Invariant Semidefinite Programs

Christine Bachoc

Université Bordeaux I, IMB

Modern trends in Optimization and its Application, IPAM

Optimization Tutorials, september 14-17, 2010

Outline of Part I

Invariant semidefinite programs,

B., Dion C. Gijswijt (CWI Amsterdam), Alexander Schrijver (CWI Amsterdam) and Frank Vallentin (TU Delft), arxiv:1007.2905

- Invariant semidefinite programs
- C*-algebras
- Representation theory of compact groups
- Applications to coding theory

Semidefinite programs

A semidefinite program (SDP) in standard form:

 $\max \{ \langle C, X \rangle : X \succeq 0, \langle A_1, X \rangle = b_1, \dots, \langle A_m, X \rangle = b_m \},\$

where *X*, *C*, *A_i* are real symmetric matrices and $b_i \in \mathbb{R}$.

- X ≥ 0 stands for: X is positive semidefinite, meaning that X is a real symmetric matrix with non negative eigenvalues.
- $\langle C, X \rangle = \text{trace}(CX)$ is the standard inner product.
- A matrix X satisfying the above conditions is called a feasible solution; (C, X) is the objective function. Its maximum over the feasible region is called the optimal value of the program.

Semidefinite programs

The set of positive semidefinite matrices is a closed convex cone which is self dual which means that:

 $A \succeq 0$ iff for all $B \succeq 0$, $\langle A, B \rangle \ge 0$.

To the initial sdp (primal program) is associated a dual program:

$$\min\{\langle b, x\rangle: -C + x_1A_1 + \cdots + x_mA_m \succeq 0\},\$$

where $\boldsymbol{x} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_m) \in \mathbb{R}^m$.

Weak duality holds: the primal optimal value is upper bounded by the dual optimal value.

Semidefinite programs

Proof of weak duality: let X be primal feasible and x dual feasible.

$$\langle C, X \rangle = \langle C - (x_1A_1 + \dots + x_mA_m), X \rangle + \langle x_1A_1 + \dots + x_mA_m, X \rangle$$

$$= \underbrace{-\langle -C + x_1A_1 + \dots + x_mA_m, X \rangle}_{\leq 0} + \underbrace{x_1 \langle A_1, C \rangle + \dots + x_m \langle A_m, X \rangle}_{=x_1c_1 + \dots + x_mc_m}$$

$$\leq x_1b_1 + \dots + x_mb_m = \langle b, x \rangle.$$

Strong duality, i.e. equality of the primal and dual optimal values hold under mild conditions i.e. Slatter condition: there exists a primal strictly feasible.

Invariant semidefinite programs

- We shall consider complex semidefinite programs where X, A_i, C are complex hermitian matrices, i.e. X ∈ C^{n×n} and X = X^{*}.
- Let G ⊂ U_n(C) be a finite group. It acts on positive semidefinite hermitian matrices by: g.X = gXg*.
- The SDP is said to be G-invariant if:
 - X is feasible iff gX is feasible
 - $\langle X, C \rangle = \langle g.X, C \rangle$ (e.g. g.C = C for all $g \in G$)
- A G-invariant SDP has an optimal solution which is itself invariant by G:

$$X' := rac{1}{|G|} \sum_{g \in G} g.X$$

Invariant semidefinite programs

Theorem If the SDP

$$\max \left\{ \langle \boldsymbol{C}, \boldsymbol{X}
angle : \boldsymbol{X} \succeq \boldsymbol{0}, \langle \boldsymbol{A}_1, \boldsymbol{X}
angle = \boldsymbol{b}_1, \dots, \langle \boldsymbol{A}_m, \boldsymbol{X}
angle = \boldsymbol{b}_m
ight\}$$

is invariant by G, then it has the same optimal value as:

 $\max\big\{\langle C',X\rangle:X\in (\mathbb{C}^{n\times n})^G,X\succeq 0,\langle A_1',X\rangle=b_1,\ldots,\langle A_m',X\rangle=b_m\big\},$

where

$$(\mathbb{C}^{n\times n})^G = \{X \in \mathbb{C}^{n\times n} : g.X = X\}$$

and

$$A'_i := \frac{1}{|G|} \sum_{g \in G} g.A_i.$$

Matrix *-algebras

- ► A matrix *-algebra A is a linear subspace of C^{n×n} which is closed under multiplication and under taking the conjugate transpose.
- $\mathcal{A} = (\mathbb{C}^{n \times n})^{\mathsf{G}}$ is a matrix *-algebra.
- Structure of matrix *-algebras:

Theorem

There exists m_1, \ldots, m_d integers and an isomorphism φ of matrix *-algebras such that:

$$\varphi:\mathcal{A}\to \bigoplus_{k=1}^d \mathbb{C}^{m_k\times m_k}.$$

Moreover φ preserves inner products and the property of being positive semidefinite.

