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Optimal transport: an optimal assignment problem SE I S COPE

• The formalism of optimal transport goes back to (1781) and is due to

Gaspard Monge, French Mathematician (one funder of the Ecole Normale

and Ecole Polytechnique)

• Initial purpose: find the more efficient way to move sand piles pi to fill

holes qj during the building of a bridge
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Optimal transport: an optimal assignment problem SE I S COPE

• The formalism of optimal transport goes back to (1781) and is due to

Gaspard Monge, French Mathematician (one funder of the Ecole Normale

and Ecole Polytechnique)

• Initial purpose: find the more efficient way to move sand piles pi to fill

holes qj during the building of a bridge

The matrix representing this assign-

ment is denoted by

γ =

3 0 2 0

0 0 0 1

0 2 0 0

 (1)
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Optimal transport: an optimal assignment problem SE I S COPE

• Kantorovich (1942) relaxation: Optimal transport consists in finding the

matrix γ (also known as transport plan) satisfying the linear

programming problem

min
γij∈Π(p,q

∑
ij

γij‖xi − yj‖,

where Π(p, q) =

{
γij ≥ 0,

∑
j

γij = pi,
∑
i

γij = qj

}
(2)

and ‖xi − yj‖ denotes a distance between xi and yj which is called the

ground distance (often the Euclidean distance)
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Optimal transport distance: the Wasserstein distance SE I S COPE

• Assume pi and qj are discretization of data dcal and dobs

• The minimal cost in the sense of the optimal transport defines a distance

between the distribution dcal and dobs

• This distance is also referred to as the Wasserstein distance Wp, p ≥ 1

Wp(dcal, dobs) =

(
min

γij∈Π(dcal,dobs)

∑
ij

γij‖xi − yj‖p
)1/p

(3)

OT for FWI 6



Convexity of the Wasserstein distance with respect to shifts SE I S COPE

• Consider dcal and dobs are two 1D Gaussian distribution shifted by ∆t

• Then we have

W p
p (dcal, dobs) = |∆t|p, p ≥ 1 (4)

Convexity of the Wasserstein distance with respect to ∆t
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Sensitivity of the seismic data to velocity perturbation SE I S COPE

• Large-scale to medium-scale velocity perturbations (1000 m to 100 m at

the exploration scale) are mainly responsible for time-shifts

⇒ from an inverse problem point of view, recovering these velocity

perturbations require to correctly interpret these time-shifts

• This is difficult when the data is compared with a L2 distance because of

cycle skipping/phase ambiguity
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Capturing the time shift: how to measure the misfit ? SE I S COPE

• Simple test: computing the L2 misfit between two Ricker with respect to

time-shifts yields a multi-modal misfit function
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Optimal transport: another way to compare signals SE I S COPE

• Computing the optimal transport misfit between two Ricker with respect

to time-shifts yields a convex misfit function (Engquist and Froese, 2014)
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Assumptions required by optimal transport SE I S COPE

In the general case, computing the Wasserstein distance between dcal and dobs

requires two assumptions to be satisfied

• positivity

dcal ≥ 0, dobs ≥ 0

• mass conservation∑
i

(dcal)i =
∑
j

(dobs)j
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What about seismic data SE I S COPE

Consider dcal and dobs represent two discretized seismic traces

• dcal and dobs are oscillatory: positivity assumption breaks down

• the zero frequency of the signals is 0: the mass conservation holds∫
dcal(t)dt =

∫
dobs(t)dt = 0 (5)
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Another issue: computational complexity SE I S COPE

Linear programming algorithms (simplex) for the computation of the

Wasserstein distance require at least O(N3) operations for size N discrete

distributions

For acoustic time-domain FWI

• In 2D, the data is discretized with O(103) time discretization points and

O(102) to receivers =⇒ N = O(105)

• In 3D, the data is discretized with O(103) time discretization points and

O(104) to receivers =⇒ N = O(107)

Besides the positivity problem, we need an efficient numerical method to

solve the optimal transport problem
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How to deal with the positivity problem SE I S COPE

To overcome the positivity problem, we focus on the dual formulation of the

W1 distance (Santambrogio, 2015)

min
γij∈Π(dcal,dobs)

∑
ij

γij‖xi − yj‖

⇐⇒
max
ϕ,ψ

∑
i

ϕi(dcal)i +
∑
j

ψj(dobs)j , ϕi + ψj ≤ ‖xi − yj‖, (standard dual)

⇐⇒
max
ϕ∈Lip1

∑
i

ϕi ((dcal)i − (dobs)i) (only for W1)

(6)

where Lip1 is the space of 1-Lipschitz functions for the ground cost ‖x− y‖

Lip1 {ϕ : x ∈ X −→ R, ∀(xi, xj) ∈ X ×X, |ϕi − ϕj | ≤ ‖xi − xj‖} (7)
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Computation of the dual W1 with `1 ground cost SE I S COPE

