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Semidefinite programs

A semidefinite program (SDP) in standard form:
max {(C,X) : X = 0,(A1,X) =by1,..., (Am, X) = bm},

where X, C, A; are real symmetric matrices and b; € R.

X = 0 stands for: X is positive semidefinite, meaning that X is a
real symmetric matrix with non negative eigenvalues.
(C,X) = trace(CX) is the standard inner product.

A matrix X satisfying the above conditions is called a feasible
solution; (C, X) is the objective function. Its maximum over the
feasible region is called the optimal value of the program.



Semidefinite programs

The set of positive semidefinite matrices is a closed convex cone
which is self dual which means that:

A= OiffforallB >0, (A,B) > 0.
To the initial sdp (primal program) is associated a dual program:
min {{(b,X) : —=C 4+ X1A1 + - - - + XmAm = 0},

where x = (X1,...,Xm) € R™.

Weak duality holds: the primal optimal value is upper bounded
by the dual optimal value.



Semidefinite programs

» Proof of weak duality: let X be primal feasible and x dual
feasible.

(C,X) ={(C — (Xx1A1 4+ - - + XmAm), X) + (X1A1 + - - - + XmAm, X)

<0 =X1C1+-*+XmCm
<Xibg + - + Xmbm = (b, x).

» Strong duality, i.e. equality of the primal and dual optimal values
hold under mild conditions i.e. Slatter condition: there exists a
primal strictly feasible.
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Invariant semidefinite programs

We shall consider complex semidefinite programs where X, A;, C
are complex hermitian matrices, i.e. X € C"™*" and X = X*.

Let G C Uy(C) be a finite group. It acts on positive semidefinite
hermitian matrices by: g.X = gXg*.
The SDP is said to be G-invariant if:
» X is feasible iff gX is feasible
» (X,C)=(g.X,C) (e.g.g.C =Cforallg € G)
A G-invariant SDP has an optimal solution which is itself

invariant by G:
1
X'==>"gX
Gl =%



Invariant semidefinite programs

Theorem
If the SDP

max {(C,X) : X = 0, (A1,X) = by, ..., (Am,X) = by}

is invariant by G, then it has the same optimal value as:

max {(C’,X) : X € (C™M)°,X = 0,(A},X) =by,...,
where

(C™M® ={X e C™":g.X =X}
and

1
A = Gl Zg.Ai.

geG

(A, X) = bm},



Matrix x-algebras

» A matrix x-algebra A is a linear subspace of C"*" which is closed
under multiplication and under taking the conjugate transpose.

» A= (C"™")C is a matrix x-algebra.
» Structure of matrix x-algebras:

Theorem

There exists my, ..., mq integers and an isomorphism ¢ of matrix
x-algebras such that:

d
p:r A= @(kaxmk.

k=1

Moreover ¢ preserves inner products and the property of being
positive semidefinite.



Reducing invariant semidefinite programs

» Let o(X) = (X1,...,%Xq), ¢(C') = (C4,...,Cq),
©(A]) = (Ai1, ..., Aid). The symmetrized SDP transforms to:

» The sizes of the matrix variables have changed from n to my.

» Need of an explicit isomorphism ¢ to compute
¢(C') = (Cyq,...,Cq), p(A)) = (Air, - - -, Aid)-



Example: Lovasz theta number of a graph

» Let = (V,E) afinite graph, |V| = n. An independent set S is a
subset of V such that S2NE = ().

3y

» The independence number of I';

a(l)= max |S]
S independent

» Hard to compute. Lovasz theta number provides an easy to
compute approximation in the form of the optimal value of an
SDP.



Example: Lovasz theta number of a graph

» 1978, L. Lovasz, On the Shannon capacity of a graph.

W) = max{(Jn,X> X = (Xij)lgi,jgna X=0
(In,X) =1,

» He proves the Sandwich Theorem:
Theorem
() < 9(r) < x(T)
Proof of «(I") < ¢(IN): if S is an independent set, then B:

Bjj = % 1s(i) 1s(j)

is feasible. Moreover }; ; Bj = S|, thus |S| < J(T).



Graphs with symmetries

» Assume G = Aut(l") is the group of permutations o € S, that
sends edges to edges.

» Then G acts on X € C"*" by permutations:
o X = P(O’)XP(O’)* = (Xo-fl(i)o-fl(j))id'

and leaves ¥ invariant. Thus ¥ can be replaced by its
symmetrization under G.

> Xij = (X, Ejj). The matrix Ej is the characteristic function of the
orbit under G of the pair (i,j). When (i,j) € [n]? they form a basis
of (C"™™)©. We need to compute the image of this basis by the
isomorphism ¢.



