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Outline of Part I

Invariant semidefinite programs,
B., Dion C. Gijswijt (CWI Amsterdam), Alexander Schrijver (CWI
Amsterdam) and Frank Vallentin (TU Delft), arxiv:1007.2905

◮ Invariant semidefinite programs
◮ C*-algebras
◮ Representation theory of compact groups
◮ Applications to coding theory



Semidefinite programs

◮ A semidefinite program (SDP) in standard form:

max
{
〈C,X〉 : X � 0, 〈A1,X〉 = b1, . . . , 〈Am,X〉 = bm

}
,

where X , C, Ai are real symmetric matrices and bi ∈ R.
◮ X � 0 stands for: X is positive semidefinite, meaning that X is a

real symmetric matrix with non negative eigenvalues.
◮ 〈C,X〉 = trace(CX) is the standard inner product.
◮ A matrix X satisfying the above conditions is called a feasible

solution; 〈C,X〉 is the objective function. Its maximum over the
feasible region is called the optimal value of the program.



Semidefinite programs

◮ The set of positive semidefinite matrices is a closed convex cone
which is self dual which means that:

A � 0 iff for all B � 0, 〈A,B〉 ≥ 0.

◮ To the initial sdp (primal program) is associated a dual program:

min
{
〈b, x〉 : −C + x1A1 + · · ·+ xmAm � 0

}
,

where x = (x1, . . . , xm) ∈ R
m.

◮ Weak duality holds: the primal optimal value is upper bounded
by the dual optimal value.



Semidefinite programs

◮ Proof of weak duality: let X be primal feasible and x dual
feasible.

〈C,X〉 = 〈C − (x1A1 + · · ·+ xmAm),X〉+ 〈x1A1 + · · ·+ xmAm,X〉

= −〈−C + x1A1 + · · ·+ xmAm,X〉
︸ ︷︷ ︸

≤0

+ x1〈A1,C〉+ · · ·+ xm〈Am,X〉
︸ ︷︷ ︸

=x1c1+···+xmcm

≤ x1b1 + · · ·+ xmbm = 〈b, x〉.

◮ Strong duality, i.e. equality of the primal and dual optimal values
hold under mild conditions i.e. Slatter condition: there exists a
primal strictly feasible.



Invariant semidefinite programs

◮ We shall consider complex semidefinite programs where X , Ai , C
are complex hermitian matrices, i.e. X ∈ Cn×n and X = X∗.

◮ Let G ⊂ Un(C) be a finite group. It acts on positive semidefinite
hermitian matrices by: g.X = gXg∗.

◮ The SDP is said to be G-invariant if:
◮ X is feasible iff gX is feasible
◮ 〈X ,C〉 = 〈g.X ,C〉 (e.g. g.C = C for all g ∈ G)

◮ A G-invariant SDP has an optimal solution which is itself
invariant by G:

X ′ :=
1
|G|

∑

g∈G

g.X



Invariant semidefinite programs

Theorem
If the SDP

max
{
〈C,X〉 : X � 0, 〈A1,X〉 = b1, . . . , 〈Am,X〉 = bm

}

is invariant by G, then it has the same optimal value as:

max
{
〈C′,X〉 : X ∈ (Cn×n)G,X � 0, 〈A′

1,X〉 = b1, . . . , 〈A′
m,X〉 = bm

}
,

where
(Cn×n)G = {X ∈ C

n×n : g.X = X}

and

A′
i :=

1
|G|

∑

g∈G

g.Ai .



Matrix ∗-algebras

◮ A matrix ∗-algebra A is a linear subspace of Cn×n which is closed
under multiplication and under taking the conjugate transpose.

◮ A = (Cn×n)G is a matrix ∗-algebra.
◮ Structure of matrix ∗-algebras:

Theorem
There exists m1, . . . ,md integers and an isomorphism ϕ of matrix
∗-algebras such that:

ϕ : A →
d⊕

k=1

C
mk×mk .

Moreover ϕ preserves inner products and the property of being
positive semidefinite.