Reducing invariant semidefinite programs

• Let $\varphi(X) = (X_1, \dots, X_d)$, $\varphi(C') = (C_1, \dots, C_d)$, $\varphi(A'_i) = (A_{i1}, \dots, A_{id})$. The symmetrized SDP transforms to:

$$\max \left\{ \sum_{k=1}^{d} \langle C_k, X_k \rangle : X_k \succeq 0, \ k = 1, \dots, d \right.$$
$$\sum_{k=1}^{d} \langle A_{ik}, X_k \rangle = b_i, \ i = 1, \dots, m \right\}$$

- The sizes of the matrix variables have changed from n to m_k.
- ▶ Need of an explicit isomorphism φ to compute $\varphi(C') = (C_1, \ldots, C_d), \varphi(A'_i) = (A_{i1}, \ldots, A_{id}).$

Example: Lovász theta number of a graph

Let Γ = (V, E) a finite graph, |V| = n. An independent set S is a subset of V such that S² ∩ E = Ø.

The independence number of Γ:

 $\alpha(\Gamma) = \max_{\text{S independent}} |S|$

Hard to compute. Lovász theta number provides an easy to compute approximation in the form of the optimal value of an SDP.

Example: Lovász theta number of a graph

1978, L. Lovász, On the Shannon capacity of a graph.

$$\begin{split} \vartheta(\Gamma) &= \max \left\{ \langle J_n, X \rangle : \quad X = (X_{ij})_{1 \leq i, j \leq n}, \ X \succeq 0 \\ \langle I_n, X \rangle = 1, \\ X_{ij} = 0 \quad (i, j) \in E \right\} \end{split}$$

He proves the Sandwich Theorem:

Theorem

$$\alpha(\Gamma) \le \vartheta(\Gamma) \le \chi(\overline{\Gamma})$$

Proof of $\alpha(\Gamma) \leq \vartheta(\Gamma)$: if *S* is an independent set, then *B*:

$$B_{ij} = \frac{1}{|S|} \mathbf{1}_{S}(i) \mathbf{1}_{S}(j)$$

is feasible. Moreover $\sum_{i,j} B_{ij} = |S|$, thus $|S| \le \vartheta(\Gamma)$.

Graphs with symmetries

- Assume G = Aut(Γ) is the group of permutations σ ∈ S_n that sends edges to edges.
- Then *G* acts on $X \in \mathbb{C}^{n \times n}$ by permutations:

$$\sigma X = P(\sigma) X P(\sigma)^* = (X_{\sigma^{-1}(i)\sigma^{-1}(j)})_{i,j}$$

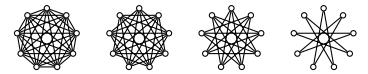
and leaves ϑ invariant. Thus ϑ can be replaced by its symmetrization under *G*.

X_{ij} = ⟨X, E_{ij}⟩. The matrix E'_{ij} is the characteristic function of the orbit under G of the pair (i, j). When (i, j) ∈ [n]² they form a basis of (ℂ^{n×n})^G. We need to compute the image of this basis by the isomorphism φ.

An easy example: circular graphs

▶ Let p, q integers, $p \ge 2q$. Let $K_{p/q}$ the graph with vertex V = [p] and edge set $E = \{(i, j) : q \le |i - j| \le p - q\}$.

• Examples: $K_{9/1} = K_9$, $K_{9/2} = \overline{C_9}$, $K_{9/3}$, $K_{9/4} = C_9$.



• The dihedral group D_p of order 2p acts on $K_{p/q}$.

An easy example: circular graphs

▶ With the discrete Fourier transform, we have $X \in (\mathbb{C}^{p \times p})^{D_p}$ iff

$$X_{ij} = \sum_{k=0}^{\lfloor p/2 \rfloor} x_k \cos(\frac{2k\pi}{p}(i-j)).$$

► The map $X \mapsto (x_0, \dots, x_{\lfloor p/2 \rfloor})$ is the wanted isomorphism $\varphi : (\mathbb{C}^{p \times p})^G \to \mathbb{C}^{1 + \lfloor p/2 \rfloor}$

