Optimal-transport objective functions in FWI

Yunan Yang¹, Björn Engquist¹, Junzhe Sun², Brittany Froese³ and Lingyun Qiu⁴

May 2, 2017

¹The University of Texas at Austin, USA

²Formerly UT-Austin, currently ExxonMobil Upstream Research Company

³New Jersey Institute of Technology, USA

⁴Petroleum Geo-Services, Inc
1. Background

2. Optimal Transport

3. Misfit functions

4. Relations among misfit functions

5. Numerical Results

6. Conclusion
Background
Full Waveform Inversion (FWI): a PDE-constrained optimization

\[m^* = \arg\min_m \chi(m), \]

\(\chi(m) \) is the objective function.
We may define a least squares waveform misfit measure as:

$$\chi(m) = \frac{1}{2} \sum_r \int |s(x_r, t; m) - d(x_r, t)|^2 dt,$$

- observed data d,
- simulated data s,
- receiver x_r,
- the model parameter m.
Headache of FWI: Cycle skipping

Virieux et al, 2009 and Yesterday’s lecture
Optimal Transport
Optimal Transport

Brought up by Monge in 1781

- Monge (1781)
- Kantorovich (1975)
- Brenier, Caffarelli, Gangbo, McCann, Benamou, Otto, Villani, Figalli, etc. (1990s – present)

Brought up by Monge in 1781
Optimal Transport

Brought up by Monge in 1781

- Monge (1781)
- Kantorovich (1975)
- Brenier, Caffarelli, Gangbo, McCann, Benamou, Otto, Villani, Figalli, etc. (1990s - present)
- Computer Science (EMD)
- Imaging processing and registration
- Machine learning (vs. KL-divergence)
Optimal transport

Synthetic data f (left) and observed data g (right)
Optimal transport

Synthetic data f (left) and observed data g (right)
Optimal transport

Synthetic data f (left) and observed data g (right)
Optimal transport

Synthetic data f (left) and observed data g (right)
Optimal transport

Synthetic data f (left) and observed data g (right)

(amount moved) \times (distance moved)
Optimal transport: Wasserstein distance

Finally, for general functions f and g, the Wasserstein distance is

$$\min_{\text{All the map } T} \left(\sum_{\text{All movements of } T} \text{distance moved } \times \text{amount moved} \right)$$

Function f and g sharing the same mass by normalization

Different choice of distance in the application of FWI

- $|x - y|^2$: [Engquist and Froese, 2014, Engquist et al., 2016, Yang et al., 2016]
- $|x - y|$: [Métivier et al., 2016, Métivier et al., 2016]
Quadratic Wasserstein Distance (Earth Mover’s Distance)

Definition of the Wasserstein distance

For $f : X \to \mathbb{R}^+$, $g : Y \to \mathbb{R}^+$, the distance can be formulated as

$$W_p(f, g) = \left(\inf_{T \in \mathcal{M}} \int |x - T(x)|^p f(x) dx \right)^{\frac{1}{p}}$$ \hspace{1cm} (1)

\mathcal{M} is the set of all maps that rearrange the distribution f into g.

Quadratic Wasserstein distance: $p = 2$

$$W_2^2(f, g) = \inf_{T \in \mathcal{M}} \int_X |x - T(x)|^2 f(x) \, dx$$ \hspace{1cm} (2)
Misfit functions
Generalized least squares functional: from local to global

Oridinary least squares method

\[J_1(m) = \frac{1}{2} \sum_r \int |f(x_r, t; m) - g(x_r, t)|^2 \, dt, \]

(3)
Oridinary least squares method

\[J_1(m) = \frac{1}{2} \sum_r \int |f(x_r, t; m) - g(x_r, t)|^2 dt, \]

(3)

The integral wavefields misfit functional [Huang et al., 2014]

\[J_2(m) = \frac{1}{2} \sum_r \int \left| \int_0^t f(x_r, \tau; m) d\tau - \int_0^t g(x_r, \tau) d\tau \right|^2 dt, \]

(4)
Generalized least squares functional: from local to global

Ordinary least squares method

\[J_1(m) = \frac{1}{2} \sum_r \int |f(x_r, t; m) - g(x_r, t)|^2 dt, \]

(3)

The integral wavefields misfit functional [Huang et al., 2014]

\[J_2(m) = \frac{1}{2} \sum_r \int \left| \int_0^t f(x_r, \tau; m)d\tau - \int_0^t g(x_r, \tau)d\tau \right|^2 dt, \]

(4)

Normalized Integration Method (NIM) [Liu et al., 2012]

\[J_3(m) = \frac{1}{2} \sum_r \int |W(f(x_r, t; m)) - W(g(x_r, t))|^2 dt, \quad W(u)(x_r, t) = \frac{\int_0^T P(u)(x_r, \tau)d\tau}{\int_0^T P(u)(x_r, \tau)d\tau}. \]