An easy example: circular graphs

» Letp, qintegers, p > 2q. Let K, ,, the graph with vertex V = [p]
and edge setE = {(i,j):q <|i—j| <p—q}.
» Examples: Kg/1 = K, Kg/2 = Co, Kg/3, Kg/s = Ce.

» The dihedral group D, of order 2p acts on K, /4.



An easy example: circular graphs

» With the discrete Fourier transform, we have X € (CP*P)Pr iff
lp/2]

2
Xij = Z Xk cos(— (i —J)).

» The map X > (Xo, ..., X|p/2)) is the wanted isomorphism
@ : (CPXP)C — C1FLp/2]

» The sdp ¢ becomes the linear program:
lp/2]

I(Kprq) = max{pxo: X >0, Y x=1,

> X COS(%) =0, a<j<|p/2]}



Group representations

Let G be a compact group. Examples: G = On(R), U,(C), a finite
group.

G is endowed with its Haar measure \: a positive measure on G
which is left and right invariant (A\(gA) = A(Ag) = A\(A)).

A finite dimensional representation of G is a finite dimensional
complex vector space V on which G acts linearly and
continuously.

Such a representation is always a unitary representation: indeed,
starting from an arbitrary inner product (u,v) on V one can
construct a G-invariant inner product:

vy = / (gu, gv)dA(g).



Group representations

» V is said to be irreducible if it contains no non trivial subspace W
such that gW = W for all g € G (i.e. no G-subspace).

» If W is a G-subspace then W is also a G-subspace, where
orthogonality is with respect to a G-invariant inner product. Thus
the space V splits into the direct sum of irreducibles (Maschke
theorem).

» The G-homomorphisms are the homomorphisms of linear
spaces that commute with the action of G, i.e. the T : V1 — V;
such that T(gv) = gT (v). If V1 =V, =V they form the algebra
End®(V) which is a C*-algebra.



Group representations

From Maschke theorem, V has an irreducible decomposition
V=W, LW; L LW,y

Grouping the components which are pairwise G-isomorphic
defines the isotypic subspaces of V.

We fix a set R = {Rg, k > 0} of representatives of the
isomorphism classes of irreducible representations of G.

For k > 0, let MZy denote the isotopic subspace of V related to
Rk, i.e. the sum of the G-subspaces of V which are isomorphic to
Ryx. Then MZy ~ RL”“ and my is called the multiplicity of Ry in V.



Group representations

» Schur lemma : if V is irreducible, then
End®(V) = {\ld, A\e C} ~C.

Proof: if T € End®(V), then T has an eigenvalue .
W := ker(T — Al) is a non zero G-subspace of V thus W = V.

» In general, if
V :J—kelv MIk, MIy >~ RlTk, ly = {k Mg 75 0}

then
End®(V) ~ P C™x™,

kely



Group representations

» Let M be a compact set, on which G acts continuously. We
assume M is given a G-invariant positive measure . Examples:
G=0n([R)and M =S""1; G = Aut(l) and M = V.

» The space C(M) of complex valued continuous functions on M is
a unitary representation of G, for the action:

(9-H)(x) :=f(g7*x)
and the inner product:
Lt
(M)

» C(M) is infinite dimensional (but we shall consider only finite
dimensional G-subspaces V C C(M)).

(f1.h) = / ()R X)d u(x).



Group representations

» An explicit isomorphism End® (V) ~ @C™*Mx: |et
k
MIk = @Hk,iv Hk,i ~ Rk.

> Let (ex,i1,-.-,€k,igq ) anorthonormal basis of H ;, where
dyx = dim(Ry), such that the complex numbers (gey ; s, €x,i 1) do
not depend oni.

» We define my x my matrices Ex(x,y) by:

Ekljxy Zekls ek]s )



Group representations

» Ex(X,y) is G-invariant:

Ex(9x,0y) = Ex(X,y).

» A change in the decomposition of MZy or in the choice of basis
of Hy; changes Ex(X,y) to AE(X,y)A* for some A € Gl (C).

» To (F1,...,F),|) € ®kel, C™*™ we associate

F(X’y) = Z<FK7EK(Xay)>

kely

which in turn defines the element T € End®(V):

(Te M) = [ Foy)(y)da(y).

M



Example: the binary Hamming space

Let Hy := {0, 1}", with the Hamming distance dn (X, y):

da(x,y):=|{i,1<i<n:x £V}

The group G := S, S, acts on H,, and leaves dy invariant.

Moreover, G acts two-point homogeneously on H,, meaning that
the orbits of G on pairs (x,y) € H2 are characterized by the
value of dy(x,y).