Reducing invariant semidefinite programs

◮ Let ϕ(X) = (X1, . . . ,Xd ), ϕ(C′) = (C1, . . . ,Cd),
ϕ(A′

i ) = (Ai1, . . . ,Aid ). The symmetrized SDP transforms to:

max
{ d∑

k=1

〈Ck ,Xk 〉 : Xk � 0, k = 1, . . . , d

d∑

k=1

〈Aik ,Xk 〉 = bi , i = 1, . . . ,m
}

◮ The sizes of the matrix variables have changed from n to mk .
◮ Need of an explicit isomorphism ϕ to compute

ϕ(C′) = (C1, . . . ,Cd ), ϕ(A′
i ) = (Ai1, . . . ,Aid ).



Example: Lovász theta number of a graph

◮ Let Γ = (V ,E) a finite graph, |V | = n. An independent set S is a
subset of V such that S2 ∩ E = ∅.

◮ The independence number of Γ:

α(Γ) = max
S independent

|S|

◮ Hard to compute. Lovász theta number provides an easy to
compute approximation in the form of the optimal value of an
SDP.



Example: Lovász theta number of a graph

◮ 1978, L. Lovász, On the Shannon capacity of a graph.

ϑ(Γ) = max
{
〈Jn,X〉 : X = (Xij)1≤i,j≤n, X � 0

〈In,X〉 = 1,
Xij = 0 (i, j) ∈ E

}

◮ He proves the Sandwich Theorem:

Theorem

α(Γ) ≤ ϑ(Γ) ≤ χ(Γ)

Proof of α(Γ) ≤ ϑ(Γ): if S is an independent set, then B:

Bij =
1
|S|

1S(i)1S(j)

is feasible. Moreover
∑

i,j Bij = |S|, thus |S| ≤ ϑ(Γ).



Graphs with symmetries

◮ Assume G = Aut(Γ) is the group of permutations σ ∈ Sn that
sends edges to edges.

◮ Then G acts on X ∈ C
n×n by permutations:

σ.X = P(σ)XP(σ)∗ = (Xσ−1(i)σ−1(j))i,j

and leaves ϑ invariant. Thus ϑ can be replaced by its
symmetrization under G.

◮ Xij = 〈X ,Eij 〉. The matrix E ′
ij is the characteristic function of the

orbit under G of the pair (i, j). When (i, j) ∈ [n]2 they form a basis
of (Cn×n)G. We need to compute the image of this basis by the
isomorphism ϕ.



An easy example: circular graphs

◮ Let p, q integers, p ≥ 2q. Let Kp/q the graph with vertex V = [p]
and edge set E = {(i, j) : q ≤ |i − j| ≤ p − q}.

◮ Examples: K9/1 = K9, K9/2 = C9, K9/3, K9/4 = C9.

◮ The dihedral group Dp of order 2p acts on Kp/q .



An easy example: circular graphs

◮ With the discrete Fourier transform, we have X ∈ (Cp×p)Dp iff

Xij =

⌊p/2⌋
∑

k=0

xk cos(
2kπ

p
(i − j)).

◮ The map X 7→ (x0, . . . , x⌊p/2⌋) is the wanted isomorphism

ϕ : (Cp×p)G → C
1+⌊p/2⌋

◮ The sdp ϑ becomes the linear program:

ϑ(Kp/q) = max
{

px0 : xk ≥ 0,
⌊p/2⌋
∑

k=0

xk = 1,

⌊p/2⌋
∑

k=0

xk cos(
2jkπ

p
) = 0, q ≤ j ≤ ⌊p/2⌋

}



Group representations

◮ Let G be a compact group. Examples: G = On(R), Un(C), a finite
group.

◮ G is endowed with its Haar measure λ: a positive measure on G
which is left and right invariant (λ(gA) = λ(Ag) = λ(A)).

◮ A finite dimensional representation of G is a finite dimensional
complex vector space V on which G acts linearly and
continuously.

◮ Such a representation is always a unitary representation: indeed,
starting from an arbitrary inner product 〈u, v〉 on V one can
construct a G-invariant inner product:

〈u, v〉′ =
∫

G
〈gu, gv〉dλ(g).



Group representations

◮ V is said to be irreducible if it contains no non trivial subspace W
such that gW = W for all g ∈ G (i.e. no G-subspace).

