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Abstract

We give an introductory overview of the basics of Robust
(convex) Optimization (RO): a methodology aimed at
immunizing optimization problems against uncertainty in the
data.

In Part 1 of the talk, we provide the fundamental definitions
and tools, and then introduce RO by discussing robust
counterparts of linear programming (LP) problems affected
by deterministic data uncertainty. Besides worst-case
immunization, we shall also discuss probabilistic
immunization, when data uncertainty is described by a
stochastic model.

In Part 2, we extend the RO methodology from LP to second
order conic programs (SOCP) and semidefinite programs
(SDP) affected by deterministic uncertainty, focusing on
tractability and approximation issues.

Some applicative examples will illustrate the benefits of the
RO approach.
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Sources

This presentation is mainly based on the material found in the
book:

Robust Optimization, by A. Ben Tal, L. El Ghaoui, A.
Nemirovski; Princeton University Press, 2009

to which the audience is referred to also as a comprehensive
source of pointers to the recent literature.

The part on probability constrained linear programs is based on
the paper:

G. Calafiore, L. El Ghaoui, ‘Distributionally Robust
Chance-Constrained Linear Programs with Applications.”
Journal of Optimization Theory and Applications (Springer),
Vol. 130, n. 1, pp. 1-22, 2006.
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Motivation

The optimal solution of an optimization problem depends on the data describing the problem. For
example, the optimal solution x∗ of an LP

min
x

c>x s.t.

Ax ≤ b

obviously depends on A, b.

In turn, the data comes from physical description of the problem. E.g., A, b may depend on geometry,
physical characteristics (weight, density), forecast data, load scenarios, etc. These data are thus
almost always affected by uncertainty, coming from measurement errors, mechanical inaccuracies,
variability in forecasts (e.g. fluctuations in supply/demand levels), etc.

When typical, nominal, data are used to solve the optimization problem, there is in general no
guarantee that the optimal solution x∗, based on these nominal data, will still be optimal, or even
feasible, when implemented in practice, on “true” data.

RO aims at finding solutions that are resilient to pre-specified ranges of variation in the input
parameters.
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A General Model

x ∈ Rn: the decision variable

ζi ∈ Rk : the i-th uncertain parameter

f0(x) : Rn → R: the (convex) objective function

fi (x , ζi ) : Rn × Rk → R: the i-th uncertain constraint function.
fi is convex in the first variable

Ui ⊆ Rk : the set where ζi lives

Definition (Robust Optimization Problem (ROP))

min
x

f0(x) s.t.:

fi (x , ζi ) ≤ 0, ∀ζi ∈ Ui , i = 1, . . . ,m.
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A General Model

Definition (Robust Feasible Solution)

x ∈ Rn is a robust feasible solution for the ROP if x ∈ X , where

X = {x : fi (x , ζi ) ≤ 0,∀ζi ∈ Ui , i = 1, . . . ,m}

Remarks:

X is convex (intersection of convex sets);

ROP is a convex optimization problem;

nevertheless, if Ui are continuous sets, ROP entails an
infinite number of constraints (semi-infinite optimization
problem) and can be very hard to solve.
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A Simple LP

Consider the following robust version of a simple LP with one
uncertain constraint:

min
x

x2 s.t.:

x1 ≤ 1, −x1 ≤ 1
x2 ≤ 1

a(ζ)>x ≤ 1, ∀ζ ∈ U ,

where a(ζ) = ā + ρζ, being

ā = [−1 − 1], U = {ζ : ‖ζ‖ ≤ 1}, ρ = 0.2.

Nominal feasible region is in Red (figure). Note that:

Nominal optimal solution is unfeasible for the robust problem;

Robustification may change the “nature” of the problem.
Namely, robust problem is no longer an LP.
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Robust LP

We next focus on Linear Progams.

Discuss two cases with easily representable and tractable robust
counterparts:

LP with interval and polyhedral uncertainty;

LP with ellipsoidal uncertainty.
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Robust LP with Interval Uncertainty

Consider a robust LP

min
x

c>x s.t.

A(ζ)x ≤ b ∀ζ ∈ U ,

where A(ζ) = Ā + ζ, and U is a box:

U = {ζ : |ζ| ≤ Z},

where Z is an m × n matrix of nonnegative elements. Clearly,

A(ζ)x ≤ b ∀ζ ∈ U ⇔ Āx + ζx ≤ b ∀ζ : |ζ| ≤ Z
⇔ Āx + Z |x | ≤ b.
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Robust LP with Interval Uncertainty

Let X = {x : Āx + Z |x | ≤ b}, and let

X+ = {(x ,u) : |x | ≤ u; Āx + Zu ≤ b}.

Note that x ∈ X ⇔ ∃u: (x ,u) ∈ X+.
Indeed, if x ∈ X , just take u = |x | and we see that (x ,u) ∈ X+.
Conversely, if (x ,u) ∈ X+, then Āx + Z |x | ≤ Āx + Zu ≤ b, thus
x ∈ X .

The set X+ is said to be a lifting of X , meaning that the projection
of X+ onto the space of x variables coincides with X . Lifting is a
standard “trick” in robust optimization.
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Robust LP with Interval Uncertainty

Thus, robust LP with interval uncertainty is representable by a
standard LP in (x ,u):

min
x,u

c>x s.t.

