Hierarchical Blackbox Inversion

Andrew Stuart[†]

[†]California Institute of Technology

Data Assimilation, Uncertainty Reduction and Optimization for Subsurface Flow, IPAM May 22nd 2017

EnKF: N Chada, M Iglesias, KJH Law, L Roininen, C Schillings

MCMC: M Dunlop, M Iglesias

May 21, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Overview

EnKF Inversion

Numerical Results

Hierarchical EnKF Inversion

Bayesian Inversion

Numerical Results

Hierarchical Bayesian Inversion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

EnKF Inversion

Ensemble Kalman Filter (EnKF) and Inversion

Problem Statement

Find *u* from *y* where $\mathcal{G} : X \mapsto Y$, η is noise and

 $y = \mathcal{G}(u) + \eta, \quad \eta \sim \mathsf{N}(0, \Gamma).$

- EnKF widely applied: geosciences, NWP and oceanography.
- Origins in sequential data assimilation. ([7] Evensen (1994)).
- Application to inverse problems. ([10] Iglesias (2016)).
- Requires only black box forward model G.
- Very limited theoretical understanding.

Heuristic

Minimize, over a subspace defined via the linear span of an ensemble,

$$\Phi(\boldsymbol{u}) := \frac{1}{2} \|\boldsymbol{y} - \mathcal{G}(\boldsymbol{u})\|_{\Gamma}^{2}.$$

Basic EnKF Inversion ([9] Iglesias et al (2013))

▶ Initial Ensemble $\{u_0^{(j)}\}_{j=1}^J \subset X$.

Ensemble First and Second Order Moments Means:

$$\overline{u}_n = \frac{1}{J} \sum_{\ell=1}^{J} \frac{u_n^{(\ell)}}{u_n^{(\ell)}}, \quad \overline{w}_n = \frac{1}{J} \sum_{\ell=1}^{J} \mathcal{G}(\frac{u_n^{(\ell)}}{u_n^{(\ell)}}).$$

Covariances:

$$C_n^{ww} = \frac{1}{J} \sum_{\ell=1}^{J} (\mathcal{G}(\boldsymbol{u}_n^{(\ell)}) - \overline{w}_n) \otimes (\mathcal{G}(\boldsymbol{u}_n^{(\ell)}) - \overline{w}_n),$$
$$C_n^{uw} = \frac{1}{J} \sum_{\ell=1}^{J} (\boldsymbol{u}_n^{(\ell)} - \overline{u}_n) \otimes (\mathcal{G}(\boldsymbol{u}_n^{(\ell)}) - \overline{w}_n).$$

• Update step $n \mapsto n+1$:

$$\boldsymbol{u}_{n+1}^{(j)} = \boldsymbol{u}_n^{(j)} + \boldsymbol{C}_n^{uw} \big(\boldsymbol{C}_n^{ww} + \boldsymbol{\Gamma} \big)^{-1} \big(\boldsymbol{y} - \boldsymbol{\mathcal{G}}(\boldsymbol{u}_n^{(j)}) \big).$$

Linear span of initial ensemble is preserved: [14] Li and Reynolds (2011), [9] Iglesias et al (2013). Implement iteratively regularized form: [10] Iglesias (2016).

Continuous Time Limit

- Linear Case $\mathcal{G}(\cdot) = A \cdot .$
- $\blacktriangleright \ \Gamma = h^{-1}\Gamma_0, h \to 0.$
- Least Squares Functional

$$\Phi(\boldsymbol{u}) = \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{u}\|_{\Gamma_0}^2.$$

Gradient Structure

$$\frac{d u^{(j)}}{dt} = -C \nabla \Phi(u^{(j)}),$$

$$C = \frac{1}{J} \sum_{\ell=1}^{J} (u^{(\ell)} - \overline{u}) \otimes (u^{(\ell)} - \overline{u}).$$
(1)

Theorem. ([13] Schillings and S (2016))

Algorithm minimizes $\Phi(\cdot; y)$ over a finite dimensional subspace defined by the linear span of the initial ensemble.

Numerical Results

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Groundwater Flow

Forward Problem

Given $\kappa \in X := L^{\infty}(D; \mathbb{R}^+)$ find $p \in H^1_0(D; \mathbb{R})$ such that:

$$-\nabla \cdot (\kappa \nabla p) = f, \quad x \in D,$$

 $p = 0, \quad x \in \partial D$

Inverse Problem

Set $\kappa = \exp(u)$. Given K linear functionals of the pressure $\mathcal{G}_k(u) = \ell_k(p)$, $\ell_k \in H^{-1}(D; \mathbb{R})$, find u from noisy measurements y where:

$$y = \mathcal{G}(u) + \eta, \quad \eta \sim \mathsf{N}(0, \Gamma).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerical Experiments: Groundwater Flow

Unknown channel geometry ($d \in \mathbb{R}^5$); unknown fields ($v \in L^2(D; \mathbb{R}^2)$). Initial ensemble: draw i.i.d. d uniform and v Gaussian.

