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Problem: How do agents
(populations of neurons)

communicate structured information
(low-level visual information) across
regions of space (in the brain)?







1. Population learning structure of signal

2. Transmission & Compression

3. Relearning structure

Random Projections

Sparse Coding

>

Sparse Coding



1. Population learning structure of signal
- large number of neurons

0 (xy) —  (1,XY,Xy,x2,y?)

Question: How to discriminate blue / red in the plane?
Answer: (SVM) Map to high dimensional space, find
separating hyperplanes! (ellipses are linear subspaces)



2. Transmission & Compression

sparse signal:

sum of small Danielyan, et al ‘08
number of causes brojections (MRI) Lustig, et al ‘07



3. Relearning structure
- not knowing compression method

Challenge: Tease out structure after (unknown) compression



Sparse coding of natural images

® Natural images have a structure that is sparse

m

=) @pi+v
i=1

coefficients noise

® Inferring the sparse representation is non-linear

min, -+ AC(a)

reconstruction tradeoff




Learning basis functions

® Goal: learn the optimal set of basis functions such that images
have a sparse representation

Learned basis functions resemble receptive fields of neurons in
primary visual cortex
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(Olshausen & Field, Nature, ‘96)
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Sparsity inducing penalties

The correct measure of sparsity is the 0-norm which is the number
of non-zero coefficients

Ideally we'd like to solve:

S

min, SEESER + Allall

reconstruction

This problem is NP-hard!

However it has been shown that the problem with |-norm is a
good approximation

ming 31z — ®all3 + Allall




Sparsity penalty
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Geometrical intuition

821 |z — ®allz <7

/ dense solution
sparse solution /N




Signal Processing

® Sparse coding ideas are useful when working with signals that
have a sparse structure

e Examples of sparse signals
® Natural images
® Natural sounds
EEG data
geophysical data
hyperspectral data
biosensing (DNA microarrays)

Astronomical data




Compression of sparse signals

® We compress n-dimensional signals that are k-sparse

e Standard approach known as transform coding:

L a
sample encode decode

min, 3|z — @al|Z + Allal|;

® Problems with this approach
e full n samples of the signals are acquired (often k << n)
® need to compute the coefficients

® need to encode the location of the non-zero coefficients




An alternative: compressed sensing

random measurements

Y1 a:T'wl

Ya = :BT’wz

decode

weknow I = (I)a sparse
hence Y = W daq

therefore we solve

ming 3[ly — W®all3 + Allallx
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(Candes, Donoho, Tao, etc..)
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Communication between
Bandwidth-limited Regions
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Adaptive Compressed Sensing (ACS



Receptive Fields

1
F(xa, %) = o |[x — @al[* + S(a)

a(x) := argmin F(x,a, ¥)

=17 P Zx a(x) = Cov(xa(x))

Receptive field of a neuron = What images it responds to



Learned vy and Receptive Fields
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Reconstructions Difficulty: how to verify if structure of
signal passed on to second stage?

Original Sparse Coding

Using
’ Learned

Using
Receptive <
Fields




Thanks!