(5)

The operator \(P \) is included to make the data nonnegative: \(|u|, u^2 \) or \(E(u) \).
Relations among misfit functions
L^2, Integral L^2 and NIM

L^2 norm
Compute the leasts-square difference

Integral wavefields misfit functional
1. Integrate data (the same as integrate source)
2. Compute the leasts-square difference

Normalized integration method (NIM)
1. Transform data to be positive
2. Integrate data
3. Compute the leasts-square difference
1D Optimal transport (trace by trace)

The explicit formulation for the 1D Wasserstein metric is:

\[W_2^2(f, g) = \int_0^1 |F^{-1}(x) - G^{-1}(x)|^2 dx. \]

(6)

where \(F(t) = \int_{-\infty}^t \tilde{f}(\tau) d\tau \) and \(G(t) = \int_{-\infty}^t \tilde{g}(\tau) d\tau \). \(\tilde{f} \) and \(\tilde{g} \) are normalized signals that have positivity and conservation of mass.
1D Optimal transport (trace by trace)

The explicit formulation for the 1D Wasserstein metric is:

\[W_2^2(f, g) = \int_0^1 |F^{-1}(x) - G^{-1}(x)|^2 dx. \] \hspace{1cm} (6)

where \(F(t) = \int_{-\infty}^t \tilde{f}(\tau)d\tau \) and \(G(t) = \int_{-\infty}^t \tilde{g}(\tau)d\tau \). \(\tilde{f} \) and \(\tilde{g} \) are normalized signals that have positivity and conservation of mass.

Normalized integration method

NIM has a similar objective function, which is also the norm of Sobolev space \(H^{-1} \) in functional analysis:

\[NIM(f, g) = \int_0^T |F(t) - G(t)|^2 dt. \] \hspace{1cm} (7)
Relations among misfit functions

Signal g (red) is a shift of Ricker wavelet f (blue).
Relations among misfit functions

Both **positivity** and **integration** in time are important here:

\[W_1 = \int |F^{-1} - G^{-1}| \]

\[W_2^2 = \int |F^{-1} - G^{-1}|^2 \]

\[\text{NIM} = \int |F - G|^2 \]
Convexity of the misfit functions w.r.t. shift

Conventional L2

Integral L2 misfit

NIM with \(p(x) = x^x \)

\(W_2, p(x) = x^x \)

\(W_2, p(x) = ax + b \)

\(W_2, p(x) = e^{cx} \)
The importance of normalization function

- \(p(x) = |x| \) hurt the data regularity (smoothness)
The importance of normalization function

- \(p(x) = |x| \) hurt the data regularity (smoothness)
- \(p(x) = x^2 \) gives perfect convexity, but there is an issue with the gradient at reflections.
The importance of normalization function

- $p(x) = |x|$ hurt the data regularity (smoothness)
- $p(x) = x^2$ gives perfect convexity, but there is an issue with the gradient at reflections.
 v changes $\Rightarrow f$ changes, and $\frac{\partial J(f^2, g^2)}{\partial v} \neq 0$, but $\frac{\partial J(f^2, g^2)}{\partial f} = 0$ whenever $f = 0$.
The importance of normalization function

- \(p(x) = |x| \) hurt the data regularity (smoothness)
- \(p(x) = x^2 \) gives perfect convexity, but there is an issue with the gradient at reflections.
 \(v \) changes \(\Rightarrow f \) changes, and \(\frac{\partial J(f^2,g^2)}{\partial v} \neq 0 \), but \(\frac{\partial J(f^2,g^2)}{\partial f} = 0 \) whenever \(f = 0 \).
 It is OK for transmission, source inversion, Camembert, etc.

- \(p(x) = ax + b \) no longer have the global convexity w.r.t. shifts.
- averaging over several receivers may eliminate or reduce the local minima.
- linear scaling does not distort the shared events in datasets if seismic data has mean zero property. Good for reflections.
- \(p(x) = \exp(cx) \) is very close to linear transformation when \(c \) is small from Taylor expansion, but it can be global convex if \(c \) is chosen carefully.
The importance of normalization function

- $p(x) = |x|$ hurt the data regularity (smoothness)
- $p(x) = x^2$ gives perfect convexity, but there is an issue with the gradient at reflections.
 \[\nabla v \text{ changes } \Rightarrow f \text{ changes, and } \frac{\partial J(f^2,g^2)}{\partial v} \neq 0, \text{ but } \frac{\partial J(f^2,g^2)}{\partial f} = 0 \text{ whenever } f = 0. \]
 It is OK for transmission, source inversion, Camembert, etc.
- $p(x) = ax + b$ no longer have the global convexity w.r.t. shifts.
 - averaging over several receivers may eliminate or reduce the local minima.
 - linear scaling does not distort the shared events in datasets if seismic data has mean zero property. Good for reflections.
The importance of normalization function

- \(p(x) = |x| \) hurt the data regularity (smoothness)
- \(p(x) = x^2 \) gives perfect convexity, but there is an issue with the gradient at reflections.

 \[v \text{ changes } \Rightarrow f \text{ changes, and } \frac{\partial J(f, g)}{\partial v} \neq 0, \text{ but } \frac{\partial J(f, g)}{\partial f} = 0 \text{ whenever } f = 0. \]

 It is OK for transmission, source inversion, Camembert, etc.