−u ≤ x ≤ u
Ax + Zu ≤ b.
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Robust LP with Polyhedral Uncertainty

Interval uncertainty is a special case of polyhedral uncertainty.
Consider a robust LP

min
x

c>x s.t.

a>i (ζi )x ≤ bi , ∀ζi ∈ Ui , i = 1, . . . ,m,

where ai (ζi ) = āi + ζi , and ζi lies in a polyhedron:

Ui = {ζi : Diζi ≤ di}.
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Robust LP with Polyhedral Uncertainty

For the i-th robust constraint, we have

a>i (ζi )x ≤ bi , ∀ζi ∈ Ui ⇔ ā>i x + max
ζi∈Ui

ζ>i x ≤ bi

⇔ max
ζi :Diζi≤di

ζ>i x ≤ bi − ā>i x .

Next recall LP duality:

max ζ>i x s.t.:
Diζi ≤ di

⇔
min u>i di s.t.:
u>i Di = x
ui ≥ 0

and note that:

min
u>i Di =x,ui≥0

u>i di ≤ t ⇔ u>i di ≤ t for some ui : u>i Di = x ,ui ≥ 0.
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Robust LP with Polyhedral Uncertainty

Therefore, the i-th robust constraint is represented in lifted space
as:

max
ζi :Diζi≤di

ζ>i x ≤ bi − ā>i x

m
u>i di ≤ bi − ā>i x

u>i Di = x
ui ≥ 0

And the overall robust polyhedral LP is representable again as a
standard LP in (x ,u1, . . . ,um) variables:

min
x,u1,...,um

c>x s.t.:

ā>i x + u>i di ≤ bi , i = 1, . . . ,m
u>i Di = x , i = 1, . . . ,m

ui ≥ 0, i = 1, . . . ,m.
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Robust LP with Ellipsoidal Uncertainty

A second case which is easily converted into an explicit and exact
representation is that of affine ellipsoidal uncertainty:
Consider the robust LP

min
x

c>x s.t.

a>i (ζi )x ≤ bi , ∀ζi ∈ Ui , i = 1, . . . ,m,

where ai (ζi ) = āi + Eiζi , and ζi lies in the Euclidean unit ball:

Ui = {ζi : ‖ζi‖ ≤ 1}.

In this case, each robust constraint is equivalent to:

max
‖ζi‖≤1

ζ>i E>i x ≤ bi − ā>i x ,

where the max on the left is achieved at ζi = E>i x/‖E>i x‖.
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Robust LP with Ellipsoidal Uncertainty

Thus, the i-th robust constraint is equivalent to

‖E>i x‖ ≤ bi − ā>i x ,

and the robust LP with ellipsoidal uncertainty reduces to the
following explicit program:

min
x

c>x s.t.

‖E>i x‖ ≤ bi − ā>i x , i = 1, . . . ,m.

Remark: This is no longer an LP! It is a (convex) second order
cone program (SOCP). Still solvable very efficiently.
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Parenthesis: Cones & co.

A nonempty subset K of a Euclidean space (E , 〈·, ·〉E ) is
called a cone, if whenever t1, t2 ≥ 0 and x1, x2 ∈ K , we have
t1x1 + t2x2 ∈ K .

A cone K is called regular, if it is closed, possesses a
nonempty interior and does not contain lines (pointed).

If K is a cone, then the set

K ∗ = {e ∈ E : 〈e,h〉E ≥ 0 ∀h ∈ K}

is said the cone dual to K .
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Examples

Nonnegative orthant: Rn
+ = {x ∈ Rn : x ≥ 0}

Lorentz cone: Ln = {x ∈ Rn : xn ≥
√∑n−1

j=1 x2
j }

Semidefinite cone: Sn
+ = {A ∈ Rn,n : A = A>,A � 0}.
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Conic optimization

A conic problem is an optimization problem of the form:

Opt(P) = min
x

{
〈c, x〉E :

Aix − bi ∈ Ki , i = 1, ...,m,
Ax = b

}
(P)

where

(E , 〈·, ·〉E ) is a Euclidean space of decision vectors x and
c ∈ E is the objective;

Ai , 1 ≤ i ≤ m, are linear maps from E into Euclidean spaces
(Fi , 〈·, ·〉Fi ), bi ∈ Fi and Ki ⊂ Fi are regular cones;

A is a linear mapping from E into a Euclidean space
(F , 〈·, ·〉F ) and b ∈ F .
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Examples

Linear Programming: conic problems associated with
nonnegative orthants Rm

+: minx{c>x : Ax − b ≥ 0};
Second Order Cone Programming: conic problems
associated with cones which are finite direct products of
Lorentz cones:

min
x

{
c>x : [A1; ...; Am]x − [b1; ...; bm] ∈ Lk1 × ...× Lkm

}
where Ai are ki × dim x matrices and bi ∈ Rki ;

Semidefinite Programming: conic problems associated with
cones which are finite direct products of Semidefinite cones:

min
x

c>x : A0
i +

dim x∑
j=1

xjA
j
i � 0, 1 ≤ i ≤ m

 ,

where Aj
i are symmetric matrices of appropriate sizes.
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Conic duality

The origin of conic duality is the desire to find a systematic
way to bound from below the optimal value in a conic
(primal) problem (P).