• The sdp ϑ becomes the linear program:

$$\begin{array}{lll} \vartheta(\mathcal{K}_{p/q}) &=& \max \left\{ \begin{array}{ll} p x_0 &:& x_k \geq 0, \\ & \sum_{k=0}^{\lfloor p/2 \rfloor} x_k \cos(\frac{2jk\pi}{p}) = 0, \\ & q \leq j \leq \lfloor p/2 \rfloor \end{array} \right\} \end{array}$$

- ► Let *G* be a compact group. Examples: $G = O_n(\mathbb{R})$, $U_n(\mathbb{C})$, a finite group.
- G is endowed with its Haar measure λ: a positive measure on G which is left and right invariant (λ(gA) = λ(Ag) = λ(Ag)).
- A finite dimensional representation of G is a finite dimensional complex vector space V on which G acts linearly and continuously.
- Such a representation is always a unitary representation: indeed, starting from an arbitrary inner product ⟨u, v⟩ on V one can construct a G-invariant inner product:

$$\langle u,v
angle'=\int_G\langle gu,gv
angle d\lambda(g).$$

- V is said to be irreducible if it contains no non trivial subspace W such that gW = W for all g ∈ G (i.e. no G-subspace).
- If W is a G-subspace then W[⊥] is also a G-subspace, where orthogonality is with respect to a G-invariant inner product. Thus the space V splits into the direct sum of irreducibles (Maschke theorem).
- ▶ The *G*-homomorphisms are the homomorphisms of linear spaces that commute with the action of *G*, i.e. the $T : V_1 \rightarrow V_2$ such that T(gv) = gT(v). If $V_1 = V_2 = V$ they form the algebra End^G(*V*) which is a *C**-algebra.

From Maschke theorem, V has an irreducible decomposition

$$V = W_0 \perp W_1 \perp \cdots \perp W_d$$

- Grouping the components which are pairwise G-isomorphic defines the isotypic subspaces of V.
- We fix a set R = {R_k, k ≥ 0} of representatives of the isomorphism classes of irreducible representations of G.
- ▶ For $k \ge 0$, let \mathcal{MI}_k denote the isotopic subspace of *V* related to R_k , i.e. the sum of the *G*-subspaces of *V* which are isomorphic to R_k . Then $\mathcal{MI}_k \simeq R_k^{m_k}$ and m_k is called the multiplicity of R_k in *V*.

Schur lemma : if V is irreducible, then

$$\operatorname{End}^{G}(V) = \{\lambda \operatorname{Id}, \lambda \in \mathbb{C}\} \simeq \mathbb{C}.$$

Proof: if $T \in \text{End}^{G}(V)$, then T has an eigenvalue λ . $W := \text{ker}(T - \lambda I)$ is a non zero G-subspace of V thus W = V. In general, if

$$V = \perp_{k \in I_V} \mathcal{MI}_k, \quad \mathcal{MI}_k \simeq \mathbf{R}_k^{m_k}, \quad I_V := \{k : m_k \neq 0\}.$$

then

$$\operatorname{\mathsf{End}}^{G}(V)\simeq igoplus_{k\in I_{V}}\mathbb{C}^{m_{k} imes m_{k}}.$$

- ► Let *M* be a compact set, on which *G* acts continuously. We assume *M* is given a *G*-invariant positive measure μ . Examples: $G = O_n(\mathbb{R})$ and $M = S^{n-1}$; $G = \operatorname{Aut}(\Gamma)$ and M = V.
- The space C(M) of complex valued continuous functions on M is a unitary representation of G, for the action:

$$(g.f)(x) := f(g^{-1}x)$$

and the inner product:

$$\langle f_1, f_2 \rangle = rac{1}{\mu(M)} \int_M f_1(x) \overline{f_2(x)} d\mu(x).$$

 C(M) is infinite dimensional (but we shall consider only finite dimensional G-subspaces V ⊂ C(M)).

▶ An explicit isomorphism $\operatorname{End}^{G}(V) \simeq \oplus \mathbb{C}^{m_{k} \times m_{k}}$: let

$$\mathcal{MI}_k = \bigoplus_{i=1}^{m_k} H_{k,i}, \quad H_{k,i} \simeq R_k.$$

- Let (*e_{k,i,1},..., e_{k,i,d_k}*) an orthonormal basis of *H_{k,i}*, where *d_k* = dim(*R_k*), such that the complex numbers ⟨*ge_{k,i,s}*, *e_{k,i,t}*⟩ do not depend on *i*.
- We define $m_k \times m_k$ matrices $E_k(x, y)$ by:

$$E_{k,ij}(x,y) := \sum_{s=1}^{d_k} e_{k,i,s}(x) \overline{e_{k,j,s}(y)}.$$

• $E_k(x, y)$ is *G*-invariant:

