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Subsidence: cause and effect

Examples of subsidence

3. Groningen:

seismic effects '/h N

(NAM)

2. Venice: mixed effect of
1. Louisiana wetlands: fault activation groundwater and gas
(ves) extraction



Subsidence, induced seismicity
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O Subsidence to first order
related to pressure drop in
reservoir (e.g. Geertsma,
1963)

O Relation with induced and
natural seismicity poorly
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indicated at benchmark locations.
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Geodetic monitoring

Pass 2: After earthquake

O Subsidence can be observed with Pass 1: efore carhauake
satellites (INSAR, GPS) as well as in situ
techniques (levelling)
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Subsurface monitoring

0 Surface data on subsidence can be
complemented by subsurface data
from wells (bottom hole pressure, Production rates and pressure

rates) as well as seismic s o

4D Seismic

10 000 m

Artistimpression Valhall field, including wells
http://offshoreenergytoday.com

Valhall: Changes in volumetric strain 1992-2002 (left) and
time shift from seismic data (right) Barkved et al (2005)



Parameter estimation and data assimilation

-
. Ps-InSAR
Groundwater model

= ““ Geodetic surface
— o monitoring network

Flowrates, bottom-hole

pressure

Data assimilation well |

el fogs Groundwater

monitoring wells

Seismic

Geomechanical modil

Q Integrated approach, focusing on three aspects:

— Data: sparse subsurface, high resolution surface data
— Model: coupled reservoir/geomechanics

— Data assimilation method: non-linear physics
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Modelling subsidence:

Subsidence is typically modelled
based on a compaction model of a
disk-shaped reservoir, using
Geertsma’s analytical solution
(1963), in combination with a time-
dependent pressure distribution
from a multi-layer reservoir model.

e

Disk-shaped reservoir ¢

h R

Bau (2014), after Geertsma (1963)

reservoir compaction

Groningen reservoir model
Mmax workshop March 2016, http://feitenencijfers.namplatform.nl

O Reservoir models can have various
levels of complexity. Including
known and less well known
geological features.
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Geomechanical modelling of compaction (1)

O Geertsma'’s subsidence model: uniaxial
compaction with effective stress resulting
from pressure difference

Oy

oy = 0, = 0, :radial/lateral stress
Oedometer

€ =€, =€ =0 :radial/lateral strain (laterally confined)

—Ap = A’ = Ao, + 2 Ac,’ o,

_(A-2v)Q+v)
&= T E—v) L

Or

€, = C,Ac,

Confined reservoir layer



Geomechanical modelling of compaction (2)

O Geertsma’s model provides a . - - =
good first-oder approximation of -'ﬂfﬁm—"""'f’-":?"f" =
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Geomechanical modelling of compaction (3)

O Reservoir compaction can be
considered as a consolidation
process: axial load is initially
borne by fluid, and then shifted to
skeletal frame (Terzaghi)

O Compaction is not only affected
by pore pressure, but also by
boundary conditions, and total
stress change: coupling of flow
and geomechanics required

t<0 t=0" t>0

Terzaghi’s uniaxially constrained soil consolidation,
Craig 1997

¢
:
i
1
T \\\\\\\\\
RN
N \\\\\\§§:§§.§ \
8 '8 AN \
PIITIITERLNNMY \
PIETIITETNNNNE \
\\tt\\§§§ )
REEER \\\\\. \
PIITYAE Y 11
TYIYYYNNNNNLEE
AR
PIriiiiiiiYaNAY \
NNRRRRRNN ’
IISNN R
TIIIIIS AV

Coupled simulation of compacting disk
Lewis & Pao, 2003 13



Generic model of coupled flow-geomechanics

Flow model, with governing equations:

Conversation of mass and Darcy’s law, estimating pressure, saturation, flow,
(possibly including energy and thermodynamic phase equilibrium)

Mechanical model to determine rock deformation:

Hooke’s law, estimating strain and relating porosity to pressure, strain,
plastic strain, (possibly including thermal deformation)

Based on AD-GPRS geomechanical model
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Overburden and other geomechanical aspects

Salt creep

, Renewable
Landslide energy

Flooding
3 Carbon capture

Disposal of & storage

nuclear waste

Quarrying " 011 & gas

Coastal
erosion
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Q In reality, compaction occurs in R s s
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Mossop, Waddenacademie, 2013
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O Response of overburden may %2“
not be fully elastic. In &3l
Groningen salt creep may al
delay the surface response. Glennie, AAPG, 2013
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Parameter uncertainty

Q Fluid flow:
— Permeability
— Porosity
— Saturation
— Pressure
0 Geomechanics:
— Young’s modulus
— Poisson’s ratio
0 Geometry and geology
— Overburden and reservoir layering
— Faults and structure

16
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State and parameter estimation

O Objective: estimate pressure state
and corresponding subsidence
based on a combination of surface
observations (deformation) and
subsurface observations (bottom-
hole pressure, rate, seismic)

QO Approach: find solution that
minimizes difference between
(coupled flow-geomechanical)
model and observations.
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State and parameter estimation

Bayes'’ rule:

_f@¥F @)
fald) =——5

Assume state evolution can be described by Markov process:

di = g@)dt + dp,

Minimum variance estimate:

b=y F@laray

To find this solution, several methods are being used for subsurface flow
problems:

Ensemble Smoother (Van Leeuwen and Evensen, 1996)
Ensemble Kalman Filter (Evensen, 1994)

Ensemble Kalman Smoother (Evensen and Van Leeuwen, 2000)
Ensemble Square Root Filter (e.g., Zhang et al, 2010)
Randomized Maximum Likelihood (Oliver et al, 1996)

Particle Filters (review: Van Leeuwen, 2009)

Markov-Chain Monte Carlo (e.g., Oliver et al, 1996)

NGOk WN=
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State and parameter estimation

The practical implementation of the commonly used Ensemble (Kalman)
methods have the general shape of:

»
P ) =P ) + ) bur(xt?)
m=1

Where the term Z,",ﬁ*:lbmr(x, t™) involves a multiplication of the M
representers or influence functions (involving the error covariances) with
coefficients that effectively weight a set of model realizations with their
difference from the observations . In the most commonly used EnKF:

Prx,t*) = Pl (x,t*) + Cyy H” (Hc{;wHT + cdd)_1 (d — Hy/ (%, t%))

With covariances C,,,, and C,4 representing uncertainty in model and data.