The dual of (P) is the problem of maximizing a lower bound
on the objective of (P):

Opt(D) = max
z,{yi}

{
〈z,b〉F +

∑
i

〈yi ,bi〉Fi :
yi ∈ K ∗i , 1 ≤ i ≤ m,
A∗z +

∑
i A∗i yi = c

}
(D)
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Conic duality theorem

Consider a primal-dual pair of conic problems (P), (D):

(i) [Weak Duality] One has Opt(D) ≤ Opt(P).

(ii) [Symmetry] The duality is symmetric: (D) is a conic
problem, and the problem dual to (D) is (equivalent to) (P).

(iii) [Strong Duality] If one of the problems (P), (D) is strictly
feasible and bounded, then the other problem is solvable,
and Opt(P) = Opt(D).
If both the problems are strictly feasible, then both are
solvable with equal optimal values.

26 / 74



Intro to RO

G.C. Calafiore

Preliminaries

Robust Linear
Programs
Cones & co.

A quite general
robust LP

Probability
Constrained
Linear
Programs

Conic representation of sets

Let K be a family of regular cones. A set Y ∈ Rn is called
K-representable if it can be expressed in the form:

Y = {y ∈ Rn : ∃u ∈ Rm : Ay + Bu − b ∈ K},

where K ∈ K and A,B,b are matrices and vectors of
appropriate dimensions.

Geometrically, a K-representation of Y is the representation
of Y as the projection on the space of y -variables of the set
Y+ = {[y ; u] : Ax + Bu − b ∈ K}.

given a K-rep. of the feasible domain Y , we can rewrite an
optimization program over Y as a conic program involving a
cone from the family K:

min
x=[y ;u]

{
c>x := d>y : Ay + Bu − b ∈ K

}
.
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Conic representation of sets

When K is the family of all nonnegative orthants, a K-rep. of
Y allows to rewrite the optimization program over Y as a
Linear Program;

When K is the family of all finite direct products of Lorentz
cones, a K-rep. of Y allows to rewrite the optimization
program over Y as Conic Quadratic program;

When K is the family of all finite direct products of positive
semidefinite cones, a K-rep. of Y allows to rewrite the
optimization program over Y as a Semidefinite Program.

Note that a K-representable set is always convex.
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Conic representation of sets
An Example

Consider the optimization problem

min
y

m∑
i=1

|a>i y − bi |

Is this an LP?
The answer is that it can be represented as an LP, via a conic representation.
First use “epigraphic” form

min
t,y

t :
m∑

i=1

|a>i y − bi | ≤ t

Then use conic representation:

{(y, t) :
m∑

i=1

|a>i y − bi | ≤ t} =

(y, t) : ∃u :

t −
∑m

i=1 ui ≥ 0
ui − a>i y + bi ≥ 0
ui + a>i y − bi ≥ 0


Therefore the problem is represented in standard LP form as:

min
y,t,u

t s.t.:

t −
∑m

i=1 ui ≥ 0

ui − a>i y + bi ≥ 0

ui + a>i y − bi ≥ 0.
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A quite general tractable robust LP

Consider a family of uncertainty-affected linear inequalities:{
a>x ≤ b

}
[a;b]∈U

With the data varying in the uncertainty set

U =

{
[a; b] = [a0; b0] +

L∑
`=1

ζ`[a`; b`] : ζ ∈ Z

}

Where Z has a conic representation:

Z =
{
ζ ∈ RL : ∃u ∈ RU : Pζ + Qu + p ∈ K

}
,

where K is a closed convex pointed cone in RN with a
nonempty interior, and P,Q,p are given matrices and vector.
In the case when K is not polyhedral, assume that the representation is strictly feasible:

∃(ζ̄, ū) : Pζ̄ + Qū + p ∈ int K .
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A quite general tractable robust LP

Theorem

The semi-infinite constraint {a>x ≤ b}, ∀[a; b] ∈ U can be
represented by the following system of conic inequalities in
variables x ∈ Rn, y ∈ RN :

p>y + [a0]>x ≤ b0,
Q>y = 0,
(P>y)` + [a`]>x = b`, ` = 1, ...,L,
y ∈ K∗,

where K∗ = {y : y>z ≥ 0∀z ∈ K} is the cone dual to K .
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A quite general tractable robust LP

Corollary

Let the nonempty Z be:

(i) polyhedral (i.e., K is the nonnegative orthant RN
+), or

(ii) conic quadratic representable (i.e., K is a direct product of
Lorentz cones Lk = {x ∈ Rk : xk ≥

√
x2

1 + ...+ x2
k−1}), or

(iii) semidefinite representable (i.e., K is the positive semidefinite
cone Sk

+)

(in the cases of (ii), (iii) assume in addition that Z has nonempty interior.)

Then the robust linear inequality {a>x ≤ b}, ∀[a; b] ∈ U admits
equivalent reformulation as an explicit system of:

linear inequalities, in the case of (i),

conic quadratic inequalities, in the case of (ii),

linear matrix inequalities, in the case of (iii).
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Probability Constrained Linear Programs

So far we worked with so-called “uncertain-but-bounded,”
deterministic data model: one only knows the domain U of
the admissible data;

In many engineering situations, however, one has further
information on the data uncertainty, besides its “domain”;

For instance, some stochastic model of the uncertainty may
be available.