$$E_k(gx,gy)=E_k(x,y).$$

- A change in the decomposition of *MI*_k or in the choice of basis of *H*_{k,i} changes *E*_k(*x*, *y*) to *AE*_k(*x*, *y*)*A*^{*} for some *A* ∈ Gl_{m_k}(ℂ).
- ► To $(F_1, ..., F_{|I_V|}) \in \bigoplus_{k \in I_V} \mathbb{C}^{m_k \times m_k}$ we associate

$${m F}({m x},{m y}) = \sum_{k\in I_V} \langle {m F}_k, \overline{{m E}_k({m x},{m y})}
angle$$

which in turn defines the element $T_F \in \text{End}^G(V)$:

$$(T_F(f))(\mathbf{x}) := \int_M F(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mu(\mathbf{y}).$$

Example: the binary Hamming space

• Let $H_n := \{0, 1\}^n$, with the Hamming distance $d_H(x, y)$:

$$d_H(\mathbf{x},\mathbf{y}) := |\{i, 1 \leq i \leq n : \mathbf{x}_i \neq \mathbf{y}_i\}|.$$

• The group $G := S_2 \wr S_n$ acts on H_n and leaves d_H invariant.

- Moreover, G acts two-point homogeneously on H_n, meaning that the orbits of G on pairs (x, y) ∈ H²_n are characterized by the value of d_H(x, y).
- Decomposition of C^{H_n} as a G-module: let χ_z(x) := (−1)^{x⋅z} denote the characters of ({0,1}ⁿ, +).

$$\mathbb{C}^{H_n} = \bigoplus_{z \in H_n} \mathbb{C}\chi_z$$
$$= \bigoplus_{k=0}^n P_k, \quad P_k := \bigoplus_{wt(z)=k} \mathbb{C}\chi_z$$

The binary Hamming space

The subspaces P_k are invariant under G, irreducible and pairwise non isomorphic. They must be because remember

$$n+1={
m dim}((\mathbb{C}^{H_n imes H_n})^G)={
m dim}({
m End}^G(\mathbb{C}^{H_n}))=\sum m_k^2.$$

• The multiplicities m_k are equal to 1.

$$\begin{aligned} \mathsf{E}_{k}(\mathbf{x}, \mathbf{y}) &= \sum_{wt(z)=k} \chi_{z}(\mathbf{x}) \chi_{z}(\mathbf{y}) = \sum_{wt(z)=k} (-1)^{(x-y) \cdot z} \\ &= \sum_{j=0}^{k} (-1)^{j} \binom{t}{j} \binom{n-t}{k-j}, \quad t := d_{H}(x, y) \\ &= \mathcal{K}_{k}^{n}(t) \quad \text{Krawtchouk polynomials.} \end{aligned}$$

The binary Hamming space

► A binary code with minimal distance *d* is a subset *C* of *H_n* such that

$$d_H(C):=\min\{d_H(x,y):x\neq y,(x,y)\in C^2\}=d.$$

In view of applications to error correction, combinatorial coding theory asks for

$$A(n,d) := \max\{|C| : C \subset H_n, d_H(C) \ge d\}.$$

A(n, d) is the independence number of the graph Γ(n, d) with vertex set V = H_n and edge set

$$E = \{(x, y) \in H_n^2 : 1 \le d_H(x, y) \le d - 1\}.$$

An upper bound for A(n, d)

We have

$$A(n,d) \leq \vartheta'(\Gamma(n,d)) = (\vartheta'(\Gamma(n,d)))^G$$

where in ϑ' we add the constraint: $X_{ij} \ge 0$.

▶ We have seen: $F \in (\mathbb{C}^{H_n \times H_n})^G$ iff

$$F(x,y) = \sum_{k=0}^{n} f_k K_k^n(d_H(x,y))$$

and: $F \succeq 0$ iff $f_k \ge 0$ for all $0 \le k \le n$.

Thus the SDP defining (ϑ'(Γ(n, d)))^G becomes a linear program in the n + 1 variables f_k with at most n + 1 inequalities. In coding theory it is known under the name of Delsarte linear programming bound and prior to Lovász (Delsarte, 1973).

