Zi , 1 ≤ i ≤ m

where Ai (ζi ) ∈ Rk×n,bi (ζi ) ∈ Rk , ci (ζi ) ∈ Rn,di (ζi ) ∈ R are
affine in ζi .

Without loss of generality, we may concentrate on a single
constraint:

‖A(ζ)x + b(ζ)︸ ︷︷ ︸
≡α(x)ζ+β(x)

‖2 ≤ c>(ζ)x + d(ζ)︸ ︷︷ ︸
≡σ>(x)ζ+δ(x)

, ∀ζ ∈ Z. (3)

where α(x), β(x), σ(x), δ(x) are affine in x .
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Robust Second Order Cone (SOC)
Optimization

Assume ζ = (η, ξ), η ∈ Z left, ξ ∈ Z right, so that constraint (3)
reads

‖A(η)x + b(η)‖2 ≤ c>(ξ)x + d(ξ), ∀η ∈ Z left, ξ ∈ Z right

Assume the right hand side perturbation set is described by
a conic representation:

Z right = {ξ : ∃u : Pξ + Qu + p ∈ K} ,

where K is a closed convex pointed cone.

We next discuss two cases where the robust SOC constraint
has an exact tractable representation. Namely, when Z left is
either an hyperrectangle (interval uncertainty) or a
norm-bounded set.
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Robust SOC Problems with Interval Uncertainty

Assume Z left is an hyperrectangle:

Z left =
{
η = [δA, δb] : |(δA)ij | ≤ δij ,

1 ≤ i ≤ k ,1 ≤ j ≤ n,
|(δb)i | ≤ δi , 1 ≤ i ≤ k

}
,

[A(ζ),b(ζ)] = [Ā, b̄] + [δA, δb].

In other words, every entry in the left hand side data [A,b],
independently of all other entries, runs through a given
segment centered at the nominal value of the entry.
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Robust SOC Problems with Interval Uncertainty

Theorem

Under the previous hypotheses, the robust SOC constraint (3) is
equivalent to the following explicit system of conic quadratic and
linear constraints in variables x , z, τ, v :

(a)
τ + p>v ≤ δ(x), P>v = σ(x),
Q>v = 0, v ∈ K∗

(b)
zi ≥ |(Āx + b̄)i |+ δi +

n∑
j=1
|δijxj |, i = 1, ..., k

‖z‖2 ≤ τ

(4)

where K∗ is the cone dual to K.
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Robust SOC Problems with Interval Uncertainty

Sketch of proof

Due to the side-wise structure of the uncertainty, a given x is
robust feasible if and only if there exists τ such that

(a) τ ≤ min
ξ∈Z right

{
σ>(y)ξ + δ(x)

}
= min

ξ,u

{
σ>(x)ξ : Pξ + Qu + p ∈ K

}
+ δ(x),

(b) τ ≥ max
η∈Z left

‖A(η)x + b(η)‖2

= max
δA,δb

{
‖[Āx + b̄] + [δAx + δb]‖2 : |δA|ij ≤ δij , |δbi | ≤ δi

}
.

By Conic Duality , a given τ satisfies (a) if and only if τ can be
extended, by properly chosen v , to a solution of (4.a); by
evident reasons, τ satisfies (b) if and only if there exists z
satisfying (4.b).
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Robust SOC Problems with Norm-Bounded
Uncertainty

Assume Z left is a norm ball:

Z left =
{
η ∈ Rp×q : ‖η‖2,2 ≤ 1

}
(5)

And either

A(η)x + b(η) = Āx + b̄ + L>(x)ηR (6)

with L(x) affine in x and R 6= 0, or

A(η)x + b(η) = Āx + b̄ + L>ηR(x) (7)

with R(x) affine in x and L 6= 0.