The stochastic model may be complete, i.e. one knows the
exact probability distribution of the uncertainty, or it can be
itself uncertain (or ambiguous), e.g. one only knows some
moments of the distribution, or only knows that the
distribution belongs to a given family of distributions.

We next discuss some introductory issues on linear
programs with stochastic data.
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Example: LP with Gaussian data

min
x

c>x s.t.

Prob{a>i x ≤ bi} ≥ 1− ε, i = 1, . . . ,m

where ai ∼ N(āi ,Σi ), Σi � 0, and ε ∈ (0,1) is a probabilistic level
measuring the acceptable risk of constraint violation.
How to solve such problem? Is it convex?
Answer:

Prob{a>i x ≤ bi} = Prob
{

(ai − āi )
>x

σ(x)
≤

bi − ā>i x
σ(x)

}
where σ2(x) = x>Σix . Now, (ai−āi )

>x
σ(x) ∼ N(0,1) and hence

Prob{a>i x ≤ bi} = Ψ

(
bi − ā>i x
σ(x)

)
where Ψ is the standard Gaussian cumulative distribution
function.
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Example: LP with Gaussian data

Therefore, we have that

Prob{a>i x ≤ bi} ≥ 1− ε ⇔ Ψ

(
bi − ā>i x
σ(x)

)
≥ 1− ε

i.e. iff
Ψ−1(1− ε)

√
x>Σix + āi

>x − bi ≤ 0

This is a convex (second order cone) constraint on x , whenever
ε ≤ 0.5

⇓
Probability constrained LP is efficiently solvable in this case.
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LP with random data uncertainty

I We consider uncertain linear programs

min
x∈Rn

c>x subject to:

a>
i x + bi ≤ 0, i = 1, . . . ,m

where x ∈ Rn is the decision variable, and data
ai ∈ Rn,bi ∈ R, are random, i.e.

di
.

=

[
ai
bi

]
, i = 1, . . . ,m

are independent (n + 1)-dimensional random vectors.
I In the chance-constrained approach, we fix risk levels
εi ∈ (0,1), and enforce the constraints in probability

min
x∈Rn

c>x subject to:

P{a>
i x + bi ≤ 0} ≥ 1− εi , i = 1, . . . ,m.
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Outline

Depending on the distribution of (a,b), the set

X .
= {x : P{a>x + b ≤ 0} ≥ 1− ε}

may be non-convex, hence optimization problem ‘difficult,’ or even
when X is convex, it can be hard to express it explicitly.

F Give explicit convex characterization of X , for distributions
that are radially symmetric with respect to the Euclidean
norm.

F Discuss several results on the distributionally robust
constraint

inf
(a,b)∼F

P{a>x + b ≤ 0} ≥ 1− ε

for certain families F of distributions.

F Discuss the ‘uniformity principle’ for chance constraints.

F Example.

39 / 74



Intro to RO

G.C. Calafiore

Preliminaries

Robust Linear
Programs
Cones & co.

A quite general
robust LP

Probability
Constrained
Linear
Programs

Notation

I Under the assumption that the m constraints are
independent, we may concentrate w.l.o.g. on a single
generic constraint

P{a>x + b ≤ 0} ≥ 1− ε, ε ∈ (0,1)

I Define

d> .
=

[
a
b

]
∈ Rn+1, a ∈ Rn, b ∈ R

d̂ .
= E{d>} = E{[a> b]} .= [â> b̂];

Γ
.

= var{d} = var{[a> b]} .=
[

Γ11 γ12
γ>12 γ22

]
� 0.
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Notation

I We set

x̃ .
=

[
x
1

]
∈ Rn+1, ϕ(x)

.
= d>x̃

and

ϕ̂(x)
.

= E{ϕ(x)} = d̂>x̃ ,
σ2(x)

.
= var{ϕ(x)} = x̃>Γx̃ .

I Define also the normalized random variable

ϕ̄(x) =
ϕ(x)− ϕ̂(x)

σ(x)

such that our chance constraint is equivalently rewritten as

P{ϕ(x) ≤ 0} = P
{
ϕ̄(x) ≤ − ϕ̂(x)

σ(x)

}
≥ 1− ε.
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Chance Constraints for Radial Distributions

For a significant class of probability distributions on d , the chance
constraint can be explicitly expressed as a deterministic convex
constraint on x .
We next introduce the class of multivariate distributions of interest.
Definition. A random vector d ∈ Rn+1 has a Q-radial distribution
with defining function g(·), if d − E{d} = Qω, where Q ∈ Rn+1,n+1

is a fixed, positive definite matrix, and ω is a random vector having
probability density fω that only depends on the Euclidean norm of
ω, i.e. fω(ω) = g(‖ω‖). The function g(·) that defines the radial
shape of the density is named the ‘defining function’ of d . ?
N.B.: Matrix Q is related to the covariance var{d} = Γ, by

Q = νΓ1/2
, ν

.
=

(
Vn+1

∫ ∞
0

rn+2g(r)dr
)−1/2

.

where Vn+1 denotes the volume of the unit ball in Rn+1
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Chance Constraints for Radial Distributions

Theorem. For any ε ∈ (0,0.5], the chance constraint

P{d>x̃ ≤ 0} ≥ 1− ε,

where d has Q-radial distribution with defining function g(·) and
covariance Γ, is equivalent to the convex second order cone
constraint

κε,rσ(x) + ϕ̂(x) ≤ 0,

where κε,r = νΨ−1(1− ε), being Ψ the cumulative probability
function of the density

fϕ̄(x)/ν(ξ) = Sn

∫ ∞
0

g(
√
ρ2 + ξ2)ρn−1dρ,

ν
.

