Model-based production optimization and history matching – some (not so) recent developments

Jan Dirk Jansen, Gijs van Essen
Delft University of Technology

Mohsin Siraj, Paul Van den Hof
Eindhoven University of Technology
Closed-loop reservoir management

Noise → Input → System (reservoir, wells & facilities) → Output → Noise

Controllable input → Optimization algorithms

Predicted output → Data assimilation algorithms → Measured output

System models

Sensors

Geology, seisms, well logs, well tests, fluid properties, etc.
1) “Robust” open-loop production optimization
12-well example (the “egg model”)

- 8 injectors, rate-controlled
- 4 producers, BHP-controlled
- Production period of 10 years
- 12 wells x 10 x 12 time steps

 => 1440 optimization parameters
- Bound constraints on controls
- Objective J: oil revenues minus water costs (‘NPV’)
- Forward model: fully implicit FV simulator (Dynamo MoReS, MRST)
- Optimizer: gradient- based (steepest ascent; line search with simple back tracking, gradients with adjoint formulation; projected constraints)
‘Robust’ optimization example (‘mean’ optimization)

- Number of realizations $N_r = 100$
- Optimize expectation of objective function J

$$\max_u \frac{1}{N_r} \sum_{i=1}^{N_r} J^i (u, m_i)$$

- u: inputs (well rates, pressures) for all optimization time steps
- m: parameters (permeabilities)

Van Essen et al., 2009
Robust optimization results

3 control strategies applied to set of 100 realizations:
reactive control, nominal optimization, robust optimization

Van Essen et al., 2009
Oil price uncertainty – time series

• Various complex models:
 – National Energy Modeling System (NEMS) (US DoE)
• We use: Auto-Regressive-Moving-Average model (ARMA) (Ljung, 1999)

\[r_k = a_0 + \sum_{i=1}^{6} a_i r_{k-i} + \sum_{i=1}^{6} b_i e_{k-i} \]

• \(r_k \) = oil price
• \(e_k \) = white noise sequence
• \(a_0, a_i, b_i \) are constants
Oil price uncertainty – ensemble

- Base oil price 471 $/m³ = 75 $/bbl

Siraj et al. 2015

$n = 10$

$n = 100$
Mean optimization (MO)

\[J_{MO} = \frac{1}{N_r} \sum_{i=1}^{N_r} J^i (u, m_i) \]
Mean-variance optimization (MVO)

\[J_{\text{MVO}} = J_{\text{MO}} - \gamma J_{\text{V}} = \frac{1}{N_r} \sum_{i=1}^{N_r} J^i - \gamma \frac{1}{N_r - 1} \sum_{i=1}^{N_r} \left(J_{\text{MO}} - J^i \right)^2 \]

H. Markowitz (1952), Yeten et al. (2003), Bailey et al. (2005), Yasari et al. (2013), Capolei et al. (2015), Siraj et al. (2015), Liu and Reynolds (2016)

- Symmetric ‘risk measure’
- Penalizes the best cases
- Decision makers are mainly concerned with worst cases
Worst-case optimization (WCO)

\[
\max \min J(u, m_i) \quad \forall i
\]

- Min operator on discrete set is non-differentiable
- Reformulate with slack variable \(z \)

\[
\max z \quad \text{s.t.} \quad z \leq J(u, m_i) \quad \forall i
\]

- \(N_r \) inequality constraints
- Asymmetric ‘risk measure’
- Sensitive to outliers
- Usually very conservative
Optimizer KNITRO

- Large-scale non-linear constrained optimization
- Both interior-point (barrier) and active-set methods;
- Programmatic interfaces: C/C++, Fortran, Java, Python;
- Modeling language interfaces: AMPL ©, AIMMS ©, GAMS ©, MATLAB ©, MPL ©, Microsoft Excel Premium Solver ©;
Worst-case optimization (WCO) (geology)

- Worst-case increase: 3.60 %
- Average decrease: 1.54 %
MO, MVO and WCO (geology)

- MVO and WCO all reduce upside
MO, MVO and WCO (oil price)

- Note: WCO = single optimization with lowest oil price
- Same story: MVO and WCO all reduce upside
Mean worst-case optimization (MWCO)

\[J_{\text{WCO}} = \max_u \min_{m_i} J(u, m_i) \]

- \(J_{\text{WCO}} \) is usually very conservative
- Can be controlled ad-hoc with weighted formulation:

\[J_{\text{MWCO}} = J_{\text{MO}} - \lambda J_{\text{WCO}} \]

- Will not be pursued any further
Conditional value at risk (CVaR)

• Value at risk (VaR):

\[\alpha_\beta (x) = \min \{ z \mid F_x(z) \leq \beta \} \]

• \(x \) is a random variable

• \(F_x(z) \) is the cdf \(P(x \leq z) \)