Review on Part I

 Semidefinite programs having symmetries can be reduced to smaller size, through an isomorphism

$$\varphi: (\mathbb{C}^{n \times n})^G \to \bigoplus_{k=1}^d \mathbb{C}^{m_k \times m_k}.$$

- An example: Lovász theta number of a graph Γ with automorphism group G.
- Applications to the binary Hamming space H_n . Here

$$\varphi: (\mathbb{C}^{2^n \times 2^n})^G \to \bigoplus_{k=0}^n \mathbb{C}$$
$$F \mapsto (f_0, \dots, f_n), \quad F(x, y) = \sum_{k=0}^n f_k \mathcal{K}_k^n (\mathcal{d}(x, y)).$$

Outline of Part II

- Stronger SDP upper bounds for A(n, d)
- Other spaces in coding theory
- Extremal problems on the sphere

- Idea: exploit constraints on k-subsets of binary words.
- A. Schrijver, 2005, New code upper bounds from the Terwilliger algebra and semidefinite programming. Uses triples.
- D.C. Gijswijt, H.D. Mittelmann, A. Schrijver, Semidefinite code bounds based on quadruple distances. They give a general framework for k-tuples.
- Let P_k the set of subsets of H_n of size at most k. Symmetric matrices X indexed by H_n can be viewed as functions:

$$X:\mathcal{P}_2 \to \mathbb{C}$$

We want to introduce functions:

$$X: \mathcal{P}_k \to \mathbb{C}$$

• Let $X : \mathcal{P}_k \to \mathbb{C}$ and let $T \in \mathcal{P}_k$. Let $M_T(X)$ be indexed by:

 $I_T := \{ S \in \mathcal{P}_{(k+|T|)/2} : T \subset S \}$

and defined by:

$$(M_T(X))_{S,S'\in I_T} := X(S\cup S').$$

Let the semidefinite program:

$$artheta_k(n,d) := \max \left\{ egin{array}{ll} \sum_{v \in H_n} X(\{v\}) : & X(\emptyset) = 1 \ & X(S) = 0 & d_H(S) \leq d-1 \ & M_T(X) \succeq 0 & T \in \mathcal{P}_k \end{array}
ight\}$$

Then we have

 $A(n,d) \leq \vartheta_k(n,d).$

Proof: if C is a binary code with minimal distance d, then X defined by

$$X(S) = \prod_{x \in S} \mathbf{1}_C(x) = \begin{cases} 1 \text{ if } S \subset C \\ 0 \text{ otherwise} \end{cases}$$

is a feasible solution, and $\sum_{v \in H_n} X(\{v\}) = |C|$.

For k = 2 we recover Lovász $\vartheta'(\Gamma(n, d))$.

The group G = Aut(H_n) acts on P_k and leaves ϑ_k(n, d) invariant, thus one can restrict to X being G-invariant:

X(gS) = X(S) for all $g \in G, S \in \mathcal{P}_k$.

- ► The number of orbits of *G* on \mathcal{P}_k is of the order of $n^{2^{k-1}-1}$. Thus the resulting program has polynomial size (for fixed *k*).
- ► Then,

$$M_T(X) \in (\mathbb{C}^{I_T \times I_T})^{\operatorname{Stab}(T,G)}.$$

► The case k = 3: we can assume $T = \{0^n\}$. Then, Stab $(T, G) = S_n$. We need to understand

 $(\mathbb{C}^{H_n \times H_n})^{S_n}.$

- ► The orbit of $(x, y) \in H_n \times H_n$ under S_n is given by the triple: $(wt(x), wt(y), d_H(x, y))$.
- ► A. Schrijver, 2005: block diagonalization of $(\mathbb{C}^{H_n \times H_n})^{S_n}$.
- ► F. Vallentin, 2007: using the framework of group representations and work of Dunkl, gives an expression of the E_k(x, y) with Hahn polynomials.

• In the case k = 4, there are two cases:

$$|T| = 2, (\mathbb{C}^{H_n \times H_n})^{S_w \times S_{n-w}}$$

$$T = \emptyset, (\mathbb{C}^{H_n^2 \times H_n^2})^G$$

► *T* = 2: easy.

$$(\mathbb{C}^{H_n\times H_n})^{S_w\times S_{n-w}}=(\mathbb{C}^{H_w\times H_w})^{S_w}\otimes (\mathbb{C}^{H_{n-w}\times H_{n-w}})^{S_{n-w}}.$$

• $T = \emptyset$: not so easy. Amounts to have an alphabet of size 4.

$$(\mathbb{C}^{H_n^2 \times H_n^2})^{\mathbf{G}} = \left(((\mathbb{C}^{4 \times 4})^{S_2})^{\otimes n} \right)^{S_n} = \operatorname{Sym}^n ((\mathbb{C}^{4 \times 4})^{S_2}),$$

D.C. Gijswijt (2010): a general method to decompose Symⁿ(A) from a decomposition of A.