Here
‖η‖2,2 = max

u
{‖ηu‖2 : u ∈ Rq , ‖u‖2 ≤ 1}

is the usual matrix norm of a p × q matrix η (the maximal
singular value).
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Robust SOC Problems with Norm-Bounded
Uncertainty

Theorem

Under the previous hypotheses, the robust SOC constraint (3) is equivalent to the following explicit system of
LMIs in variables x, τ, u, λ:
(i) In the case of left hand side perturbations (5), (6):

(a)
τ + p>v ≤ δ(x), P>v = σ(x),

Q>v = 0, v ∈ K∗

(b)

 τ Ik r>L>(x) x̂
L(x)r λIn+1
x̂> τ − λR>R

 � 0.
(8)

(ii) In the case of left hand side perturbations (5), (7):

(a)
τ + p>v ≤ δ(x), P>v = σ(x),

Q>v = 0, v ∈ K∗

(b)

 τ Ik − λL>L x̂
λIq R(x)

x̂> R>(x) τ

 � 0.
(9)

Here, K∗ is the cone dual to K, and x̂ = Āx + b̄.
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Robust SOC Problems with Norm-Bounded
Uncertainty

The proof of the previous theorem (skipped) is based on three key facts:

1 Schur Complement Lemma
Let R � 0. Then,

A =

[
P Q>

Q R

]
� 0

if and only if P − Q>R−1Q � 0.

2 Semidefinite Representation of Lorentz cone
A vector [y ; t] ∈ Rk × R belongs to the Lorentz cone Lk+1 = {[y ; t] ∈ Rk+1 : t ≥ ‖y‖2} if and
only if the “arrow matrix”

Arrow(y, t) =

[
t y>

y tIk

]
is positive semidefinite.

3 S Lemma
(i) [homogeneous version] Let A, B be symmetric matrices of the same size such that x̄>Ax̄ > 0 for
some x̄ . Then the implication

x>Ax ≥ 0⇒ x>Bx ≥ 0

holds true if and only if ∃λ ≥ 0 : B � λA.
(ii) [inhomogeneous version] Let A, B be symmetric matrices of the same size, and let the quadratic
form x>Ax + 2a>x + α be strictly positive at some point. Then the implication

x>Ax + 2a>x + α ≥ 0⇒ x>Bx + 2b>x + β ≥ 0

holds true if and only if ∃λ ≥ 0 :

[
B − λA b> − λa>

b − λa β − λα

]
� 0.
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Robust Semidefinite Optimization

A semidefinite program (SDP) is a conic optimization program

min
x

{
c>x + d : Ai (x) ≡

n∑
j=1

xj A
ij − Bi ∈ S

ki
+ , i = 1, ...,m

}
m

min
x

{
c>x + d : Ai (x) ≡

n∑
j=1

xj A
ij − Bi � 0, i = 1, ...,m

}

where Aij , Bi are symmetric matrices of sizes ki × ki , Sk
+ is the cone of real symmetric positive

semidefinite k × k matrices, and A � B means that A, B are symmetric matrices of the same sizes
such that the matrix A− B is positive semidefinite.

A constraint of the form
Ax − B ≡

∑
j

xj A
j − B � 0

with symmetric Aj , B is called a Linear Matrix Inequality (LMI); thus, an SDP is the problem of
minimizing a linear objective under finitely many LMI constraints.
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Robust Semidefinite Optimization

A robust SDP is an optimization problem of the form

min
x

{
c>x + d : Aζ(x) � 0, ∀ζ ∈ ρZ

}
,

where

Aζ(x) ≡ Ā(x) +
L∑
`=1

ζ`A`(x)

and where

Ā(x), A`(x) are symmetric matrices affinely depending on
the design vector x

Z is the uncertainty set

ρ ≥ 0 is the uncertainty level.
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Robust Semidefinite Optimization

Exact tractable representations of robust SDPs are known only in
two special cases:

Polytopic uncertainty: Z = co{ζ(1), . . . , ζ(`)} (this is true for
general robust conic problems);

Norm-bounded unstructured uncertainty:

Z = {ζ : ‖ζ‖2,2 ≤ 1}.