- \(p(x) = ax + b \) no longer have the global convexity w.r.t. shifts.
 - averaging over several receivers may eliminate or reduce the local minima.
 - linear scaling does not distort the shared events in datasets if seismic data has mean zero property. Good for reflections.

- \(p(x) = \exp(cx) \) is very close to linear transformation when \(c \) is small from Taylor expansion, but it can be global convex if \(c \) is chosen carefully.
Convexity: data domain to model domain \((p(x) = ax + b)\)

Here is a test for the convexity in model domain [Métivier et al., 2016].
The p-wave velocity model is assumed to vary linearly in depth such that

\[v_p(x, z) = v_{p,0} + \alpha z \]

The reference is chosen so that \(v_{p,0} = 2\) km/s and \(\alpha = 0.7\) s\(^{-1}\). The \(L^2\) and \(W_2\) misfit functions are then evaluated on a grid of \(41 \times 45\) points such that

\[v_{p,0} \in [1.75, 2.25], \quad \alpha \in [0.4, 1] \]
Convexity: data domain to model domain \((p(x) = ax + b)\)

L2 misfit

W2 misfit
Numerical Results
1. Marmousi model: trace-by-trace W_2 comparison

![Initial velocity](image1)

![True velocity](image2)
1. Marmousi model: gradient of the first iteration

L2 gradient

W2 gradient (trace by trace)

5Hz Ricker without 0-2 Hz

11 sources on top
1. Marmousi model: trace-by-trace W_2 comparison

After 300 l-BFGS iterations

Computing time are the same.
2. Modified BP model: trace-by-trace W_2 comparison

Initial velocity

True velocity
2. Modified BP model: gradient of the first iteration

L2 gradient

Z (km)

0 5 10 15

x (km)

0 1 2 3 4 5

W2 gradient

Z (km)

0 0.05 0.1 0.15 0.2 0.25

x (km)

0 5 10 15

5Hz Ricker keeping 3-9 Hz

11 sources on top
2. Modified BP model: trace-by-trace W_2 comparison

After 300 l-BFGS iterations

Computing time are the same.
Conclusion
Conclusion

Integration in time

• Reduces high frequencies
• Help remove the noise by averaging
• May not avoid local minima

Positivity

• “Breaks” the oscillatory periodicity which further reduces the risk of cycle skipping.

Summary
The analysis brings additional insights into the importance of seismic data preconditioning
Remarks

Challenges

• Constraints of optimal transport are not natural in seismology:

\[\int_X f(x) dx = \int_Y g(y) dy, \quad f, g \geq 0, \quad \text{convex domain} \]
Remarks

Challenges

- Constraints of optimal transport are not natural in seismology:

\[\int_X f(x) \, dx = \int_Y g(y) \, dy, \quad f, g \geq 0, \text{ convex domain} \]

Need data normalization (\(|f|, f^2, a(f + b), \ldots\))
Remarks

Challenges

• Constraints of optimal transport are not natural in seismology:

\[
\int_X f(x) \, dx = \int_Y g(y) \, dy, \quad f, g \geq 0, \quad \text{convex domain}
\]

Need data normalization (\(|f|, f^2, a(f + b), \ldots\))

• For \(W_2\) in 2D, a faster Monge-Ampère solver is required (Regularity of \(g\), error, cost, etc.)
Remarks

Challenges

• Constraints of optimal transport are not natural in seismology:

\[\int_X f(x) \, dx = \int_Y g(y) \, dy, \quad f, g \geq 0, \quad \text{convex domain} \]

Need data normalization (|f|, f^2, a(f + b), ...)

• For \(W_2 \) in 2D, a faster Monge-Ampère solver is required (Regularity of \(g \), error, cost, etc.)

• Trace-by-trace comparison (\(W_2 \) in 1D) is successful [Yang et al., 2016]
Engquist, B., and B. D. Froese, 2014, Application of the Wasserstein metric to seismic signals: Communications in Mathematical Sciences, 12.

Engquist, B., B. D. Froese, and Y. Yang, 2016, Optimal transport for seismic full waveform inversion: Communications in Mathematical Sciences, 14.