The results for A(n, d)

- (GMS 2010) The computation of ∂_k(n, d) for k = 3, 4 has lead to improved upper bounds of A(n, d) for values of n in the range 18 ≤ n ≤ 28. In particular, A(20, 8) = 256 is proved.
- Using Delsarte LP method, very good upper bounds in the form of explicit functions of the parameters (n, d) where given from explicit dual feasible solution (MRRW (1978); Levenshtein).
- Using Delsarte LP method, the best known asymptotic bound for the rate

 $\frac{1}{n}\log(A(n,d))$

was obtained (MRRW (1978)).

• Open question: is it possible to improve it with $\vartheta_k(n, d)$?

Comments

- ► The SDP program defining ϑ_k(n, d) can be viewed as a SDP relaxation of the independence number of a hypergraph.
- It has further applications to extremal problems in coding theory relative to constraints on k points.
- It can also be understood in terms of hierachies of SDP for 0/1 programs (Lovász-Schrijver, Lasserre).

Other spaces

• Let (M, d_M) be a metric space. We introduce

$$A(M,d) := \max \{ |C| : C \subset M, d_M(C) \ge d \}.$$

- Many metric spaces are of interest in coding theory, due to the growing number of applications.
- It is a general fact that these spaces are usually huge spaces, affording huge groups of symmetries.
- One can follow the same line as for the Hamming space: A(M, d) is the independence number of a graph Γ(M, d) thus is upper bounded by ϑ'(Γ(M, d)) on which the group G = Aut(M, d_M) acts.

Examples

Space	Group	Polynomial
Hamming space q ^{<i>n</i>} Johnson space <i>q</i> -Johnson space <i>Aⁿ</i> , <i>A</i> is <i>H</i> -sym Projective space Permutations	$egin{array}{l} S_q \wr S_n \ S_n \ GI_n(\mathbb{F}_q) \ H \wr S_n \ GI_n(\mathbb{F}_q) \ S_n imes S_n \ S_n imes S_n \end{array}$	Krawtchouk Hahn q-Hahn multivariate Krawtchouk matrix q-Hahn characters
Sphere S ⁿ⁻¹ Projective spaces Grassmann spaces	$egin{aligned} & O_n(\mathbb{R}) \ & O_n(\mathbb{R}), \ & U_n(\mathbb{C}) \ & O_n(\mathbb{R}), \ & U_n(\mathbb{C}) \end{aligned}$	Gegenbauer Jacobi multivariate Jacobi

The sphere

• Euclidean space \mathbb{R}^n , inner product $x \cdot y = \sum_{i=1}^n x_i y_i$.

$$\mathbf{S}^{n-1} := \{ \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbb{R}^n : \mathbf{x} \cdot \mathbf{x} = 1 \}.$$

- ▶ The orthogonal group $O_n(\mathbb{R})$ acts homogeneously on S^{n-1} .
- ▶ The angular distance $d_{\theta}(x, y)$ is $O_n(\mathbb{R})$ -invariant:

$$d_{\theta}(x, y) = \arccos(x \cdot y)$$

▶ Moreover, $O_n(\mathbb{R})$ acts two-point homogeneously on S^{n-1} .

Spherical codes

For a spherical code $C \subset S^{n-1}$, let

$$d_{\theta}(C) := \min\{d_{\theta}(x, y) : (x, y) \in C^2, x \neq y\}.$$

Problem: to determine

$$A(S^{n-1},\theta_{\min}) := \max\{|C| : C \subset S^{n-1}, d_{\theta}(C) \ge \theta_{\min}\}.$$

Case θ_{min} = π/3: A(Sⁿ⁻¹, π/3) = τ_n is the kissing number of dimension *n*, the maximal number of spheres that can touch simultaneously a central sphere, without overlapping, all spheres having same radius.

Kissing number in dimensions 2 and 3

• Dimension 2: $\tau_2 = 6$, unique configuration.

 \blacktriangleright Dimension 3: Regular icosahedron, 12 points. The minimal angle is $\simeq 63.4^{\circ}.$

History

1694: Isaac Newton and David Gregory:

 $\tau_3 = 13$?

- ▶ 1953: Schütte and Van der Waerden prove $\tau_3 = 12$.
- 1956: other proof by Leech.

The known values of τ_n :

- ▶ 1979: $\tau_8 = 240$ (E_8) and $\tau_{24} = 196560$ (min. vectors of the Leech lattice) Levenshtein; indep. Odlysko et Sloane
- ▶ 2003: τ₄ = 24 (D₄), Oleg Musin

Extremal problems on sphere

• $C \subset S^{n-1}$ avoids $\Omega \subset (S^{n-1})^2$ if, for all $(x, y) \in C^2$, $(x, y) \notin \Omega$.