The latter case is discussed next in detail.
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Robust Semidefinite Problems with
Norm-Bounded Uncertainty

We consider a robust SDP

min
x

{
c>x + d : Aζ(x) � 0, ∀ζ ∈ ρZ

}
,

We assume that

Aζ(x) = Ā(x) +
[
L>(x)ζR + R>ζ>L(x)

]
,

where L(·) is affine in x ;

The perturbation set Z is the set of all p × q matrices ζ with
the usual matrix norm ‖ · ‖2,2 not exceeding 1.
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Robust Semidefinite Problems with
Norm-Bounded Uncertainty

We have that:

x is robust feasible at uncertainty level ρ
⇔ ξ>[Ā(x) + L>(x)ζR + R>ζ>L(x)]ξ ≥ 0 ∀ξ ∀(ζ : ‖ζ‖2,2 ≤ ρ)
⇔ ξ>Ā(x)ξ + 2ξ>L>(x)ζRξ ≥ 0 ∀ξ ∀(ζ : ‖ζ‖2,2 ≤ ρ)
⇔ ξ>Ā(x)ξ + 2 min

‖ζ‖2,2≤ρ
ξ>L>(x)ζRξ︸ ︷︷ ︸

=−ρ‖L(x)ξ‖2‖Rξ‖2

≥ 0 ∀ξ

⇔ ξ>Ā(x)ξ − 2ρ‖L(x)ξ‖2‖Rξ‖2 ≥ 0 ∀ξ
⇔ ξ>Ā(x)ξ + 2ρη>L(x)ξ ≥ 0 ∀(ξ, η : η>η ≤ ξ>R>Rξ)

⇔ ∃λ ≥ 0 :

[
ρL(x)

ρL>(x) Ā(x)

]
� λ

[
−Ip

R>R

]
[S-Lemma]

⇔ ∃λ :

[
λIp ρL(x)

ρL>(x) Ā(x)− λR>R

]
� 0.
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Robust Semidefinite Optimization

Theorem

The robust LMI constraint

An(x) + L>(x)ζR + R>ζ>L(x) � 0 ∀(ζ ∈ Rp×q : ‖ζ‖2,2 ≤ ρ)

can be represented equivalently by the LMI[
λIp ρL(x)

ρL>(x) Ā(x)− λR>R

]
� 0 (10)

in variables x , λ.
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Robust Conic Optimization: Tight tractable
approximations

We have seen that robust conic programs can be represented in a computationally tractable form only
in some very special cases (for example, in the semidefinite case, only for polytopic and unstructured
norm-bounded uncertainty);

For more general uncertainty structures we need to resort to approximations;

Approximation approaches aim at approximating the robust feasible set X either from outside (risky)
or from inside (safe);

Here we discuss tight safe approximations of robust conic problems.

Xρ

X

^

ρ

ρX
out
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Robust Conic Optimization: Tight tractable
approximations

Consider a robust conic constraint (RC)

A(ζ)x + b(ζ)︸ ︷︷ ︸
≡α(x)ζ+β(x)

∈ Q ∀ζ ∈ Z, (11)

where A(ζ) ∈ Rk×n, b(ζ) ∈ Rk are affine in ζ, so that α(x), β(x) are affine in x .

We say that a system S of convex constraints in variables x and, perhaps, additional variables u is a
safe approximation of the RC (11), if the projection of the feasible set of S on the space of x-variables
is contained in the feasible set of the RC:

∀x : (∃u : (x, u) satisfies S)⇒ x satisfies (11).

This approximation is called tractable, provided that S is so (e.g., S is an explicit system of
CQI’s/LMIs or, more generally, the constraints in S are efficiently computable.
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Robust Conic Optimization: Tight tractable
approximations

Quantifying the conservatism

Assume that 0 ∈ Z, and consider a single-parametric family of perturbation sets

Zρ = ρZ, 0 < ρ ≤ ∞, (12)

thus giving rise to a single-parametric family

A(ζ)x + b(ζ)︸ ︷︷ ︸
≡α(x)ζ+β(x)

∈ Q ∀ζ ∈ Zρ (RCρ)

of robust conic constraints.

ρ is the perturbation level; the original perturbation setZ corresponds to the perturbation level ρ = 1.