=

(
Vn+1

∫ ∞
0

rn+2g(r)dr
)−1/2

,

where Sn denotes the surface of the unit ball in Rn. ?
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Chance Constraints for Radial Distributions

Examples of defining functions for radial distributions.

||ω|| ||ω||

||ω|| ||ω||

g(||ω||) g(||ω||)

g(||ω||) g(||ω||)
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Example: Gaussian density

I The Gaussian distribution N (d̂ , Γ) is Q-radial with Q = Γ1/2,
ν = 1 and defining function

g(r) =
1

(2π)(n+1)/2 exp(−r2/2)

I Consequently, fϕ̄(x) is the Gaussian density function

fϕ̄(x)(ξ) =
1√
2π

exp(−ξ2/2),

and Ψ is the standard Gaussian cumulative probability
function Ψ(ξ) = ΨG(ξ) = 1√

2π

∫ ξ
−∞ exp(−t2/2)dt .

I For ε ∈ (0,0.5], the safety parameter κε results

κε = κε,G = Ψ−1
G (1− ε).

I We here recover a classical result (see e.g. Prékopa).
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Uniform Distribution on Ellipsoidal Support

Lemma. Let d − d̂ ∈ Rn+1 be uniformly distributed in the ellipsoid

E = {ξ = Qz : ‖z‖ ≤ 1},

where Q .
= νΓ1/2, Γ is positive definite, and ν .

=
√

n + 3. Then, for
any ε ∈ (0,0.5], the chance constraint

P{d>x̃ ≤ 0} ≥ 1− ε,

is equivalent to the convex second order cone constraint

κε,uσ(x) + ϕ̂(x) ≤ 0,

where
κε,u = ν

√
Ψ−1

Beta(1− 2ε),

being ΨBeta(·) the cumulative distribution of a Beta
( 1

2 ; n
2 + 1

)
probability density. Beta distribution ?
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Comparison of Safety Parameters

10-6 10-5 10-4 10-3 10-2 10-11

1.5

2

2.5

3

3.5

4

4.5

5

n=2 

Risk level ε 
 

n=20

n=10 

n=6

n=100
S

af
et

y 
pa

ra
m

et
er

 κ
 ε

Comparison between κε,G (thick line) and κε,u (light lines), for ε ∈ [10−6, 10−1], and various values of n.
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Distributional Robustness

We next discuss the ‘distributionally robust’ chance constraint

inf
d∼F

P{d>x̃ ≤ 0} ≥ 1− ε

for the following distribution classes:

I F is the class (d̂ , Γ) of all distributions of mean d̂ and
covariance Γ;

I F is the class (d̂ ,L)I of all distributions having mean d̂ , such
that the elements of d are independently distributed in
bounded intervals;

I F is a class of radially symmetric non-increasing densities
(RSNID).
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Distributional Robustness

Distributions with given mean and covariance.

Theorem. For any ε ∈ (0,1), the distributionally robust chance
constraint

inf
d∼(d̂,Γ)

P{d>x̃ ≤ 0} ≥ 1− ε

with Γ � 0, is equivalent to the convex second order cone
constraint

κεσ(x) + ϕ̂(x) ≤ 0,

with

κε =

√
1− ε
ε

?

Proof is based on a classical result of Marshall and Olkin.
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Distributional Robustness

Distributions with given mean and covariance + central symmetry.
Let (d̂ , Γ)S denote the family of symmetric distributions having
mean d̂ and covariance Γ. Symmetric meaning that the measure
µ is such that µ(A) = µ(−A), for all Borel sets A ⊆ Rn+1.
Lemma. For any ε ∈ (0,0.5], the symmetric distributionally robust
chance constraint

inf
d∼(d̂,Γ)S

P{d>x̃ ≤ 0} ≥ 1− ε

with Γ � 0, holds if
κεσ(x) + ϕ̂(x) ≤ 0,

with

κε =

√
1
2ε

?

Proof is based on Chebychev mean-variance inequality for symmetric distributions (I. Popescu, 2002).
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Distributional Robustness

Random data in independent intervals.

I Assume d of the form

di = d̂i + δi , i = 1, . . . ,n + 1

where δ ∈ Rn+1 is a zero-mean random vector of
independent elements which are bounded in intervals

δi ∈ [`−i , `
+
i ], `+

i ≥ 0 ≥ `−i

I Let us denote with (d̂ ,L)I the family of distributions on d
satisfying the above definition, where L is a diagonal matrix
containing the interval widths

L .
= diag(`+

1 − `
−
1 , . . . , `

+
n+1 − `

−
n+1).