Figure: Left: true permeability. Right: reconstruction

Electrical Impedance Tomography (EIT)

Forward Problem

Given $(\kappa, I) \in L^{\infty}(D; \mathbb{R}^+) \times \mathbb{R}^m$ find $(\nu, V) \in H^1(D) \times \mathbb{R}^m$:

$$\begin{aligned} -\nabla \cdot (\kappa \nabla \nu) &= 0 \quad \in \quad D, \\ \nu + z_{\ell} \kappa \nabla \nu \cdot n &= V_{\ell} \quad \in \quad e_{\ell}, \quad \ell = 1, \dots, m, \\ \nabla \nu \cdot n &= 0 \quad \in \quad \partial D \setminus \cup_{\ell=1}^{m} e_{\ell}, \\ \int \kappa \nabla \nu \cdot n \, ds &= I_{\ell} \quad \in \quad e_{\ell}, \quad \ell = 1, \dots, m. \end{aligned}$$

Ohm's Law: $V = R(\kappa) \times I$.

Inverse Problem

Set $\kappa = \exp(u)$. Given a set of K noisy measurements of voltage V_k from currents I_k , and $\mathcal{G}_k(u) = R(\kappa) \times I_j$, find u from y where:

$$y = \mathcal{G}(u) + \eta, \quad \eta \sim \mathsf{N}(0, \Gamma).$$

Numerical Experiments: EIT

Unknown inclusion geometry ($d \in \mathbb{R}^3$); unknown conductivities ($\kappa \in \mathbb{R}^2$). Initial ensemble: draw i.i.d. d uniform and κ uniform.

Figure: Left: Truth. Middle: J = 3. Right: J = 50.

Figure: Left: relative error. Right: data misfit.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Hierarchical EnKF

Whittle-Matérn Initial Ensembles

- Create initial ensemble of functions via Gaussian random fields.
- Common choice: Matérn family

$$c_{\sigma,\nu,\tau}(x,x') := \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \big(\tau |x-x'|\big)^{\nu} \mathcal{K}_{\nu}\big(\tau |x-x'|\big).$$

- Smoothness parameter: $\nu \in \mathbb{R}^+$.
- Inverse length-scale parameter: $\tau \in \mathbb{R}^+$.
- Amplitude parameter: $\sigma \in \mathbb{R}$.
- Corresponding covariance operator

$$\mathcal{C}_{\sigma,\nu,\tau}\propto\sigma^2\tau^{2
u}(\tau^2I- riangle)^{-
u-rac{d}{2}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\triangleright \ \nu = \alpha - \frac{d}{2}.$$

• Hierarchical: invert for parameters such as σ, ν, τ as well as field itself.

Centred vs Non-centred

• Define
$$\theta = (\alpha, \tau)$$
.

Generate samples v by solving the SPDE

$$(\tau^2 I - \Delta)^{\frac{\alpha}{2}} v = \sigma \tau^{\alpha - \frac{d}{2}} \xi,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\xi \sim N(0, I)$ is white noise.

- See [4] Lindgren et al (2011).
 - Hierarchical: invert for parameters θ as well as field v.
 - Centred approach: view (v, θ) as unknowns.
 - Non-centred approach: view (ξ, θ) as unknowns.

See [11] Papaspiliopoulos et al (2007).

Groundwater Flow Revisited

Unknowns are:

- unknown channel geometry $(d \in \mathbb{R}^5)$;
- unknown fields ($v \in L^2(D; \mathbb{R}^2)$);
- unknown hyperparameters ($\theta \in \mathbb{R}^4$).

Initial ensemble and truth given by:

- initial ensemble: draw i.i.d. d uniform, v Gaussian and θ uniform;
- true regularity parameters: $(\alpha_1, \alpha_2) = (2.0, 2.8);$
- true inverse length scales $(\tau_1, \tau_2) = (30.0, 10.0)$.

Numerical Experiments: Groundwater Flow

Figure: α_1 (truth 2) and α_2 (truth 2.8).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Numerical Experiments: Groundwater Flow

Figure: Nonhierarchical EnKF.

Figure: Centred hierarchical EnKF.