Decomposition of CH as a G-module: let x;(x) := (—1)*Z
denote the characters of ({0,1}", +).

c* = P cx.

zcH,

n
:@Pk, Pk := @ Cxz
k=0

wt(z)=k



The binary Hamming space

» The subspaces Py are invariant under G, irreducible and
pairwise non isomorphic. They must be because remember

n+ 1 = dim((C**")®) = dim(End®(C™)) = " mZ.

» The multiplicities my are equal to 1.

Ex(x,y) = Z xz(X)xz(y) = Z (—1)x-v)z

wt(z)=k wt(z)=k

S () v

i
= KJ(t) Krawtchouk polynomials.



The binary Hamming space

» A binary code with minimal distance d is a subset C of H, such
that

du(C) := min{du(x,y) : X #y,(x,y) € C?} =d.

» In view of applications to error correction, combinatorial coding
theory asks for

A(n,d) :=max{|C|: C C Hn,du(C) > d}.

» A(n,d) is the independence number of the graph I'(n,d) with
vertex set V = H, and edge set

E={(x,y) eH?:1<dy(x,y)<d-1}.



An upper bound for A(n,d)

We have

A(n,d) <9'(F(n,d)) = (¢(T(n,d)))®
where in ¥ we add the constraint: X; > 0.
We have seen: F € (CHxHn)G jff

n
FOGY) =D fKQ(du(x,y))
k=0
and: F = 0ifffg >0forall0 <k <n.

Thus the SDP defining (¢/(F(n,d)))® becomes a linear program
in the n + 1 variables f, with at most n + 1 inequalities. In coding
theory it is known under the name of Delsarte linear
programming bound and prior to Lovasz (Delsarte, 1973).



Review on Part |

» Semidefinite programs having symmetries can be reduced to
smaller size, through an isomorphism

(Cn><n - @kaxmk

» An example: Lovasz theta number of a graph I with
automorphism group G.

» Applications to the binary Hamming space H,. Here

H(CT)C @«:

F(fo,. o), FOGY) =) fiK(d(x,y))
k=0
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» Stronger SDP upper bounds for A(n, d)
» Other spaces in coding theory
» Extremal problems on the sphere



Stronger upper bounds for A(n,d)

Idea: exploit constraints on k-subsets of binary words.

A. Schrijver, 2005, New code upper bounds from the Terwilliger
algebra and semidefinite programming. Uses triples.

D.C. Gijswijt, H.D. Mittelmann, A. Schrijver, Semidefinite code
bounds based on quadruple distances. They give a general
framework for k-tuples.

Let Pk the set of subsets of H,, of size at most k. Symmetric
matrices X indexed by H, can be viewed as functions:

X :Pr— C
We want to introduce functions:

X:Px—C



Stronger upper bounds for A(n, d)

» Let X : Py —» Candlet T € Px. Let M1 (X) be indexed by:
It :={S € Pyrps2: T C S}
and defined by:
(Mr (X)) grer, = X(SUS).

» Let the semidefinite program:

k(nd) :=max{ > X({v}): X(®) =1
v X(S)=0 du(S)<d-—1

Mr(X) =0 T ePy}



Stronger upper bounds for A(n,d)

» Then we have
A(nad) < ﬁk(nad)'

Proof: if C is a binary code with minimal distance d, then X
defined by

X(8) = [T 1c(:) =

XES

1ifSccC
0 otherwise

is a feasible solution, and 3, ., X({v}) =[C|.
» For k = 2 we recover Lovasz ¢'(I'(n,d)).



Stronger upper bounds for A(n,d)

» The group G = Aut(H,) acts on Py and leaves vy (n, d) invariant,
thus one can restrict to X being G-invariant:

X(gS) =X(S) forallgeG, S e Px.

» The number of orbits of G on Py is of the order of n?"'-1 Thus
the resulting program has polynomial size (for fixed k).

» Then,
M (X) c ((CIT Xl )Stab(T ,G).



Stronger upper bounds for A(n,d)

» The case k = 3: we can assume T = {0"}. Then,
Stab(T,G) = Sp. We need to understand

(CHh XHn )Sn.

» The orbit of (X,y) € H, x H, under S, is given by the triple:
(Wt(X)7 Wt(y)> du (X ) Y))

» A. Schrijver, 2005: block diagonalization of (CHn>Hn)Sn,

» F. Vallentin, 2007: using the framework of group representations

and work of Dunkl, gives an expression of the Ey (x, y) with Hahn
polynomials.
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Stronger upper bounds for A(n,d)

In the case k = 4, there are two cases:
> |-|-| — 2’ (CanHn)SWxSn,w
> T =0 (CHﬁanz)G

T = 2: easy.