To design a fast solver, we focus on the `1 ground cost

• The discretization of the problem is, for a 3D data cube indexed by

1 ≤ n ≤ Nt for time tn

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny for the receiver position xi, yj

max
ϕnij

∑
nij

ϕnij ((dcal)nij − (dobs)nij) ,

|ϕnij − ϕn′i′j′ | < |tn − tn′ |+ |xi − xi′ |+ |yj − yj′ |,
(8)

• The number of unknowns is N = Nt ×Nx ×Ny

O(N2) global linear constraints: too high complexity for efficient

numerical algorithms
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Computation of the dual W1 with `1 ground cost SE I S COPE

• Thanks to the sum of absolute values in problem (8), the global system is

equivalent to

max
ϕnij

∑
nij

ϕnij ((dcal)nij − (dobs)nij) ,

(9)
|ϕn+1ij − ϕnij | < |tn+1 − tn|,
|ϕni+1j − ϕnij | < |yi+1 − yi|,
|ϕnji+1 − ϕnij | < |zj+1 − zj |,

O(N) local linear constraints: far better complexity (Métivier et al., 2016c)
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Computation of the dual W1 with `1 ground cost SE I S COPE

• The problem (9) is reformulated as the convex non-smooth problem

max
ϕ

f1(ϕ) + f2(Aϕ),

f1(ϕ) =
∑
nij

ϕnij ((dcal)nij − (dobs)nij) , f2(ϕ) = −iK (ϕ) , (10)

• The matrix A accounts for the constraints

A =

[
Dx Dy Dz

1

λ
IN

]T
∈ MP,N (R) (11)

where Dx, Dy, Dz are the forward finite-differences operators

(Dxϕ)ijk =
ϕi+1,j,k − ϕijk

hx
,

(
Dyϕ

)
ijk

=
ϕi,j+1,k − ϕijk

hy
, (Dzϕ)ijk =

ϕi,j,k+1 − ϕijk

hz

(12)

while K is the unit hypercube and iK the indicator function of K

iK(v) =

∣∣∣∣ 0 if v ∈ K
+∞ if v /∈ K, (13)
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Computation of the dual W1 with `1 ground cost SE I S COPE

• A proximal splitting algorithm can be use to solve this problem: we choose

the Simultaneous Direction Method of Multipliers (SDMM) for its good

convergence properties (Combettes and Pesquet, 2011)

• The most computational demanding task of the algorithm is the resolution

of a linear system involving a matrix which is equivalent to a second-order

finite difference discrete of the Laplacian operator with homogeneous

Neumann boundary condition

• Fast-solvers can be used to invert this matrix (Poisson’s problem), either

based on

Fast Fourier Transform (Swarztrauber, 1974): complexity

O(N logN)

Multigrid algorithms (Brandt, 1977; Adams, 1989): complexity in

O(N)

A complete description of this numerical strategy is given in (Métivier et al., 2016c)

with 2D and 3D examples
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Implementation within the FWI framework SE I S COPE

• We assume the acoustic approximation

• For the L2 distance, the gradient of the misfit function is

∇f(x) =
−2

vP (x)3

∫ T

0

∂ttp(x, t)λ(x, t)dt (14)

where

• vP (x): P-wave velocity

• p(x, t): pressure wavefield

• λ(x, t): adjoint wavefield backpropagation of the L2 residuals dobs − dcal

∂ttλ− c2∆λ = dobs − dcal (15)
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Implementation within the FWI framework SE I S COPE

• We assume the acoustic approximation

• For the KR distance, the gradient of the misfit function is

∇f(x) =
−2

vP (x)3

∫ T

0

∂ttp(x, t)λ(x, t)dt (16)

where

• vP (x): P-wave velocity

• p(x, t): pressure wavefield

• λ(x, t): adjoint wavefield backpropagation of the KR residuals ϕ

∂ttλ− c2∆λ = ϕ (17)
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Implementation within the FWI framework SE I S COPE

ϕnij = arg max
ϕnij

∑
nij

ϕnij ((dcal)nij − (dobs)nij) , (18)
|ϕn+1ij − ϕnij | < |tn+1 − tn|,
|ϕni+1j − ϕnij | < |yi+1 − yi|,
|ϕnji+1 − ϕnij | < |zj+1 − zj |,

For the optimal transport distance, the corresponding adjoint source is equal to

the function ϕ which is the solution of the constrained maximization problem
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Numerical illustration: 1D Time shifted Ricker signals SE I S COPE

• We come back to 1D time-shifted Ricker functions
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Numerical illustration: 1D Time shifted Ricker signals SE I S COPE

• Misfit function shape

L2 distance function with respect to the time-shift.