◮ If W is a G-subspace then W⊥ is also a G-subspace, where
orthogonality is with respect to a G-invariant inner product. Thus
the space V splits into the direct sum of irreducibles (Maschke
theorem).

◮ The G-homomorphisms are the homomorphisms of linear
spaces that commute with the action of G, i.e. the T : V1 → V2

such that T (gv) = gT (v). If V1 = V2 = V they form the algebra
EndG(V ) which is a C∗-algebra.



Group representations

◮ From Maschke theorem, V has an irreducible decomposition

V = W0 ⊥ W1 ⊥ · · · ⊥ Wd

◮ Grouping the components which are pairwise G-isomorphic
defines the isotypic subspaces of V .

◮ We fix a set R = {Rk , k ≥ 0} of representatives of the
isomorphism classes of irreducible representations of G.

◮ For k ≥ 0, let MIk denote the isotopic subspace of V related to
Rk , i.e. the sum of the G-subspaces of V which are isomorphic to
Rk . Then MIk ≃ Rmk

k and mk is called the multiplicity of Rk in V .



Group representations

◮ Schur lemma : if V is irreducible, then

EndG(V ) = {λ Id, λ ∈ C} ≃ C.

Proof: if T ∈ EndG(V ), then T has an eigenvalue λ.
W := ker(T − λI) is a non zero G-subspace of V thus W = V .

◮ In general, if

V =⊥k∈IV MIk , MIk ≃ Rmk
k , IV := {k : mk 6= 0}.

then
EndG(V ) ≃

⊕

k∈IV

C
mk×mk .



Group representations

◮ Let M be a compact set, on which G acts continuously. We
assume M is given a G-invariant positive measure µ. Examples:
G = On(R) and M = Sn−1; G = Aut(Γ) and M = V .

◮ The space C(M) of complex valued continuous functions on M is
a unitary representation of G, for the action:

(g.f )(x) := f (g−1x)

and the inner product:

〈f1, f2〉 =
1

µ(M)

∫

M
f1(x)f2(x)dµ(x).

◮ C(M) is infinite dimensional (but we shall consider only finite
dimensional G-subspaces V ⊂ C(M)).



Group representations

◮ An explicit isomorphism EndG(V ) ≃ ⊕Cmk×mk : let

MIk =

mk⊕

i=1

Hk ,i , Hk ,i ≃ Rk .

◮ Let (ek ,i,1, . . . , ek ,i,dk ) an orthonormal basis of Hk ,i , where
dk = dim(Rk ), such that the complex numbers 〈gek ,i,s, ek ,i,t〉 do
not depend on i.

◮ We define mk × mk matrices Ek (x , y) by:

Ek ,ij(x , y) :=
dk∑

s=1

ek ,i,s(x)ek ,j,s(y).



Group representations

◮ Ek (x , y) is G-invariant:

Ek (gx , gy) = Ek (x , y).

◮ A change in the decomposition of MIk or in the choice of basis
of Hk ,i changes Ek (x , y) to AEk (x , y)A∗ for some A ∈ Glmk (C).

◮ To (F1, . . . ,F|IV |) ∈ ⊕k∈IV C
mk×mk we associate

F (x , y) =
∑

k∈IV

〈Fk ,Ek (x , y)〉

which in turn defines the element TF ∈ EndG(V ):

(TF (f ))(x) :=
∫

M
F (x , y)f (y)dµ(y).



Example: the binary Hamming space

◮ Let Hn := {0, 1}n, with the Hamming distance dH(x , y):

dH(x , y) := |{i, 1 ≤ i ≤ n : xi 6= yi}|.

◮ The group G := S2 ≀ Sn acts on Hn and leaves dH invariant.
◮ Moreover, G acts two-point homogeneously on Hn, meaning that

the orbits of G on pairs (x , y) ∈ H2
n are characterized by the

value of dH(x , y).
◮ Decomposition of CHn as a G-module: let χz(x) := (−1)x·z

denote the characters of ({0, 1}n,+).

