Adaptive Compressed Sensing

Chris Hillar

Redwood Center for Theoretical Neuroscience & Mathematical Sciences Research Institute

(preliminary) work with W. Coulter, G. Isely, F. Sommer

Problem: How do agents (populations of neurons) communicate structured information (low-level visual information) across regions of space (in the brain)?

donut

- Population learning structure of signal
 large number of neurons
- 2. Transmission & Compression
 - small bandwidth
- 3. Relearning structure
 - not knowing compression method

Population learning structure of signal large number of neurons

Question: How to discriminate blue / red in the plane? **Answer**: (SVM) Map to high dimensional space, find separating hyperplanes! (ellipses are linear subspaces)

2. Transmission & Compression- small bandwidth

sparse signal: sum of small number of causes

projections

Danielyan, et al '08 (MRI) Lustig, et al '07

3. Relearning structure

- not knowing compression method

Challenge: Tease out structure after (unknown) compression

Sparse coding of natural images

• Natural images have a structure that is sparse

$$x = \sum_{i=1}^{m} a_i \varphi_i + \nu$$

image patch coefficients features noise

• Inferring the sparse representation is non-linear

$$\min_{a} \frac{1}{2} \|x - \Phi a\|_2^2 + \lambda C(a)$$

reconstruction tradeoff sparsity

Learning basis functions

- Goal: learn the optimal set of basis functions such that images have a sparse representation
- Learned basis functions resemble receptive fields of neurons in primary visual cortex

(Olshausen & Field, Nature, '96)

Sparsity inducing penalties

- The correct measure of sparsity is the 0-norm which is the number of non-zero coefficients
- Ideally we'd like to solve:

$$\begin{array}{ll} \min_{a} \frac{1}{2} \|x - \Phi a\|_{2}^{2} + \lambda \|a\|_{0} \\ \hline \mathbf{reconstruction} & \text{sparsity} \end{array}$$

- This problem is NP-hard!
- However it has been shown that the problem with 1-norm is a good approximation

$$\min_{a} \frac{1}{2} \|x - \Phi a\|_{2}^{2} + \lambda \|a\|_{1}$$

Geometrical intuition

Signal Processing

- Sparse coding ideas are useful when working with signals that have a sparse structure
- Examples of sparse signals
 - Natural images
 - Natural sounds
 - EEG data
 - geophysical data
 - hyperspectral data
 - biosensing (DNA microarrays)
 - Astronomical data

Compression of sparse signals

- We compress n-dimensional signals that are k-sparse
- Standard approach known as transform coding:

$$\min_{a} \frac{1}{2} \|x - \Phi a\|_{2}^{2} + \lambda \|a\|_{1}$$

- Problems with this approach
 - full n samples of the signals are acquired (often k << n)
 - need to compute the coefficients
 - need to encode the location of the non-zero coefficients

An alternative: compressed sensing

(Candes, Donoho, Tao, etc..)

Rice Single-Pixel CS Camera

Communication between Bandwidth-limited Regions

Adaptive Compressed Sensing (ACS)

Receptive Fields $E(\mathbf{x}, \mathbf{a}, \Psi) = \frac{1}{2} ||\mathbf{x} - \Psi \mathbf{a}||^2 + S(\mathbf{a})$

$$\mathbf{a}(\mathbf{x}) := \arg\min_{a} E(\mathbf{x}, \mathbf{a}, \boldsymbol{\Psi})$$

$$RF := \frac{1}{|I|} \sum_{\mathbf{x} \in I} \mathbf{x} \cdot \mathbf{a}(\mathbf{x})^{\top} = \operatorname{Cov}(\mathbf{x}, \mathbf{a}(\mathbf{x}))$$

Receptive field of a neuron = What images it responds to

Learned $\boldsymbol{\psi}$ and Receptive Fields

ACS FF

ACS RF

ACS (2nd stage) RF

SC RF

Reconstructions

Difficulty: how to verify if structure of signal passed on to second stage?

OriginalSparse CodingSparse CodingSparse CodingSolutionSparse CodingSolution<

Using Learned ψ

Using Receptive Fields

Thanks!