The feasible set Xρ shrinks as ρ grows.
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Robust Conic Optimization: Tight tractable
approximations

Quantifying the conservatism

Assume that we are given an approximation scheme which puts into correspondence to Zρ a finite
system Sρ of efficiently computable convex constraints on variables x and, perhaps, additional
variables u, depending on ρ > 0, in such a way that for every ρ the system Sρ is a safe tractable
approximation of (RCρ), and let X̂ρ be the projection of the feasible set of Sρ onto the space of
x-variables.
The conservatism (or “tightness factor”) of the approximation scheme in question does not exceed
ϑ ≥ 1, if, for every ρ > 0, we have

Xϑρ ⊂ X̂ρ ⊂ Xρ.

Xρ
X

^
ρ

θρX
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Robust Conic Optimization: Tight tractable
approximations

Quantifying the conservatism

The fact that Sρ is a safe approximation of (RCρ) tight within factor ϑ is equivalent to the following pair of
statements:

1 [safety] Whenever a vector x and ρ > 0 are such that x can be extended to a feasible solution of Sρ ,
x is feasible for (RCρ);

2 [tightness] Whenever a vector x and ρ > 0 are such that x cannot be extended to a feasible solution
of Sρ , x is not feasible for (RCϑρ).

Clearly, tightness factor equal to 1 means that the approximation is precise: X̂ρ = Xρ for all ρ. In many

applications, especially in those where the level of perturbations is known only “up to an order of magnitude”,

a safe approximation of the RC with moderate tightness factor is almost as useful, from a practical viewpoint,

as the RC itself.
Xρ

X
^

ρ

θρX
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Tight Tractable Approximations of Robust SDP

The possibility to reformulate a robust semidefinite program
in a computationally tractable form is a “rare commodity”.
Essentially, only the polytopic case and the unstructured
norm-bounded case can be reformulated exactly.

For other cases, we are thus interested in tight tractable
approximations.

We next discuss a quite general case of structured
norm-bounded uncertainty.
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Preliminaries: The Matrix Cube Theorem

Let m, p1, q1,...,pL, qL be positive integers, and A ∈ Sm , Lj ∈ Rpj×m , Rj ∈ Rqj×m be given
matrices, Lj 6= 0. Let also a partition {1, 2, ..., L} = Ir

s ∪ Ir
f of the index set {1, ..., L} into two

non-overlapping sets be given.
Associate a parametric family of “matrix boxes”

U [ρ] =

{
A + ρ

L∑
j=1

[L>j Θj Rj + R>j [Θj ]>Lj ] : Θj ∈ Z j , 1 ≤ j ≤ L

}
⊂ Sm,

(13)

where ρ ≥ 0 is the parameter and

Z j =


{θIpj : θ ∈ R, |θ| ≤ 1}, j ∈ Ir

s
[“scalar perturbation blocks”]

{Θj ∈ Rpj×qj : ‖Θj‖2,2 ≤ 1}, j ∈ Ir
f

[“full perturbation blocks”]

. (14)

Matrix Cube Problem: Given ρ ≥ 0, check whether

U [ρ] ⊂ Sm
+ A(ρ)

Consider, along with predicateA(ρ), the predicate

∃Yj ∈ Sm, j = 1, ..., L :

(a) Yj � L>j Θj Rj + R>j [Θj ]>Lj ∀
(

Θj ∈ Z j , 1 ≤ j ≤ L
)

(b) A− ρ
L∑

j=1
Yj � 0.

B(ρ)
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The Matrix Cube Theorem

Predicate B(ρ) is stronger thanA(ρ) – the validity of the former predicate implies the latter.
B(ρ) is computationally tractable – the validity of the predicate is equivalent to the solvability of the
system of LMIs

(s) Yj ±
[
L>j Rj + R>j Lj

]
� 0, j ∈ Ir

s,

(f )

[
Yj − λj L

>
j Lj R>j

Rj λj Ipj

]
� 0, j ∈ Ir

f

(∗) A− ρ
L∑

j=1
Yj � 0.