C
Hn =

⊕

z∈Hn

Cχz

=

n⊕

k=0

Pk , Pk :=
⊕

wt(z)=k

Cχz



The binary Hamming space

◮ The subspaces Pk are invariant under G, irreducible and
pairwise non isomorphic. They must be because remember

n + 1 = dim((CHn×Hn)G) = dim(EndG(CHn)) =
∑

m2
k .

◮ The multiplicities mk are equal to 1.

Ek (x , y) =
∑

wt(z)=k

χz(x)χz(y) =
∑

wt(z)=k

(−1)(x−y)·z

=

k∑

j=0

(−1)j
(

t
j

)(
n − t
k − j

)

, t := dH(x , y)

= K n
k (t) Krawtchouk polynomials.



The binary Hamming space

◮ A binary code with minimal distance d is a subset C of Hn such
that

dH(C) := min{dH(x , y) : x 6= y , (x , y) ∈ C2} = d .

◮ In view of applications to error correction, combinatorial coding
theory asks for

A(n, d) := max{|C| : C ⊂ Hn, dH(C) ≥ d}.

◮ A(n, d) is the independence number of the graph Γ(n, d) with
vertex set V = Hn and edge set

E = {(x , y) ∈ H2
n : 1 ≤ dH(x , y) ≤ d − 1}.



An upper bound for A(n, d)

◮ We have
A(n, d) ≤ ϑ′(Γ(n, d)) = (ϑ′(Γ(n, d)))G

where in ϑ′ we add the constraint: Xij ≥ 0.
◮ We have seen: F ∈ (CHn×Hn)G iff

F (x , y) =
n∑

k=0

fk K n
k (dH(x , y))

and: F � 0 iff fk ≥ 0 for all 0 ≤ k ≤ n.
◮ Thus the SDP defining (ϑ′(Γ(n, d)))G becomes a linear program

in the n + 1 variables fk with at most n + 1 inequalities. In coding
theory it is known under the name of Delsarte linear
programming bound and prior to Lovász (Delsarte, 1973).



Review on Part I

◮ Semidefinite programs having symmetries can be reduced to
smaller size, through an isomorphism

ϕ : (Cn×n)G →
d⊕

k=1

C
mk×mk .

◮ An example: Lovász theta number of a graph Γ with
automorphism group G.

◮ Applications to the binary Hamming space Hn. Here

ϕ : (C2n×2n
)G →

n⊕

k=0

C

F 7→ (f0, . . . , fn), F (x , y) =
n∑

k=0

fk K n
k (d(x , y)).



Outline of Part II

◮ Stronger SDP upper bounds for A(n, d)
◮ Other spaces in coding theory
◮ Extremal problems on the sphere



Stronger upper bounds for A(n, d)

◮ Idea: exploit constraints on k -subsets of binary words.
◮ A. Schrijver, 2005, New code upper bounds from the Terwilliger

algebra and semidefinite programming. Uses triples.
◮ D.C. Gijswijt, H.D. Mittelmann, A. Schrijver, Semidefinite code

bounds based on quadruple distances. They give a general
framework for k -tuples.

◮ Let Pk the set of subsets of Hn of size at most k . Symmetric
matrices X indexed by Hn can be viewed as functions:

X : P2 → C

We want to introduce functions:

X : Pk → C



Stronger upper bounds for A(n, d)

◮ Let X : Pk → C and let T ∈ Pk . Let MT (X) be indexed by:

IT := {S ∈ P(k+|T |)/2 : T ⊂ S}

and defined by:
(
MT (X)

)

S,S′∈IT
:= X(S ∪ S′).

◮ Let the semidefinite program:

ϑk (n, d) := max
{ ∑

v∈Hn

X({v}) : X(∅) = 1

X(S) = 0 dH(S) ≤ d − 1

MT (X) � 0 T ∈ Pk
}



Stronger upper bounds for A(n, d)

◮ Then we have
A(n, d) ≤ ϑk (n, d).

Proof: if C is a binary code with minimal distance d , then X
defined by

X(S) =
∏

x∈S

1C(x) =

{

1 if S ⊂ C
0 otherwise

is a feasible solution, and
∑

v∈Hn
X({v}) = |C|.

◮ For k = 2 we recover Lovász ϑ′(Γ(n, d)).