Figure: Non-centred hierarchical EnKF

Non-Stationary Hyperparameters

- Treating the length scale $\tau^{-1} = \ell$ as a field.
- To ensure positivity write

$$\ell(x) := \exp(w(x)).$$

• Now we generate samples ξ from the SPDE

$$(1 - \ell(x; w)^2 \Delta)^{\alpha/2} u = \sigma \sqrt{\ell(x; w)^d} \xi.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Centred approach: view (u, w) as unknown.
- Non-centred approach: view (ξ, w) as unknown.
- We show only non-centred results.

See [12] Roininen et al (2016).

Linear Inverse Problem

Inverse Problem

Given $Au := \{p(x_j)\}_{j=1}^J$, find *u* from *y* where:

$$y = Au + \eta, \quad \eta \sim N(0, \Gamma).$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Figure: Non-hierarchical method.

Figure: Above: Gaussian prior on ℓ . Below: Cauchy prior on ℓ .

э

Bayesian Inversion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The Inverse Problem

Problem Statement

Find
$$\mathbb{P}(u|y)$$
 from y where $u \sim \mathbb{P}(u) = \mathsf{N}(0, C)$,
 $\mathcal{G} : X \mapsto Y$ and $y|u \sim \mathbb{P}(y|u) = \mathsf{N}(\mathcal{G}(u), \Gamma)$.

- Considerably more computationally intensive than optimization.
- Allows soluton of inverse problems with uncertainty quantification.
- Monte Carlo Markov Chain is a key methodology.
- Mesh-independent convergence of MCMC is crucial.

Theorem. ([5] S (2010), [6] Iglesias et al (2016).)

Bayes' Rule for functions:

$$\mathbb{P}(du|y) = \frac{1}{Z} \exp\left(-\Phi(u)\right) \mathbb{P}(\mathsf{d} u).$$

 $\mathbb{P}(du|\cdot)$ Lipschitz in Hellinger metric.

The Basic Function Space MCMC Algorithm

See [1] Cotter et al (2013).

- ▶ Initialize Pick $u^{(0)} \in X$.
- Propose $u^{\star} = (1 \beta^2)^{\frac{1}{2}} u^{(n)} + \beta \xi^{(n)}, \quad \xi^{(n)} \sim N(0, C).$
- Accept Set $u^{(n+1)} = u^*$ with probability

$$\min\left\{1,\exp\left(\Phi(\boldsymbol{u}^{(n)})-\Phi(\boldsymbol{u}^{\star})\right)\right\}.$$

• Otherwise set
$$u^{(n+1)} = u^{(n)}$$
.

Theorem. ([3] Hairer et al (2013).)

This algorithm converges with random constant K independent of mesh used to approximate forward model:

$$\mathbb{P}(g(u)|y) = \frac{1}{N}\sum_{n=1}^{N}g(u^{(n)}) + \frac{K(\xi)}{\sqrt{N}}$$

(Not true for RWM: $u^* = u^{(n)} + \beta \xi^{(n)}$, $\xi \sim N(0, C)$.)

Numerical Results

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Groundwater Flow Revisited

- Level set method: allows use of Gaussian priors to represent piecewise constant functions. See [6] Iglesias et al (2016), [2] Dunlop et al (2016).
- Threshold a continuous function at a number of levels.

• Let
$$X = C^0(D)$$
, and define $T : X \mapsto Z$ by

$$T(u)(x) = egin{cases} \kappa_1 & u(x) \in (-\infty, -1) \ \kappa_2 & u(x) \in [-1, 1) \ \kappa_3 & u(x) \in [1, \infty). \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Numerical Experiments: Groundwater Flow

- The forward map $\mathcal{G}: X \mapsto \mathbb{R}^{K}$ is given by $\mathcal{G} = \mathcal{F} \circ T$, $\mathcal{F}: \kappa \mapsto p$.
- We choose K = 36, and observe data

$$y = \mathcal{G}(u^{\dagger}) + \eta, \quad \eta \sim N(0, 0.05^2).$$

• True permeability $T(u^{\dagger})$ and observed data y are shown below.

Numerical Experiments: Groundwater Flow

- The forward map $\mathcal{G}: X \mapsto \mathbb{R}^{K}$ is given by $\mathcal{G} = \mathcal{F} \circ T$, $\mathcal{F}: \kappa \mapsto p$.
- We choose K = 36, and observe data

$$y = \mathcal{G}(u^{\dagger}) + \eta, \quad \eta \sim N(0, 0.05^2).$$

▶ True permeability $T(u^{\dagger})$ and estimated mean $T(\mathbb{E}(u))$ are shown below.