(15)

in matrix variables Yj ∈ Sm , j = 1, ..., L, and real variables λj , j ∈ Ir
f . aaaa

“The gap” betweenA(ρ) and B(ρ) can be bounded solely in terms of the maximal rank

ps = max
j∈Irs

rank(L>j Rj + R>j Lj )

of the scalar perturbations. Specifically, there exists a universal function ϑR(·) satisfying the relations

ϑR(2) =
π

2
;ϑR(4) = 2; ϑR(µ) ≤ π√µ/2 ∀µ ≥ 1

such that with µ = max[2, ps] one has

if B(ρ) is not valid, thenA(ϑR(µ)ρ) is not valid. (16)

Finally, in the case L = 1 of single perturbation blockA(ρ) is equivalent to B(ρ).
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Robust LMI with structured norm-bounded
uncertainty

Consider an uncertain LMI
Aζ (y) � 0 (17)

where the “body”Aζ (y) is bi-linear in the design vector y and the perturbation vector ζ.

We say that the uncertain constraint (17) is affected by structured norm-bounded uncertainty with
uncertainty level ρ, if
1. The perturbation set Zρ is of the form

Zρ =

{
ζ = (ζ1

, ..., ζ
L) :

ζ` ∈ R, |ζ`|≤ρ, ` ∈ Is

ζ` ∈ Rp`×q` : ‖ζ`‖2,2 ≤ ρ, ` 6∈ Is

}
(18)

2. The bodyAζ (y) of the constraint can be represented as

Aζ (y) = An(y) +
∑
`∈IS

ζ`A`(y)

+
∑
` 6∈Is

[
L>` (y)ζ`R` + R>` [ζ`]>L`(y)

]
,

(19)

whereA`(y), ` ∈ Is, and L`(y), ` 6∈ Is, are affine in y , and R` , ` 6∈ Is, are nonzero.
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Robust LMI with structured norm-bounded
uncertainty

Theorem

Given an uncertain LMI with structured norm-bounded uncertainty (18), (19), let us associate with it
the following system of LMIs in variables Y`, ` = 1, ..., L, λ`, ` 6∈ Is, y :

(a) Y` � ±A`(y), ` ∈ Is

(b)

[
λ`Ip` L`(y)

L>` (y) Y` − λ`R>` R`

]
� 0, ` 6∈ Is

(c) An(y)− ρ
L∑̀
=1

Y` � 0

(20)

Then system (20) is a safe tractable approximation of the robust constraint

Aζ (y) � 0 ∀ζ ∈ Zρ (21)

and the tightness factor of this approximation does not exceed ϑ(µ), where µ is the smallest integer
≥ 2 such that µ ≥ max

y
rank(A`(y)) for all ` ∈ Is, and ϑ(·) is a universal function of µ such that

ϑ(2) =
π

2
, ϑ(4) = 2, ϑ(µ) ≤ π

√
µ/2, µ > 2.

The approximation is exact, if either L = 1, or all perturbations are scalar (i.e., Is = {1, ..., L}) and
allA`(y) are of ranks not exceeding 1.
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Robust LMI with structured norm-bounded
uncertainty

Proof

Let us fix y and observe that a collection y , Y1, ..., YL can be extended to a feasible solution of (20) if
and only if

∀ζ ∈ Zρ :

{
−ρY` � ζ`A`(y), ` ∈ Is,

−ρY` � L>` (y)ζ`R` + R>` [ζ`]>L`(y), ` 6∈ Is

(see the unstructured case).

It follows that if, in addition, Y` satisfy (20.c), then y is feasible for (21), so that (20) is a safe tractable
approximation of (21).

The fact that this approximation is tight within the factor ϑ(µ) is readily given by the Real case Matrix
Cube Theorem.

The fact that the approximation is exact when L = 1 is evident when Is = {1} and is readily given by
the unstructured result when Is = ∅.
The fact that the approximation is exact when all perturbations are scalar and all matricesA`(y) are
of ranks not exceeding 1 is evident.
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Example: Lyapunov Stability Analysis

Consider a time-varying linear dynamical system “closed” by a linear output-based feedback:

(a) ẋ(t) = At x(t) + Bt u(t) + Rt dt [open loop system, or plant]
(b) y(t) = Ct x(t) + Dt dt [output]
(c) u(t) = Kt y(t) [output-based feedback]

⇓
(d) ẋ(t) = [At + Bt Kt Ct ]x(t) + [Rt + Bt Kt Dt ]dt [closed loop system]

(22)

x(t) ∈ Rn , u(t) ∈ Rm , dt ∈ Rp , y(t) ∈ Rq are, respectively, the state, the control, the external
disturbance and the output at time t , At , Bt , Rt , Ct , Dt are matrices of appropriate sizes specifying
the dynamics of the system, and Kt is the feedback matrix.