• \(\beta \in [0, 1[\) is the confidence level

• In words: \(\beta \) fraction of objective function distribution

• Conditional Value at Risk (CVaR):

\[\varphi_\beta (x) = E \{ x \mid x \leq \alpha_\beta \} \]
Worst case, VaR, and CVaR

![Diagram showing worst case, CVaR, and VaR under curve.](image-url)
Semi variance

\[\text{Var}_+ (x) = E \{ \max \left[x - E(x), 0 \right] \}^2 \]

\[\text{Var}_- (x) = E \{ \max \left[E(x) - x, 0 \right] \}^2 \]
MCVaR (geology)

\[J_{MCVaR} = J_{MO} - \omega J_{VaR} \]

- Computationally tedious (integration)
MCVaR (oil price)

\[J_{\text{MCVaR}} = J_{\text{MO}} - \omega J_{\text{VaR}} \]

- Not convincingly successful
Conclusions ‘risk measures’

• MVO (symmetric) leads to strong reduction in upside
• Asymmetric risk measures (WCO, CVaR, SV and their ‘mean’ varieties) improve the situation somewhat
• MCVaR seems to perform best, but is computationally demanding and requires choice of weighting parameter
• Improvements under oil price uncertainty lower than expected
• Joint geological - oil price scenarios not yet tested
2) Computer-assisted history matching

System (reservoir, wells & facilities)

Noise Input Output Noise

Controllable input

Optimization algorithms

Sensors

System models

Data assimilation algorithms

Geology, seismics, well logs, well tests, fluid properties, etc.

Predicted output Measured output
Upper/lower economic bounds

Idea:
• Explicitly search for HM-models that provide upper and lower bounds of economic forecasts (for a given production strategy)
• Proposed solution: hierarchical optimization
• Motivation: after obtaining a history match there is still a lot of room in the parameter space to optimize a second objective

• Van Essen et al., *Computational Geosciences* (2016); ECMOR (2010)
Hierarchical optimization

• Order objectives according to importance
 1. Good history-match (V)
 2. Maximize/minimize (economic) forecasts (J)

• Optimize objectives sequentially
• Optimality of upper objective constrains optimization of lower one
• Use redundant degrees of freedom (DOF) in decision variables, after meeting primary objective (take a walk in the null space)
Null space wandering in 3D
Hierarchical optimization

\[V_{\text{min}} := \min_m V(\bar{u}, m) \]

s.t. \[g_k(\bar{u}_{k-1}, x_k, m) = 0, \quad k = 1, \ldots, K, \quad x_0 = \bar{x}_0 \]

\[\max_m J(\bar{u}, m) / \min_m J(\bar{u}, m) \]

s.t. \[g_k(\bar{u}_{k-1}, x_k, m) = 0, \quad k = 1, \ldots, K, \quad x_0 = \bar{x}_0 \]

\[V(m) - V_{\text{min}} \leq \varepsilon \]

- primary optimization problem
- secondary optimization problem
- relaxation of constraint
Formal method: Null-space approach

Idea: find ‘free’ directions and use these to optimize second objective function

1. Find optimal match \(m \) for primary objective \(V \)

2. Determine null-space \(N \) of input parameter space \(S_m \) around \(m \). (\(N \) relates to those directions in \(S_m \) to which \(V \) is insensitive)

3. Find improving direction \(d \) for secondary objective \(J \)

4. Project \(d \) onto basis of \(N \) to get projected direction \(d^* \) \((d^* \) is improving direction for \(J \) but does not affect \(V \))

5. Update \(m \) using projected direction \(d^* \)

6. Perform steps 2 – 5 until convergence
Alternative: switching method

Idea: alternate unconstrained step to optimize J with correction step to return to V_{min}

- New objective function
 \[W = \Omega_1(V) \cdot V + \Omega_2(V) \cdot J, \]

- \[
 \Omega_1(V) = \begin{cases}
 1 & \text{if } V - V_{\text{min}} > \varepsilon \\
 0 & \text{if } V - V_{\text{min}} \leq \varepsilon
\end{cases} ,
 \quad \Omega_2(V) = \begin{cases}
 0 & \text{if } V - V_{\text{min}} > \varepsilon \\
 1 & \text{if } V - V_{\text{min}} \leq \varepsilon
\end{cases}
\]

where Ω_1 and Ω_2 are ‘switching’ functions

- Gradients of W with respect to the model parameters
 \[
 \frac{\partial W}{\partial m} = \Omega_1(V) \cdot \frac{\partial V}{\partial m} + \Omega_2(V) \cdot \frac{\partial J}{\partial m}
\]
Switching method
Modified switching method