51 / 74



Intro to RO

G.C. Calafiore

Preliminaries

Robust Linear
Programs
Cones & co.

A quite general
robust LP

Probability
Constrained
Linear
Programs

Distributional Robustness

Random data in independent intervals.

The following result holds.
Lemma. For any ε ∈ (0,1), the distributionally robust chance
constraint

inf
d∼(d̂,L)I

P{d>x̃ ≤ 0} ≥ 1− ε

holds if √
1
2

ln
1
ε
‖Lx̃‖+ ϕ̂(x) ≤ 0.

?
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Outline of Proof:

Let d>x̃ = d̂>x̃ +
∑n+1

i=1 ξi , , where
ξi
.

= xiδi , i = 1, . . . ,n; ξn+1
.

= δn+1.
Recall that ϕ(x) = d>x̃ and ϕ̂(x) = d̂>x̃ , and hence

P{ϕ(x) ≤ 0} = P

{
n+1∑
i=1

ξi ≤ −ϕ̂(x)

}
.

Now, ξi ’s are zero-mean, independent and bounded in intervals of
width |xi |(`+

i − `
−
i ). Therefore, applying Hoeffding’s tail probability

inequality we obtain that, if ϕ̂(x) ≤ 0 then

P{ϕ(x) ≤ 0} ≥ 1− exp

(
−2ϕ̂2(x)

(`+
n+1 − `

−
n+1)2 +

∑n
i=1 x2

i (`+
i − `

−
i )2

)

from which the statement easily follows.
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Radially symmetric non-increasing densities (RSNID)

I Consider the sets

H(d̂ ,P)
.

= {d = d̂ + Pω : ‖ω‖∞ ≤ 1}
E(d̂ ,Q)

.
= {d = d̂ + Qω : ‖ω‖ ≤ 1},

where P = diag(p1, . . . ,pn+1) � 0, Q � 0.

I The classes of densities of interest are defined as follows.
Definition (RSNID). A random vector d ∈ Rn+1 has a probability distribution within the class FH
(resp. FE ) if

d − E{d} = Pω resp. d − E{d} = Qω

where ω is a random vector having probability density fω such that

fω(ω) =

{
g(‖ω‖∞), for ‖ω‖∞ ≤ 1
0 otherwise resp. fω(ω) =

{
g(‖ω‖), for ‖ω‖ ≤ 1
0 otherwise,

and where g(·) is a non-increasing function. ?
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Radially symmetric non-increasing densities (RSNID)

I Notice that the uniform distribution on ellipsoidal support
discussed previously belongs to the class FE .

I Also, the uniform distribution on the orthotope H(d̂ ,P)
belongs to the class FH.

I The following proposition, based on the ‘uniformity principle’
(Barmish & Lagoa, 1997) states an important property of
these uniform distributions, namely, that they are actually the
worst-case distributions in the considered classes.
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Radially symmetric non-increasing densities (RSNID)

Uniformity Principle for RSNID.
For any ε ∈ (0,0.5], the distributionally robust chance constraint

inf
d∼FH

P{d>x̃ ≤ 0} ≥ 1− ε

is equivalent to the chance constraint

P{d>x̃ ≤ 0} ≥ 1− ε, d ∼ U(H(d̂ ,P))

where U(H(d̂ ,P)) is the uniform distribution over H(d̂ ,P).
Similarly, for any ε ∈ (0,0.5], the distributionally robust chance
constraint

inf
d∼FE

P{d>x̃ ≤ 0} ≥ 1− ε

is equivalent to the chance constraint

P{d>x̃ ≤ 0} ≥ 1− ε, d ∼ U(E(d̂ ,Q))

where U(E(d̂ ,Q)) is the uniform distribution over E(d̂ ,Q). ?
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Radially symmetric non-increasing densities (RSNID)

I As a result of previous Proposition, we have that a
distributionally robust constraint over the family FE is
equivalent to a probability constraint involving uniform
density over ellipsoidal support, which in turn is converted
into an explicit convex second order cone constraint.

I A distributionally robust constraint over the family FH is
instead equivalent to a probability constraint involving
uniform density over the orthotope H(d̂ ,P).

I Next Lemma provides an explicit sufficient condition for
enforcement of the robust constraint over FH.
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Radially symmetric non-increasing densities (RSNID)

Lemma. For any ε ∈ (0,0.5], the distributionally robust chance
constraint

inf
d∼FH

P{d>x̃ ≤ 0} ≥ 1− ε

holds if √
1
6

ln
1
ε
‖2Px̃‖+ ϕ̂(x) ≤ 0.

?
Skip proof
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Outline of Proof (1/4): We start by establishing a simple auxiliary result:

Let ξ be a zero-mean random variable uniformly distributed in the interval [−c, c], c ≥ 0, then for any λ ≥ 0
it holds that

ln E{eλξ} ≤
λ2c2

6
.