We assume that the dynamical system in question is uncertain, meaning that we do not know the
dependencies of the matrices At ,...,Kt on t ; all we know is that the collection
Mt = (At , Bt ,Ct ,Dt ,Rt , Kt ) of all these matrices stays all the time within a given compact
uncertainty setM.

We let An,...,K n represent an underlying time-invariant “nominal” system, while the actual dynamics
corresponds to the case when the matrices drift (perhaps, in a time-dependent fashion) around their
nominal values.
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Example: Lyapunov Stability Analysis

An important desired property of a linear dynamical system is its stability – the fact that every state
trajectory x(t) of (every realization of) the closed loop system converges to 0 as t →∞, provided
that the external disturbances dt are identically zero.

For a time-invariant linear system
ẋ = Qnx,

the necessary and sufficient stability condition is that all eigenvalues of A have negative real parts or,
equivalently, that there exists a Lyapunov Stability Certificate (LSC) – a positive definite symmetric
matrix X such that

[Qn]>X + XQn ≺ 0.

For uncertain system (22), a sufficient stability condition is that all matrices

Q ∈ Q = {Q = AM + BM K M CM : M ∈ M}

have a common LSC X , that is, there exists X � 0 such that

(a) Q>X + XQ> ≺ 0 ∀Q ∈ Q
m

(b) [AM + BM K M CM ]>X + X [AM + BM K M CM ] ≺ 0 ∀M ∈ M;

(23)

here AM ,...,K M are the components of a collection M ∈ M.
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Example: Lyapunov Stability Analysis

The setQ is compact along withM. It follows that X is a LSC if and only if X � 0 and

∃β > 0 : Q>X + XQ � −βI ∀Q ∈ Q
⇔ ∃β > 0 : Q>X + XQ � −βI ∀Q ∈ co(Q).

Multiplying such an X by an appropriate positive real, we can ensure that

X � I & Q>X + XQ � −I ∀Q ∈ co(Q). (24)

Thus, we lose nothing when requiring from LSC to satisfy the latter system of (semi-infinite) LMIs.

Observe that (24) is nothing but the RC of the uncertain system of LMIs

X � I & Q>X + XQ � −I, (25)

the uncertain data being Q and the uncertainty set being co(Q). Thus, RC’s arise naturally in the
context of Robust Control.

We next study the question of existence of a LSC in two cases: polytopic and unstructured
norm-bounded uncertainty.
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Example: Lyapunov Stability Analysis

Polytopic uncertainty

Polytopic uncertainty means that the set co(Q) is given as a convex hull of an explicit list of
“scenarios” Qi , i = 1, ...,N:

co(Q) = co{Q1
, ...,QN}.

This situation occurs when the components AM , BM ,CM , K M of M ∈ M run, independently of each
other, through convex hulls of respective scenarios

SA = co{A1, ..., ANA}, SB = co{B1, ..., BNB },
SC = co{C1, ...,CNC }, SK = co{K 1, ..., K NK };

In this case, the set co(Q) is nothing but the convex hull of N = NANBNC NK “scenarios”
Qijk` = Ai + Bj K`Ck , 1 ≤ i ≤ NA,...,1 ≤ ` ≤ NK .

In the case in question we are in the situation of scenario perturbations, so that (25) is equivalent to
the explicit system of LMIs

X � I, [Qi ]>X + XQi � −I, i = 1, ...,N.
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Example: Lyapunov Stability Analysis

Unstructured norm-bounded uncertainty

Here
co(Q) = {Q = Qn + UζV : ζ ∈ Rp×q

, ‖ζ‖2,2 ≤ ρ}.