((CHnXHn)Sw X Sh—w — (CHWXHW)SW ® (CHn—wXHn—w )Sn—w.
T = (): not so easy. Amounts to have an alphabet of size 4.
2,42 Sh
((CanHn )G _ (((64x4)32)®n) _ Sym”(((CAXA)SZ),

D.C. Gijswijt (2010): a general method to decompose Sym"(A)
from a decomposition of A.



v

The results for A(n, d)

(GMS 2010) The computation of ¥ (n,d) for k = 3,4 has lead to
improved upper bounds of A(n, d) for values of n in the range
18 < n < 28. In particular, A(20, 8) = 256 is proved.

Using Delsarte LP method, very good upper bounds in the form
of explicit functions of the parameters (n,d) where given from
explicit dual feasible solution (MRRW (1978); Levenshtein).

Using Delsarte LP method, the best known asymptotic bound for
the rate

% log(A(n,d)

was obtained (MRRW (1978)).
Open question: is it possible to improve it with ¥ (n,d) ?



Comments

The SDP program defining ¥k (n, d) can be viewed as a SDP
relaxation of the independence number of a hypergraph.

It has further applications to extremal problems in coding theory
relative to constraints on k points.

It can also be understood in terms of hierachies of SDP for 0/1
programs (Lovasz-Schrijver, Lasserre).



Other spaces

Let (M, dy) be a metric space. We introduce
AM,d) :=max{|C|:C c M,dw(C) >d}.

Many metric spaces are of interest in coding theory, due to the
growing number of applications.

It is a general fact that these spaces are usually huge spaces,
affording huge groups of symmetries.

One can follow the same line as for the Hamming space: A(M, d)
is the independence number of a graph '(M, d) thus is upper
bounded by ¥'(I'(M,d)) on which the group G = Aut(M, dy ) acts.



Examples

Space Group Polynomial

Hamming space q" Sq1Sh Krawtchouk

Johnson space Sh Hahn

g-Johnson space Gl (Fq) g-Hahn

A", Ais H-sym H!Sp multivariate Krawtchouk
Projective space Gl (Fq) matrix g-Hahn
Permutations Sh X Sp characters

Sphere S"1 On(R) Gegenbauer

Projective spaces On(R

), Un(C) Jacobi
Grassmann spaces Og(R), U,(C) multivariate Jacobi
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The sphere

Euclidean space R", inner product x -y = Zi”:l XiVi-
S"hi={x=(X1,..., %) ER" 1 x -x = 1}.

The orthogonal group On(RR) acts homogeneously on S"1.
The angular distance dy(X,y) is On(R)-invariant:

do(x,y) = arccos(x -y)

Moreover, On(R) acts two-point homogeneously on S"—1.



Spherical codes

» For a spherical code C c S"1, let
ds(C) == min{dy(x.y) : (x.y) € C2.x #Yy}.
» Problem: to determine
A(S"Y Omin) := max{|C| : C € S"*,dy(C) > Ormin}.

» Case Omin = m/3: A(S""1, 7/3) = 7, is the kissing number of
dimension n, the maximal number of spheres that can touch
simultaneously a central sphere, without overlapping, all spheres
having same radius.



Kissing number in dimensions 2 and 3

» Dimension 2: 7, = 6, unique configuration.

@

» Dimension 3: Regular icosahedron, 12 points. The minimal angle

is ~ 63.4°.

N
I

&0



History

» 1694: Isaac Newton and David Gregory:

™ =137 s

» 1953: Schitte and Van der Waerden prove 73 = 12.
» 1956: other proof by Leech.

The known values of m,:

» 1979: 73 = 240 (Eg) and 4 = 196560 (min. vectors of the Leech
lattice) Levenshtein; indep. Odlysko et Sloane

» 2003: 74 = 24 (D4), Oleg Musin
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Extremal problems on sphere

C c S"tavoids Q ¢ (S"1)?if, for all (x,y) € C?, (x,y) ¢ Q.
Let A a measure on S"1, let

A(S"1,Q,)) = sup {\(C) : C c S"~* measurable, C avoids Q}.

Q= {(x,y) : do(x,y) €]0, Omin[} and X is the counting measure
denoted fic.
Q-avoiding sets are spherical codes with minimal distance 0p,in.

Q= {(x,y) :do(x,y) = 0} for some value 6 # 0, and A = p.



Extremal problems on sphere

» Computing A(S"~1,Q, \) is difficult.

» We aim at a SDP relaxation, of “theta type”.