- Goal is to keep V close to V_{min} with update in J-direction
- Projection of the gradients J onto the first-order approximation of the null-space of V:

$$\frac{\partial \tilde{J}}{\partial \mathbf{m}} := \frac{\partial J}{\partial \mathbf{m}} \cdot \left[\mathbf{I} - \frac{\partial V^T}{\partial \mathbf{m}} \cdot \frac{\partial V}{\partial \mathbf{m}} \right],$$

which gives an alternative switching search direction \mathbf{d}

$$\mathbf{d} = \Omega_1(V) \cdot \frac{\partial V}{\partial \mathbf{m}} + \Omega_2(V) \cdot \frac{\partial J}{\partial \mathbf{m}} \cdot \left[\mathbf{I} - \left| \frac{\partial V}{\partial \mathbf{m}} \right|^T \cdot \frac{\partial V}{\partial \mathbf{m}} \right]$$
Example 1: egg model

As before, except:

- Production history of 1.5 years (monthly measurements)
- Forecasts for next 4.5 years
Example 1: optimization method

- In-house reservoir simulator (fully-implicit black oil)
- Minimization with adjoint-based gradients, steepest-descent and line search
- Twin approach: ‘truth’ to generate synthetic; uniform model (correct mean) as prior for history match
- History match objective (first optimization):

\[
V = \sum_{k=1}^{K} (d_k - y_k)^T P^{-1}_{d_k} (d_k - y_k)
\]

where \(d\) are measured data and \(y\) predicted data

- Economic objective (second optimization):

\[
J = \sum_{k=1}^{K} \left\{ \sum_{i=1}^{N_{inj}} r_{wi} \cdot (u_{wi,i})_k + \sum_{j=1}^{N_{prod}} \left[r_{wp} \cdot (y_{wp,j})_k + r_o \cdot (y_{o,j})_k \right] \cdot \Delta t_k \right\}
\]
Example 1: hierarchical optimization

<table>
<thead>
<tr>
<th>Primary optimization problem</th>
<th>Secondary optimization problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>History-matching</td>
<td>Bounds on economic forecast</td>
</tr>
<tr>
<td>0 – 1.5 years</td>
<td>1.5 – 6 years</td>
</tr>
</tbody>
</table>

- Simulation run by prescribing:
 - injection rates (from history)
 - BPHs producers (from history)
- Minimize V (mismatch between measured & simulated data)
- Data (288 points):
 - BHPs of injectors
 - Oil/water flow rates producers
- Controls: grid block perms

- Simulation run by prescribing:
 - injection rates (constant)
 - BHPs producers (constant)
- Maximize/minimize J (NPV over 4.5 years)
- $r_o = 9 \$/bbl, r_w = -1 \$/bbl, 0 disc.
- Weakly constrained by minimum primary objective V_{min}
- Controls: grid block perms
Example 1: HM results - pressures

pressures upper bound model

pressures lower bound model

measurement points
Example 1: HM results – flow rates

[Graphs showing flow rates for producers 1 to 4 over time, with oil flow rates and water flow rates depicted.]
Example 1: incremental permeability fields

“Lower bound”
model

“Upper bound”
model
Example 1: HM & forecast – pressures

pressures upper bound model
pressures lower bound model
measurement points
Example 1: HM & forecast – flow rates

![Graphs showing flow rates over time for producers 1 to 4.]

- Oil flow rates upper bound model
- Oil flow rates lower bound model
- Water flow rates upper bound model
- Water flow rates lower bound model

- Measurement points
- Current time
Example 1: forecast range in NPV

Historic & Predicted Economic Performance

Future

Past

Net Present Value [M$]

0 5 10 15 20 25

0 1 2 3 4 5 6

time [years]

Future

Net Present Value [M$]

0 5 10 15

2 3 4 5 6

time [years]

average prediction

current time

Prediction range

current time

+63%

-63%

predicted economic performance

average prediction

current time

+63%

-63%
Example 2: Brugge field

- 60,048 cells
- Own-generated synthetic truth
- 10 yrs ‘production data’ + ‘interpreted 4D’; 10% error
- Starting model for HM randomly selected out of ensemble
- 11 producers, BHP-controlled with bounds; reactive
- 20 injectors, fixed rate-controlled
Example 2: HM results (prod. only) – water rates

- 0.5% deviation allowed in objective function value
- 19.5 % difference in NPV
Example 2: Updated permeability fields

Differences in permeabilities in 9 layers

natural log mD
Example 2: HM results – effect of ‘data type’
Example 2: HM results – effect of ‘data type’
Example 2: HM results – effect of threshold value (1)
Example 2: HM results – effect of threshold value (2)
Conclusions ‘upper and lower bounds’

• Method can be used to gain more insight in the possible economic consequences of the lack of information in the data
 – NPV, total production, ultimate recovery, or other.
 – Economic impact alternative data sources, e.g. 4D seismic data

• No guaranteed lower/upper bounds, due to local optima

• Considerable number of iterations required until convergence
 – May be improved using more efficient optimization scheme (Quasi-Newton, conjugate gradient method, …)

• Wandering in the null space can be useful after all
References

• Robust optimization

• Upper/lower bounds