• Let λ a measure on S^{n-1} , let

 $A(S^{n-1},\Omega,\lambda) = \sup \left\{ \lambda(C) : C \subset S^{n-1} \text{ measurable}, \ C \text{ avoids } \Omega \right\}.$

• $\Omega = \{(x, y) : d_{\theta}(x, y) \in]0, \theta_{\min}[\}$ and λ is the counting measure denoted μ_c .

 Ω -avoiding sets are spherical codes with minimal distance θ_{\min} .

• $\Omega = \{(x, y) : d_{\theta}(x, y) = \theta\}$ for some value $\theta \neq 0$, and $\lambda = \mu$.

Extremal problems on sphere

- Computing $A(S^{n-1}, \Omega, \lambda)$ is difficult.
- We aim at a SDP relaxation, of "theta type".
- Problem: the analog on S^{n-1} of the cone of psd matrices.

Definition

We say that $F \in \mathcal{C}((S^{n-1})^2)$ is positive definite, denoted $F \succeq 0$, if $F(x, y) = \overline{F(y, x)}$ and, for all k, for all $(x_1, \ldots, x_k) \in (S^{n-1})^k$,

$$(F(\mathbf{x}_i,\mathbf{x}_j))_{1\leq i,j\leq k}\succeq 0.$$

Primal and dual theta numbers

• Recall the theta (prime) number of the graph $\Gamma = (V, E)$, V = [n]:

$$\vartheta'(\Gamma) = \max \left\{ \langle X, J_n \rangle : \quad X \succeq 0, \ X \ge 0, \\ \langle X, I_n \rangle = 1, \ X_{ij} = 0 \text{ for all } (i, j) \in E \right\}.$$

The dual expression:

$$\vartheta'(\Gamma) = \min \{ t : X \succeq 0, \quad X_{ii} \le t - 1, \\ X_{ij} \le -1 \text{ for all } (i,j) \notin E \}.$$

Theta numbers for the sphere

- Replace $\mathbb{C}^{n \times n}$ with $\mathcal{C}(S^{n-1} \times S^{n-1})$.
- Let $\Omega^c = \{(x, y) : (x, y) \notin \Omega \text{ and } x \neq y\}$

$$\begin{split} \vartheta_2(\mathcal{S}^{n-1},\Omega) &= \sup \big\{ \ \langle F,1 \rangle : \quad F \succeq 0, \ F \geq 0, \\ \langle F,\mathbf{1}_\Delta \rangle &= 1, \\ F(x,y) &= 0 \text{ for all } (x,y) \in \Omega \ \big\}. \end{split}$$

$$artheta_1(\mathcal{S}^{n-1},\Omega) = \inf \left\{ \begin{array}{ll} t: F \succeq 0, & F(x,x) \leq t-1, \\ F(x,y) \leq -1 \text{ for all } (x,y) \in \Omega^c \end{array}
ight\},$$

Theta numbers for the sphere

- ► These cone linear programs are not pairwise dual because the topological dual of C(Sⁿ⁻¹) is the space M(Sⁿ⁻¹) of Borel regular measures on Sⁿ⁻¹.
- The appropriate version depends on the nature of Ω:

$$\begin{split} \Omega = &]\mathbf{0}, \theta_{min} [\quad \mathcal{A}(\mathbf{S}^{n-1}, \Omega, \lambda) \leq \vartheta_1(\mathbf{S}^{n-1}, \Omega) \\ \Omega = \{\theta\} \quad \mathcal{A}(\mathbf{S}^{n-1}, \Omega, \lambda) \leq \vartheta_2(\mathbf{S}^{n-1}, \Omega) \end{split}$$

These programs are invariant under O_n(ℝ). Thus we can assume F ∈ C((Sⁿ⁻¹)²)^{O_n(ℝ)}.

Harmonic analysis on S^{n-1}

Harmonic polynomials:

 $\mathsf{Harm}_k^n := \{ P \in \mathbb{R}[x_1, .., x_n], P \mathsf{ hom. }, \mathsf{deg}(P) = k, \Delta P = 0 \}$

where Δ is the Laplace operator:

$$\Delta = \sum_{k=1}^{n} \frac{\partial^2}{\partial \mathbf{x}_k^2}.$$

Harm^{*n*}_{*k*} is an irreducible representation of $O_n(\mathbb{R})$.