» Problem: the analog on S"~* of the cone of psd matrices.
Definition
We say that F € C((S"~1)?) is positive definite, denoted F = 0, if
F(x,y) = F(y,x) and, for all k, for all (xy,...,xk) € (S"~1)k,

(F(Xi’xj))lgi,jgk - 0.



Primal and dual theta numbers

» Recall the theta (prime) number of the graph I' = (V,E), V = [n]:

(M) =max {(X,Jp): X =0, X >0,
(X,ln) =1, X; =0 forall (i,j) € E}.

» The dual expression:

PN =min{t:X =0, X;<t-—1,
Xj < —1forall (i,j) ¢ E}.



Theta numbers for the sphere

» Replace C"™" with C(S"~1 x S"~1).
> Let Q° ={(x,y): (x,y) ¢ Qandx #y}

U2(S"1,Q)=sup{ (F,1): F =0, F >0,
(F,1a) =1,
F(x,y)=0forall (x,y) € Q }.

91(S" L Q) =inf{t:F =0, F(x,x)<t-1,
F(x,y) < —1forall (x,y) € Q° },



Theta numbers for the sphere

These cone linear programs are not pairwise dual because the
topological dual of C(S"~1) is the space M (S"~1) of Borel
regular measures on S"~1.

The appropriate version depends on the nature of Q:

Q =]0,0min[ AS"1,Q,)) <¥1(S"1,Q)
Q={0} AS"1,Q,)) <d(S"1Q)

These programs are invariant under O,(RR). Thus we can
assume F € C((S"1)?)n(®),



Harmonic analysis on S"—1

» Harmonic polynomials:
Harmy := {P € R[Xy, .., Xn],P hom. ,deg(P) = k, AP = 0}
where A is the Laplace operator:

n 82

Harmy, is an irreducible representation of O, (R).
» Let H the functions on S"~* obtained from Harmg. Then

C(S"1) = BrzoHy



Harmonic analysis on S"—1

» m =1and Ex(x,y) = P/(x - y) where P?(u) are the
Gegenbauer polynomials with parameter n/2 — 1:
Pe € R[t], deg(Py) =k, Pg(1) =1

1

/ PP (1) (1 —t2)"=3/2dt =0, k #I.
1

» The measure 1|_; 31(1 — t2)("=%)/2dt is the measure induced by
the Lebegue measure of S"~* on inner products.

» F = 0 and Op(R)-invariant iff

F(x,y) =Y fiPR(x -y) with fi > 0.

k>0

and the sum converges uniformly (Schéenberg 1942).



Spherical codes

» We obtain the linear program, where s := c0S Oyjn:

91 =inf{1+) fi: K >0
k>0
> fKPRu)<-1 —1<u<s}
k>0

We recover Delsarte LP bound. Moreover 1, is the limit of a
decreasing sequence of finite dimensional SDP.

» A. Odlysko, NJA. Sloane (1978): computed upper bounds for the
kissing number problem corresponding to Omin = 7/3.
Cases where the LP bound is optimal: n = 8, 24.
G. Kabatiansky, V. Levenshtein (1978): asymptotic upper bound.



Sets avoiding one angle

» Case Q = {0}. (B, G. Nebe, F. de Oliveira Filho, F. Vallentin
2009).
¥, =sup{fo : fi >0forallk >0

d f=1

k>0

> fkPi(s) =0}
k>0

» Let m(s) be the minimum of P/(s) fork =0,1,2,.... Then

. m(s
0y = m



Chromatic numbers

» Let = (V,E) be afinite graph. The chromatic number x(I') of I
is the smallest number of colors needed to color V s.t.
connected vertices receive different colors.

vy

» The color classes are independent sets of I' that partition V.

Hence V|
x() > ()

V|
()

%

» Similarly, for I = I'(n, s) the graph with V = S"~* and
E ={(x,y):x -y = s}, (xm: measurable color classes)



Chromatic numbers

» The chromatic number of Euclidean space x(R"): points at
distance 1 receive different colors.

» x(R) =2, 4<x(R})<LT:

» We have xn(R") > xm(I'(n,s)) for all s. Taking the limit when
s—1,

xm(R") > 1+ gy Ao (1.165)"

where a = (n — 3)/2, J,, denotes the Bessel function of the first
kind and j, denotes its first positive zero.



Some results

» Chromatic numbers: the inequality ym(R") > xm(I'(n,s)) gave
improvements on the known lower bounds for n > 10.

» F. Vallentin, F.M. de Oliveira Filho: better lower bounds obtained
from a linear program involving functions of R" (instead of S"~1).

» Kissing numbers: with triple constraints, SDP improvements of
upper bounds (B., F. Vallentin 2008; F. Vallentin, H. Mittelmann
2009).