Hierarchical Bayesian Inversion

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Hierarchical Models

- Use Whittle-Matern Gaussian random field.
- Recall $\theta = (\alpha, \tau)$ denotes parameters encoding regularity and length-scale.
- Prior

$$\mathbb{P}(u,\theta) = \mathbb{P}(u|\theta)\mathbb{P}(\theta).$$

Posterior

$$\mathbb{P}(u,\theta|y) = \frac{1}{Z} \exp(-\Phi(u)) \mathbb{P}(u,\theta).$$

• Use of centred (u, θ) or non-centred (ξ, θ) variables possible:

$$(\tau^2 I - \Delta)^{\frac{\alpha}{2}} u = \sigma \tau^{\alpha - \frac{d}{2}} \xi,$$

• Use Metropolis-within-Gibbs to update $\xi | \theta, y$ and $\theta | \xi, y$.

Hierarchical Level Set Function

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 圖 のQ@

Hierarchical Level Set Thresholded

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Numerical Example: Groundwater Flow Revisited

- We return to the groundwater flow example. We use the same data y, but now use a hierarchical Gaussian prior in which the length scale and regularity of samples are treated as additional unknowns in the problem.
- True permeability $T(u^{\dagger})$ and observed data y are shown below.

- 日本 - 1 日本 - 1 日本 - 1 日本

Numerical Example: Groundwater Flow Revisited

- We return to the groundwater flow example. We use the same data y, but now use a hierarchical Gaussian prior in which the length scale and regularity of samples are treated as additional unknowns in the problem.
- ▶ True permeability $T(u^{\dagger})$ and estimated mean $T(\mathbb{E}(u))$ are shown below.

Numerical Example: Groundwater Flow Revisited

- We return to the groundwater flow example. We use the same data y, but now use a hierarchical Gaussian prior in which the length scale and regularity of samples are treated as additional unknowns in the problem.
- ▶ Recall estimated mean $T(\mathbb{E}(u))$ without hierarchical estimation.

Conclusions

Hierarchical inversion: considerable benefits at little extra cost.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Optimization: use EnKF.
- Sampling: use function space MCMC.
- Non-centred methods key to hierarchical success.

References

[1] S. L. Cotter, G. O. Roberts, A. M. Stuart and D. White

MCMC methods for functions: modifying old algorithms to make them faster *Statistical Science*, 28(3):424-446, 2013.

[2] M. M. Dunlop, M. A. Iglesias and A. M. Stuart

Hierarchical Bayesian level set inversion, *Statistics and Computing*, 2016.

[3] M. Hairer, A. M. Stuart and S. J. Vollmer

Spectral gaps for Metropolis-Hastings algorithms in infinite dimensions Annals of Applied Probability, 24:2455-2490, 2014.

[4] F. Lindgren, H. Rue and J. Lindström

An explicit link between Gaussian fields and Gaussian Markov random fields: the SPDE approach JRSS-B (Statisical Methodology), 73 (4):423-498, 2011.

[5] A. M. Stuart

Inverse Problems: a Bayesian perspective Acta Numerica, 19(May):451-559, 2010.

[6] M. Iglesias, Y. Lu and A.M. Stuart

A Bayesian level set method for geometric inverse problems.

Interfaces and Free Boundaries, 18(2016), 181-217.

[7] G. Evensen

Data Assimilation: the Ensemble Kalman Filter, Springer, 2009.

References

[8] N. K. Chada, M. Iglesias, L. Roininen, A. M. Stuart

Geometric and Hierarchical Ensemble Kalman Inversion, In preparation.

[9] M. A. Iglesias, K. Law, A. M. Stuart

Ensemble Kalman method for inverse problems, *Inverse Problems*, 29 (4), 045001, 2013.

[10] M. A. Iglesias

A regularising iterative ensemble Kalman method for PDE-constrained inverse problems, Inverse Problems, 32 (2), 025002, 2016.

[11] O. Papaspiliopoulos, G. O. Roberts, and M. Sköld

A general framework for the parametrization of hierarchical models, *Statistical Science*, pages 59-73, 2007.

[12] L. Roininen, M. Girolami, S. Lasanen, M. Markkanen

Hyperpriors for Matern fields with applications in Bayesian inversion, arXiv:1612.02989.

[13] C. Schillings, A. M. Stuart

Analysis of the ensemble Kalman filter for inverse problems, arXiv:1602.02020v1, SIAM Num. Analysis, to appear.

[14] G. Li and A.C. Reynolds

Iterative ensemble Kalman filters for data assimilation SPE J. 14 (3) 496505 SPE-109808-PA

[15] A.A. Emerick

Towards a hierarchical parametrization to address prior uncertainty in ensemble-based data assimilation Comput Geosci (2016) 20:3547