Stronger upper bounds for A(n, d)

◮ The group G = Aut(Hn) acts on Pk and leaves ϑk (n, d) invariant,
thus one can restrict to X being G-invariant:

X(gS) = X(S) for all g ∈ G, S ∈ Pk .

◮ The number of orbits of G on Pk is of the order of n2k−1−1. Thus
the resulting program has polynomial size (for fixed k ).

◮ Then,
MT (X) ∈ (CIT ×IT )Stab(T ,G).



Stronger upper bounds for A(n, d)

◮ The case k = 3: we can assume T = {0n}. Then,
Stab(T ,G) = Sn. We need to understand

(CHn×Hn)Sn .

◮ The orbit of (x , y) ∈ Hn × Hn under Sn is given by the triple:
(wt(x),wt(y), dH (x , y)).

◮ A. Schrijver, 2005: block diagonalization of (CHn×Hn)Sn .
◮ F. Vallentin, 2007: using the framework of group representations

and work of Dunkl, gives an expression of the Ek (x , y) with Hahn
polynomials.



Stronger upper bounds for A(n, d)

◮ In the case k = 4, there are two cases:
◮ |T | = 2, (CHn×Hn)Sw×Sn−w

◮ T = ∅, (CH2
n×H2

n )G

◮ T = 2: easy.

(CHn×Hn)Sw×Sn−w = (CHw×Hw )Sw ⊗ (CHn−w×Hn−w )Sn−w .

◮ T = ∅: not so easy. Amounts to have an alphabet of size 4.

(CH2
n×H2

n )G =
(
((C4×4)S2)⊗n)Sn

= Symn((C4×4)S2),

◮ D.C. Gijswijt (2010): a general method to decompose Symn(A)
from a decomposition of A.



The results for A(n, d)

◮ (GMS 2010) The computation of ϑk (n, d) for k = 3, 4 has lead to
improved upper bounds of A(n, d) for values of n in the range
18 ≤ n ≤ 28. In particular, A(20, 8) = 256 is proved.

◮ Using Delsarte LP method, very good upper bounds in the form
of explicit functions of the parameters (n, d) where given from
explicit dual feasible solution (MRRW (1978); Levenshtein).

◮ Using Delsarte LP method, the best known asymptotic bound for
the rate

1
n

log(A(n, d)

was obtained (MRRW (1978)).
◮ Open question: is it possible to improve it with ϑk (n, d) ?



Comments

◮ The SDP program defining ϑk (n, d) can be viewed as a SDP
relaxation of the independence number of a hypergraph.

◮ It has further applications to extremal problems in coding theory
relative to constraints on k points.

◮ It can also be understood in terms of hierachies of SDP for 0/1
programs (Lovász-Schrijver, Lasserre).



Other spaces

◮ Let (M, dM) be a metric space. We introduce

A(M, d) := max
{
|C| : C ⊂ M, dM(C) ≥ d

}
.

◮ Many metric spaces are of interest in coding theory, due to the
growing number of applications.

◮ It is a general fact that these spaces are usually huge spaces,
affording huge groups of symmetries.

◮ One can follow the same line as for the Hamming space: A(M, d)
is the independence number of a graph Γ(M, d) thus is upper
bounded by ϑ′(Γ(M, d)) on which the group G = Aut(M, dM) acts.



Examples

Space Group Polynomial
Hamming space qn Sq ≀ Sn Krawtchouk
Johnson space Sn Hahn
q-Johnson space Gln(Fq) q-Hahn
An, A is H-sym H ≀ Sn multivariate Krawtchouk
Projective space Gln(Fq) matrix q-Hahn
Permutations Sn × Sn characters

Sphere Sn−1 On(R) Gegenbauer
Projective spaces On(R), Un(C) Jacobi
Grassmann spaces On(R), Un(C) multivariate Jacobi



The sphere

◮ Euclidean space Rn, inner product x · y =
∑n

i=1 xiyi .

Sn−1 := {x = (x1, . . . , xn) ∈ R
n : x · x = 1}.

◮ The orthogonal group On(R) acts homogeneously on Sn−1.
◮ The angular distance dθ(x , y) is On(R)-invariant:

dθ(x , y) = arccos(x · y)

◮ Moreover, On(R) acts two-point homogeneously on Sn−1.