The above fact is proved as follows: Compute in closed form

E{eλξ} =
sinh(λc)

λc

and consider the function ψ(z)
.
= ln sinh(z)

z , z .
= λc, extended by continuity to ψ(0) = 0. Then, we have

ψ′(0) = 0 and ψ′′(0) = 1/3, and moreover ψ′′(z) ≤ 1/3, ∀z. Therefore, by Taylor expansion with
Lagrange remainder we have that for some θ ∈ [0, z]

ψ(z) = ψ(0) + zψ′(0) +
z2

2
ψ
′′(θ) ≤

z2

6
,

from which our preliminary statement follows.
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Outline of Proof (2/4):

Now, we write d = d̂ + Pω (we recall that
P = diag(p1, . . . ,n + 1) � 0), and hence d>x̃ = d̂>x̃ +

∑
x̃ipiωi ,

and

P{d>x̃ ≤ 0} = P

{
n+1∑
i=1

ξi > −ϕ̂(x)

}

where ξi = x̃ipiωi , ϕ̂(x) = d̂>x̃ .
Then, we observe that, by the uniformity principle, the infimum of
the probability is attained when the ωi ’s are uniformly distributed
in [−1,1]. Therefore, in the worst-case the ξi ’s are zero-mean,
independent, and uniformly distributed in intervals |xi |[−pi ,pi ], for
i = 1, . . . ,n, and [−pn+1,pn+1] respectively.

60 / 74



Intro to RO

G.C. Calafiore

Preliminaries

Robust Linear
Programs
Cones & co.

A quite general
robust LP

Probability
Constrained
Linear
Programs

Distributional Robustness

Outline of Proof (3/4):
By the Chernoff bounding method applied to the Markov probability inequality, we next have that for
ϕ̂(x) ≤ 0 and any λ ≥ 0

P


n+1∑
i=1

ξi > −ϕ̂(x)

 ≤
E
{

eλ
∑n+1

i=1 ξi
}

e−λϕ̂(x)
=

∏n+1
i=1 E

{
eλξi

}
e−λϕ̂(x)

.

By the preliminary result, we further have

E
{

eλξi
}
≤ e

(λpi xi )
2

6 , i = 1, . . . , n, and E
{

eλξn+1
}
≤ e

(λpn+1)2

6

and hence

P


n+1∑
i=1

ξi > −ϕ̂(x)

 ≤ eλ
2‖2Px̃‖2

/24 + λϕ̂(x) ≤ e
−6

ϕ̂2(x)

‖2Px̃‖2

where the last inequality obtains selecting λ ≥ 0 so to minimize the bound, which results in

λ =
−12ϕ̂(x)

‖2Px̃‖2
.
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Outline of Proof (4/4):

Finally, probability

P

{
n+1∑
i=1

ξi > −ϕ̂(x)

}
is smaller than ε ∈ (0,0.5] if ϕ̂(x) ≤ 0 and

‖2Px̃‖2 ln
1
ε
≤ 6ϕ̂2(x),

which can be compactly rewritten as the convex second order
cone constraint √

1
6

ln
1
ε
‖2Px̃‖+ ϕ̂(x) ≤ 0,

thus proving the claim.
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Example: Portfolio Optimization

I Consider a portfolio p− ∈ Rn consisting of n assets (which
may include cash), where p−i ≥ 0, i = 1, . . . ,n represent the
dollar value of the current holdings in each asset.

I In the so-called single-stage portfolio problem, the investor
should decide an adjustment x ∈ Rn of the portfolio, where xi
denotes the dollar amount transacted in asset i (xi > 0 for
buying, and xi ≤ 0 for selling), and after the transaction the
adjusted portfolio p = p− + x is held for a fixed amount of
time.

I In the classical Markowitz framework, the investor goal is to
maximize the total expected wealth at the end of the
investment period, while satisfying a set of constraints on the
portfolio, which may include bounds on the amounts held in
each single asset, as well as limits on the exposure to risk.
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Example: Portfolio Optimization

I A standard approach to the problem is to assume that the
return ri of asset i over the considered period is a random
variable, and that the expected value r̂i and covariance terms
of the returns are known.

I We denote with r .
= [r1 · · · rn]> the vector of returns, with r̂

its expected value, and with Σ its covariance, and consider
the family (r̂ ,Σ) of all possible distributions on the returns,
compatible with the given mean and covariance.

I Now, defining R .
= diag(r1, . . . , rn), we have that the portfolio

at the end of the investment period is the random vector

p+ = R(p− + x),

while the total wealth is 1>p+, where 1 denotes a vector of
ones.
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Example: Portfolio Optimization

I We here consider the following simplified portfolio
optimization problem:

max
x

E{1>p+} subject to (1)

1>x + τ(x) ≤ 0 (2)
p− + x ≥ 0 (3)

supr∼(r̂ ,Σ) P{1>p+ ≤ wlow} ≤ ε (4)

where (2) is a budget constraint taking into account all
transaction costs τ(x), (3) is a no-shortselling constraint, and
(4) is a shortfall risk constraint. In words, this latter constraint
imposes a small probability ε on the event that the
end-of-period wealth be lower than an undesired level wlow .

I Notice that we do not assume a specific distribution for the
returns, but rather impose the probability constraint robustly
with respect to all probability distributions on the returns that
have the specified mean and covariances.
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Example: Portfolio Optimization

I In our schematic example, the transaction costs are
assumed to be proportional to the transacted amounts, i.e.