▶ Let H_k^n the functions on S^{n-1} obtained from Harm^{*n*}_{*k*}. Then

$$\mathcal{C}(\mathbb{S}^{n-1}) = \oplus_{k \ge 0} H_k^n$$

Harmonic analysis on S^{n-1}

▶ $m_k = 1$ and $E_k(x, y) = P_k^n(x \cdot y)$ where $P_k^n(u)$ are the Gegenbauer polynomials with parameter n/2 - 1:

$$\begin{cases} P_k^n \in \mathbb{R}[t], \ \deg(P_k^n) = k, \ P_k^n(1) = 1\\ \int_{-1}^1 P_k^n(t) P_l^n(t) (1 - t^2)^{(n-3)/2} dt = 0, \quad k \neq l. \end{cases}$$

- ► The measure $\mathbf{1}_{[-1,1]}(1-t^2)^{(n-3)/2} dt$ is the measure induced by the Lebegue measure of S^{n-1} on inner products.
- $F \succeq 0$ and $O_n(\mathbb{R})$ -invariant iff

$$F(x,y) = \sum_{k\geq 0} f_k P_k^n(x \cdot y) \text{ with } f_k \geq 0.$$

and the sum converges uniformly (Schöenberg 1942).

Spherical codes

• We obtain the linear program, where $s := \cos \theta_{\min}$:

$$artheta_1 = \inf \left\{ 1 + \sum_{k \ge 0} f_k : \quad f_k \ge 0 \ \sum_{k \ge 0} f_k P_k^n(u) \le -1 \quad -1 \le u \le s
ight\}$$

We recover Delsarte LP bound. Moreover ϑ_1 is the limit of a decreasing sequence of finite dimensional SDP.

A. Odlysko, NJA. Sloane (1978): computed upper bounds for the kissing number problem corresponding to θ_{min} = π/3.
 Cases where the LP bound is optimal: n = 8, 24.
 G. Kabatiansky, V. Levenshtein (1978): asymptotic upper bound.

Sets avoiding one angle

• Case $\Omega = \{\theta\}$. (B., G. Nebe, F. de Oliveira Filho, F. Vallentin 2009).

$$artheta_2 = \sup \left\{ f_0 : f_k \ge 0 ext{ for all } k \ge 0 \ \sum_{\substack{k\ge 0 \ k\ge 0}} f_k = 1 \ \sum_{\substack{k\ge 0}} f_k P_k^n(s) = 0
ight\}$$

• Let m(s) be the minimum of $P_k^n(s)$ for k = 0, 1, 2, ... Then

$$\vartheta_2 = \frac{m(s)}{m(s)-1}.$$

Chromatic numbers

Let Γ = (V, E) be a finite graph. The chromatic number χ(Γ) of Γ is the smallest number of colors needed to color V s.t. connected vertices receive different colors.

The color classes are independent sets of Γ that partition V. Hence

$$\chi(\Gamma) \ge \frac{|V|}{\alpha(\Gamma)} \ge \frac{|V|}{\vartheta(\Gamma)}.$$

• Similarly, for $\Gamma = \Gamma(n, s)$ the graph with $V = S^{n-1}$ and $E = \{(x, y) : x \cdot y = s\}$, $(\chi_m:$ measurable color classes)

$$\chi_m(\Gamma(n,\mathbf{s})) \geq \frac{1}{\vartheta_2} = \frac{m(\mathbf{s})-1}{m(\mathbf{s})}.$$

Chromatic numbers

- ► The chromatic number of Euclidean space \(\(\mathcal{R}^n\)\): points at distance 1 receive different colors.
- $\chi(\mathbb{R}) = 2$, $4 \le \chi(\mathbb{R}^2) \le 7$:

► We have $\chi_m(\mathbb{R}^n) \ge \chi_m(\Gamma(n, s))$ for all *s*. Taking the limit when $s \to 1$,

$$\chi_m(\mathbb{R}^n) \geq 1 + rac{(j_{lpha+1})^{lpha}}{2^{lpha} \Gamma(lpha+1) |J_{lpha}(j_{lpha+1})|} pprox_{+\infty} \ (1.165)^n$$

where $\alpha = (n-3)/2$, J_{α} denotes the Bessel function of the first kind and j_{α} denotes its first positive zero.

Some results

- Chromatic numbers: the inequality *χ_m*(ℝⁿ) ≥ *χ_m*(Γ(*n*, *s*)) gave improvements on the known lower bounds for *n* ≥ 10.
- ► F. Vallentin, F.M. de Oliveira Filho: better lower bounds obtained from a linear program involving functions of ℝⁿ (instead of Sⁿ⁻¹).
- Kissing numbers: with triple constraints, SDP improvements of upper bounds (B., F. Vallentin 2008; F. Vallentin, H. Mittelmann 2009).