Spherical codes

◮ For a spherical code C ⊂ Sn−1, let

dθ(C) := min{dθ(x , y) : (x , y) ∈ C2, x 6= y}.

◮ Problem: to determine

A(Sn−1, θmin) := max{|C| : C ⊂ Sn−1, dθ(C) ≥ θmin}.

◮ Case θmin = π/3: A(Sn−1, π/3) = τn is the kissing number of
dimension n, the maximal number of spheres that can touch
simultaneously a central sphere, without overlapping, all spheres
having same radius.



Kissing number in dimensions 2 and 3

◮ Dimension 2: τ2 = 6, unique configuration.

◮ Dimension 3: Regular icosahedron, 12 points. The minimal angle
is ≃ 63.4◦.



History

◮ 1694: Isaac Newton and David Gregory:

τ3 = 13 ?

◮ 1953: Schütte and Van der Waerden prove τ3 = 12.
◮ 1956: other proof by Leech.

The known values of τn:

◮ 1979: τ8 = 240 (E8) and τ24 = 196560 (min. vectors of the Leech
lattice) Levenshtein; indep. Odlysko et Sloane

◮ 2003: τ4 = 24 (D4), Oleg Musin



Extremal problems on sphere

◮ C ⊂ Sn−1 avoids Ω ⊂ (Sn−1)2 if, for all (x , y) ∈ C2, (x , y) /∈ Ω.
◮ Let λ a measure on Sn−1, let

A(Sn−1,Ω, λ) = sup
{
λ(C) : C ⊂ Sn−1 measurable, C avoids Ω

}
.

◮ Ω = {(x , y) : dθ(x , y) ∈]0, θmin[} and λ is the counting measure
denoted µc .
Ω-avoiding sets are spherical codes with minimal distance θmin.

◮ Ω = {(x , y) : dθ(x , y) = θ} for some value θ 6= 0, and λ = µ.



Extremal problems on sphere

◮ Computing A(Sn−1,Ω, λ) is difficult.
◮ We aim at a SDP relaxation, of “theta type”.
◮ Problem: the analog on Sn−1 of the cone of psd matrices.

Definition
We say that F ∈ C((Sn−1)2) is positive definite, denoted F � 0, if
F (x , y) = F (y , x) and, for all k , for all (x1, . . . , xk) ∈ (Sn−1)k ,

(
F (xi , xj)

)

1≤i,j≤k
� 0.



Primal and dual theta numbers

◮ Recall the theta (prime) number of the graph Γ = (V ,E), V = [n]:

ϑ′(Γ) = max
{
〈X , Jn〉 : X � 0, X ≥ 0,

〈X , In〉 = 1, Xij = 0 for all (i, j) ∈ E
}
.

◮ The dual expression:

ϑ′(Γ) = min
{

t : X � 0, Xii ≤ t − 1,
Xij ≤ −1 for all (i, j) /∈ E

}
.



Theta numbers for the sphere

◮ Replace Cn×n with C(Sn−1 × Sn−1).
◮ Let Ωc = {(x , y) : (x , y) /∈ Ω and x 6= y}

ϑ2(Sn−1,Ω) = sup
{
〈F , 1〉 : F � 0, F ≥ 0,

〈F , 1∆〉 = 1,
F (x , y) = 0 for all (x , y) ∈ Ω

}
.

ϑ1(Sn−1,Ω) = inf
{

t : F � 0, F (x , x) ≤ t − 1,
F (x , y) ≤ −1 for all (x , y) ∈ Ωc

}
,



Theta numbers for the sphere

◮ These cone linear programs are not pairwise dual because the
topological dual of C(Sn−1) is the space M(Sn−1) of Borel
regular measures on Sn−1.

◮ The appropriate version depends on the nature of Ω:

Ω =]0, θmin[ A(Sn−1,Ω, λ) ≤ ϑ1(Sn−1,Ω)

Ω = {θ} A(Sn−1,Ω, λ) ≤ ϑ2(Sn−1,Ω)

◮ These programs are invariant under On(R). Thus we can
assume F ∈ C((Sn−1)2)On(R).