τ(x)
.

= α

n∑
i=1

|xi | = α‖x‖1,

where α ≥ 0 is the fixed unit transaction cost.

I Now, the distributionally robust constraint (4) holds if

κ‖Σ1/2(p− + x)‖ − r̂>(p− + x) + wlow ≤ 0,

with κ =
√

(1− ε)/ε. Therefore, the stochastic problem
(1)–(4) is converted into the explicit convex problem

max
x

r̂>(p− + x) subject to

1>x + α‖x‖1 ≤ 0
p− + x ≥ 0

κ‖Σ1/2(p− + x)‖ − r̂>(p− + x) + wlow ≤ 0.
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Example: Portfolio Optimization

I For the purpose of the example, we considered a portfolio holding period of 20 days, and five assets
from the S&P 500 basket (tickers: AOL, CSCO, DELL, EQR, TXN), plus cash, i.e. n = 6. Cash is
assumed to have unit return and zero covariance (riskless asset).

I We (crudely) estimated the 20-day average returns and covariances for the assets from historical
data (closing prices from 2002-05-14 to 2003-05-13, using 0.98 forgetting factor), obtaining

r̂> =
[

1.2018 1.2197 1.1744 1.0698 1.3776 1
]
,

and

Σ =


0.5014 0.1839 0.1471 0.0616 0.2354 0
0.1839 0.4817 0.2350 0.0891 0.4921 0
0.1471 0.2350 0.4868 0.0594 0.3275 0
0.0616 0.0891 0.0594 0.0733 0.1587 0
0.2354 0.4921 0.3275 0.1587 1.8530 0

0 0 0 0 0 0

 .
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Example: Portfolio Optimization

I Assuming transaction cost α = 1%, initial holdings
p− = [1 1 1 1 1 1]> and wlow = 4, we obtained the updated
portfolios shown in the next figure, for different values of risk
level ε.

I Notice that the use of a distributionally robust probability
constraint leads to very ‘cautious’ choices of the portfolios
(strong bias towards riskless asset).

I More ‘aggressive’ portfolios are instead obtained if we
assume that the random returns obey to a Gaussian
distribution, in which case the constant κ in (5) is set to
κ = Ψ−1

G (1− ε), where ΨG is the standard Gaussian
cumulative function.
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Example: Portfolio Optimization
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Composition of optimal portfolios for different values of risk level ε. The abscissae report the asset type

(1=AOL, 2=CSCO, 3=DELL, 4=EQR, 5=TXN, 6=cash). The blue bars show the composition of the

distributionally robust portfolios, while the yellow ones refer to the Gaussian case.
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End of Part 1

Thank you for your attention!
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Beta distribution

The density function of a Beta(a,b) random variable is

β(x ; a,b) = B−1(a,b)xa−1(1− x)b−1, x ∈ [0,1],

where B(a,b) is the normalization constant.
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Hoeffding’s Inequality

Let x1, . . . , xn be independent, zero-mean random variables
bounded in itervals: xi ∈ [ai ,bi ], i = 1, . . . ,n.

Let Sn = x1 + x2 + · · ·+ xn

Then,

P{Sn ≥ t} ≤ exp
(

−2t2∑n
i=1(bi − ai )2

)
.
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Chernoff bounding

Markov’s inequality
If S is any random variable and a > 0, then

P{|S| ≥ a} ≤ E(|S|)
a

.

The Chernoff bound for a random variable S, which is the
sum of n independent random variables x1, . . . , xn, is
obtained by applying the Markov’s inequality on exp(tS), for
some well-chosen value of t .

For any t > 0,

P {S ≥ a} = P
{

etS ≥ eta
}
≤

E
[
etS
]

eta =

∏
i E [etxi ]

eta .
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Conic duality

Primal:

Opt(P) = min
x

{
〈c, x〉E :

Ai x − bi ∈ Ki , i = 1, ...,m,
Ax = b

}
(P)

Let yi ∈ K∗i and z ∈ F . By the definition of the dual cone, for every x feasible for (P) we have

〈A∗i yi , x〉E − 〈yi , bi 〉Fi
≡ 〈yi , Axi − bi 〉Fi

≥ 0, 1 ≤ i ≤ m,

and of course 〈A∗z, x〉E − 〈z, b〉F = 〈z, Ax − b〉F = 0.
Summing up the resulting inequalities, we get

〈A∗z +
∑

i

A∗i yi , x〉E ≥ 〈z, b〉F +
∑

i

〈yi , bi 〉Fi
. (C)

By its origin, this scalar linear inequality on x is a consequence of the constraints of (P), that is, it is
valid for all feasible solutions x to (P).
It may happen that the left hand side in this inequality is, identically in x ∈ E , equal to the objective
〈c, x〉E ; this happens if and only if

A∗z +
∑

i

A∗i yi = c.

Whenever it is the case, the right hand side of (C) is a valid lower bound on the optimal value in (P).
The dual problem is nothing but the problem of maximizing this lower bound:

Opt(D) = max
z,{yi}

〈z, b〉F +
∑

i

〈yi , bi 〉Fi
:

yi ∈ K∗i , 1 ≤ i ≤ m,
A∗z +

∑
i A∗i yi = c

 .
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