In our context this situation occurs, e.g., when 3 of the four matrices AM , BM ,CM , K M , M ∈ M, are
in fact certain, and the remaining matrix, say, AM , runs through a set of the form
{An + GζH : ζ ∈ Rp×q , ‖ζ‖2,2 ≤ ρ}.
In the case of unstructured norm-bounded uncertainty, the semi-infinite LMI in (25) is of the form

Q>X + XQ � −I ∀Q ∈ co(Q)
m

−I − [Qn]>X − XQn︸ ︷︷ ︸
An(X)

+[−XU︸ ︷︷ ︸
L>(X)

ζ V︸︷︷︸
R

+V>ζ>L(X)] � 0

∀(ζ ∈ Rp×q , ‖ζ‖2,2 ≤ ρ)

The robust LMI (25) is equivalent to the explicit system of LMIs

X � I,

[
λIp −ρU>X
−ρXU −I − [Qn]>X − XQn − λV>V

]
� 0 (26)

in variables X , λ.
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Lyapunov Stability Synthesis

A more challenging problem is Stability Synthesis: given an uncertain open loop system (22.a-b)
along with the associated compact uncertainty set M̂ in the space of collections
M̂ = (A, B,C,D,R), find a linear output-based feedback

u(t) = Ky(t)

and a LSC for the resulting closed loop system.

The Synthesis problem has a nice solution in the state-feedback case (that is, Ct ≡ I), so that the
state dynamics of the closed loop system is given by

ẋ(t) = [At + Bt K ]x(t) + [Rt + Bt KDt ]dt . (27)

The pairs (K , X) of “feedback–LSC” we are looking for are exactly the feasible solutions to the
system of semi-infinite matrix inequalities in variables X , K :

X � 0 & [A + BK ]>X + X [A + BK ] ≺ 0 ∀[A, B] ∈ AB; (28)

hereAB is the projection of M̂ on the space of [A, B]-data.
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Lyapunov Stability Synthesis

The difficulty is that the system is nonlinear in the variables. As a remedy, let us carry out the
nonlinear substitution of variables X = Y−1, K = ZY−1. With this substitution, (28) becomes a
system in the new variables Y , Z :

Y � 0 & [A + BZY−1]>Y−1 + Y−1[A + BZY−1] ≺ 0 ∀[A, B] ∈ AB;

Multiplying both sides of the second matrix inequality from the left and from the right by Y , we convert
the system to the equivalent form

Y � 0, & AY + YA> + BZ + Z>B> ≺ 0 ∀[A, B] ∈ AB;

SinceAB is compact along with M̂, the solutions to the latter system are exactly the pairs (Y , Z )
which can be obtained by scaling (Y , Z ) 7→ (λY , λZ ), λ > 0, from the solutions to the system of
semi-infinite LMIs

Y � I & AY + YA> + BZ + Z>B> � −I ∀[A, B] ∈ AB. (29)

in variables Y , Z .

When the uncertaintyAB can be represented either as a polytopic, or as an unstructured
norm-bounded one, the system (29) of semi-infinite LMIs admits an equivalent tractable reformulation.
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Conclusions

Robust Optimization offers a series of techniques for dealing
with uncertainty in the data of an optimization problem;

For some simple uncertainty structures, robust conic
problems can be converted exactly into standard conic
problems (in lifted space), and therefore solved efficiently;

More complex uncertainty structures (such as structured
norm-bounded uncertainty) can be dealt with via safe (inner)
approximations of the feasible set:

General uncertainty can be dealt with via risky
approximations, such as sample-based scenario
counterparts.
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That’s all

Thanks for your attention!
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Recall: Conic duality

Primal conic problem:

Opt(P) = min
x

{
〈c, x〉E :

Aix − bi ∈ Ki , i = 1, ...,m,
Ax = b

}
(P)

Dual problem:

Opt(D) = max
z,{yi}

{
〈z,b〉F +

∑
i

〈yi ,bi〉Fi :
yi ∈ K ∗i , 1 ≤ i ≤ m,
A∗z +

∑
i A∗i yi = c

}
(D)
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