Harmonic analysis on Sn−1

◮ Harmonic polynomials:

Harmn
k := {P ∈ R[x1, .., xn],P hom. , deg(P) = k ,∆P = 0}

where ∆ is the Laplace operator:

∆ =

n∑

k=1

∂2

∂x2
k

.

Harmn
k is an irreducible representation of On(R).

◮ Let Hn
k the functions on Sn−1 obtained from Harmn

k . Then

C(Sn−1) = ⊕k≥0Hn
k



Harmonic analysis on Sn−1

◮ mk = 1 and Ek (x , y) = Pn
k (x · y) where Pn

k (u) are the
Gegenbauer polynomials with parameter n/2 − 1:







Pn
k ∈ R[t], deg(Pn

k ) = k , Pn
k (1) = 1

∫ 1

−1
Pn

k (t)P
n
l (t)(1 − t2)(n−3)/2dt = 0, k 6= l.

◮ The measure 1[−1,1](1 − t2)(n−3)/2dt is the measure induced by
the Lebegue measure of Sn−1 on inner products.

◮ F � 0 and On(R)-invariant iff

F (x , y) =
∑

k≥0

fk Pn
k (x · y) with fk ≥ 0.

and the sum converges uniformly (Schöenberg 1942).



Spherical codes

◮ We obtain the linear program, where s := cos θmin:

ϑ1 = inf
{

1 +
∑

k≥0

fk : fk ≥ 0

∑

k≥0

fk Pn
k (u) ≤ −1 − 1 ≤ u ≤ s

}

We recover Delsarte LP bound. Moreover ϑ1 is the limit of a
decreasing sequence of finite dimensional SDP.

◮ A. Odlysko, NJA. Sloane (1978): computed upper bounds for the
kissing number problem corresponding to θmin = π/3.
Cases where the LP bound is optimal: n = 8, 24.
G. Kabatiansky, V. Levenshtein (1978): asymptotic upper bound.



Sets avoiding one angle

◮ Case Ω = {θ}. (B., G. Nebe, F. de Oliveira Filho, F. Vallentin
2009).

ϑ2 = sup
{

f0 : fk ≥ 0 for all k ≥ 0
∑

k≥0

fk = 1

∑

k≥0

fk Pn
k (s) = 0}

◮ Let m(s) be the minimum of Pn
k (s) for k = 0, 1, 2, . . . . Then

ϑ2 =
m(s)

m(s)− 1
.



Chromatic numbers
◮ Let Γ = (V ,E) be a finite graph. The chromatic number χ(Γ) of Γ

is the smallest number of colors needed to color V s.t.
connected vertices receive different colors.

◮ The color classes are independent sets of Γ that partition V .
Hence

χ(Γ) ≥
|V |

α(Γ)
≥

|V |

ϑ(Γ)
.

◮ Similarly, for Γ = Γ(n, s) the graph with V = Sn−1 and
E = {(x , y) : x · y = s}, (χm: measurable color classes)

χm(Γ(n, s)) ≥
1
ϑ2

=
m(s)− 1

m(s)
.



Chromatic numbers

◮ The chromatic number of Euclidean space χ(Rn): points at
distance 1 receive different colors.

◮ χ(R) = 2, 4 ≤ χ(R2) ≤ 7:

◮ We have χm(R
n) ≥ χm(Γ(n, s)) for all s. Taking the limit when

s → 1,

χm(R
n) ≥ 1 + (jα+1)

α

2αΓ(α+1)|Jα(jα+1)|
≈+∞ (1.165)n

where α = (n − 3)/2, Jα denotes the Bessel function of the first
kind and jα denotes its first positive zero.



Some results

◮ Chromatic numbers: the inequality χm(R
n) ≥ χm(Γ(n, s)) gave

improvements on the known lower bounds for n ≥ 10.
◮ F. Vallentin, F.M. de Oliveira Filho: better lower bounds obtained

from a linear program involving functions of Rn (instead of Sn−1).
◮ Kissing numbers: with triple constraints, SDP improvements of

upper bounds (B., F. Vallentin 2008; F. Vallentin, H. Mittelmann
2009).