20



State and parameter estimation

In geomechanical applications, the estimated variable ¢ is a function of a
state x, starting from an initial condition x, and (geomechanical)
parameters y. Observations d will relate to the state (subsidence,

pressure, rate), while the model ¥/ will largely depend on choices of y.

-1
Py, t) =9 (%, y,t7) + CyyHT (HC{;w H' + Cdd) (d —Hy/ (x,t))

Typically, the covariances C,,;, and C,, are based on Gaussian
assumptions. For flow problems, this tends to give satisfactorily results.
How about geomechanical problems?

» Strongly non-linear (consolidation, fault slip)
« Coupled models

21



Particle methods

O Approximate model uncertainty with
ensemble of model realisations

O Weight each particle with difference
observation-model

O Can be used as a smoother or as a filter

Bayes' theory: po(w|d)= Da (d1|) V’(?Sm ()

@)= ] p,@ W), (W)dy

Represent model probability density by

ensemble: 1 &

P,(w)= NZ5(‘/’— v)
i=1

Minimum variance estimator:

— I.wd (d | V/)pm (l//)dl// _ Zl//ipd(d | 1//1.)

i=1
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Particle filter -sequential

O Resample to avoid ensemble

degeneracy: sequential importance
resampling

O Optimize the ensemble going
forward by proposal density or

kernel dressing (regularised particle
filter)

Graphs fromVan Leeuwen (2009)

weighting resampling weighting

t=

o

t=10 t=10 t=20

Kalman update

dressing | weighting resampling

VAV, M
\‘:::.\ \\\\\ \ . , ‘:I e
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Approach

Comparison Monte-Carlo
methods and Ensemble
alman) methods

Q Sensitivity fault reactivation

Q Sensitivity overburden lithology

Data assimilation
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Particle Filter for Groningen Subsidence (1)

Deformation computed fromthe particles
T T T

0O Modeling subsidence g e
with so-called Mogi L .
sources, spherical L
sources of strain. gf{: )
0 Tested particle filter 000 i
) . e Saae s

methodology on A - —
cases with increasing  Mogisource, after Dzurisin, 2007 Particle weights
number of Mogi

sources
O Importance reoning remming et
resampling (SIR) to ole
prevent ensemble ° o o ol e ;
degeneracy ]
Testing with one, two and four Mogi o
sources \ \

t=0 t=10 t=10 t=20

with Karlijn Beers, Ramon Hanssen 26



Particle filter for Groningen Subsidence (2)

InSAR data of 2009-2010 subsidence (mm)

0 Testing on subset of “{ 3 .
data with 19 Mogi e T I
sources ‘g

O Ensemble size g ' .
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0 residuals RMSE = i At e S B
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Regularized Particle Filter for Darcy flow

Q Estimating permeability ina 1D
Darcy-flow problem using a particle

O Resampling using the regularized
particle filter (RPF)

O RPF finds good fit with analytical
solution

N
pOId) ~ ) wKn(h — )

K: Kernel, h: Kernel width
W) = K(

dressing | weighting resamplinK
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Slope stability: MCMC vs Regularized Particle Filter

Regularized Particle Filter

Comparison of analysis to reference - shear strength

a Comparison of regularized particle ol pj i
filter with Markov-Chain Monte wal

Carlo method
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Coupled Reservoir-Geomechanical

O Coupled reservoir-geomechanical model: AD-GPRS (Denis Voskov, TUD,
Yifan Zhou, Timur Garipov, Stanford)

a Simplified geometry with full coupling, fully implicit methods makes model
computationally efficient
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Coupled flow-geomechanical -1D Case

a Simplified, Terzaghi-like
problem, 1D, 100 ensemble
members

O Sensitivity studies to rock
properties
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Fault slip

Vertical deformation

*103 m]
100,00

a 2D finite element model (Plaxis) simulating
fault slip and associated deformation resulting
from differential compaction
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O Sensitivity study to fault conditions: angle,
friction coefficient, Poisson’s ratio, rock
properties
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Conclusions and ongoing work

a Conclusions

— Subsidence involves processes in

shallow and deep subsurface

— Geomechanical and flow parameters
can be estimated with data assimilation

— Non-linearities and coupled models ask
for Monte-Carlo based methodologies
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0 Ongoing work

Hybrid Monte Carlo/EnKF assimilation
methods

Dynamic versus static forcing

Heterogeneities in overburden:
integration of seismic and non-seismic
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Uplift due to steam injection

Other geological settings, offshore subsidence
Surface effects of mining, geothermal energy
Susidence related to water extraction (Ravenna, Italy, or Thailand)

Sea level rise and coastal subsidence (Indus and Nile delta, Wadden
Sea)

Groundwater studies and shallow subsurface

Wadden Sea,
Netherlands

Bangkok,
Thailand

-18.42 mmjiyr 0.00
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