W1 distance function with respect to the time shift

We recover a single minimum but lose the convexity
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The Marmousi case study SE I S COPE

• surface acquisition with 128

sources each 125 m and 168

receivers each 100 m

• acoustic modeling engine to

generate synthetic data

• high pass filter of data: no

energy below 3 Hz
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The Marmousi case study SE I S COPE

Inversion using the standard L2 distance starting from the crude velocity model
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The Marmousi case study SE I S COPE

Inversion using the W1 distance starting from the crude velocity model
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The Marmousi case study SE I S COPE

Inversion using the L2 distance starting from a crude velocity model
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The Marmousi case study SE I S COPE

Inversion using the W1 distance starting from a crude velocity model
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The Marmousi case study : example of adjoint-source SE I S COPE
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The Marmousi case study : 2D OT or multi-1D OT ? SE I S COPE
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Computational cost SE I S COPE

Computation overhead per gradient (FISHPACK and 50 SDMM iterations):

3.8 s (19%)

• L2 gradient computation time 20,6 s

• KR gradient computation time 24,4 s

Number of iterations

• L2 inversion number of iterations: 83

• KR inversion number of iterations: 439
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BP 2004 benchmark model SE I S COPE

Reconstructing salt structures through a layer stripping approach

Exact model

• surface acquisition with 128

sources each 125 m and 161

receivers each 100 m

• acoustic modeling engine to

generate synthetic data

• high pass filter of data: no

energy below 3 Hz
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BP 2004 benchmark model SE I S COPE

Reconstructing salt structures through a layer stripping approach

Exact model
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BP 2004 benchmark model : initial model SE I S COPE

Reconstructing salt structures through a layer stripping approach

Initial model
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BP 2004 benchmark model : L2 SE I S COPE

Reconstructing salt structures through a layer stripping approach

Step 1 with L2 distance
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BP 2004 benchmark model : OT SE I S COPE

Reconstructing salt structures through a layer stripping approach

Step 1 with optimal transport distance
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BP 2004 benchmark model : data analysis SE I S COPE

Reconstructing salt structures through a layer stripping approach

Data comparison
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BP 2004 benchmark model : OT SE I S COPE

Reconstructing salt structures through a layer stripping approach

Step 2
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BP 2004 benchmark model : OT SE I S COPE

Reconstructing salt structures through a layer stripping approach

Step 3
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BP 2004 benchmark model : OT SE I S COPE

Reconstructing salt structures through a layer stripping approach

Step 4
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BP 2004 benchmark model : OT SE I S COPE

Reconstructing salt structures through a layer stripping approach

Step 5
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BP 2004 benchmark model : OT SE I S COPE

Reconstructing salt structures through a layer stripping approach

Step 6
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The simplest solution: add a constant mass SE I S COPE

• Addition of a positive constant mass to make the signed measures

strictly positive

W̃ (dcal, dobs) := W (dcal + α, dobs + α)

with α > |min(dcal, dobs)|

⇒
+offset

Drawbacks: the transformation becomes local: no more transportation along

the time axis: we loose the convexity with respect to time shifts
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Other strategies to transport signed measures SE I S COPE

• In the literature, we have found 3 ideas based on the separation of positive
and negative parts of the signals (Ambrosio et al., 2011; Mainini, 2012)

1. taking the absolute value of the signal

2. transport separately positive and negative part of the signal (Engquist and

Froese, 2014)

3. recombine the data using the decomposition in positive and negative part to

compare positive measures with mass conservation (Mainini, 2012)
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Absolute value SE I S COPE

Wabsolute(dcal, dobs) := W (|p|, |q|)

⇒
Absolute value

Drawbacks: loss of polarity information: no sensitivity to impedance contrast
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Separation of positive and negative parts(Engquist and Froese, 2014)SE I S COPE

WEngquist(dcal, dobs) := W (d+
cal, d

+
obs) +W (d−cal, d

−
obs)

with dcal = d+
cal − d

−
cal and dobs = d+

obs − d
−
obs

=⇒

Drawbacks:

• we lose the mass conservation∫
p+ 6=

∫
q+,

∫
p− 6=

∫
q− (19)

• artificial decorrelation between positive and negative part of the signal
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Mainin strategy (Mainini, 2012) SE I S COPE

WMainini(dcal, dobs) := W (d+
cal + d−obs, d

+
obs + d−cal)

with dcal = d+
cal − d

−
cal and dobs = d+

obs − d
−
obs

⇒
Mainini

Advantages:

• positivity and mass conservation∫
d+
cal − d

−
cal =

∫
d+
obs − d

−
obs ⇔

∫
d+
cal + d−obs =

∫
d+
obs + d−cal (20)
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Mainini method for W1
SE I S COPE

• Important: the Mainini strategy for the W1 distance is equivalent to the

dual strategy we have employed so far

W 1
Mainini(dcal, dobs) = W 1(d+

cal + d−obs, d
−
cal + d+

obs)

= max
ϕ∈Lip1

N∑
i=1

ϕi
(
d+
cal,i + d−obs,i − (d−cal,i + d+

obs,i)
)

= max
ϕ∈Lip1

N∑
i=1

ϕi

d+
cal,i − d

−
cal,i︸ ︷︷ ︸

dcal

−(d+
obsi
− d−obsi︸ ︷︷ ︸
dobs

)


= max

ϕ∈Lip1

N∑
i=1

ϕi (dcal − dobs)

= W 1(dcal, dobs)
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Extension of the Mainini (2012) approach SE I S COPE

• We have obtained encouraging results with W 1 and a `1 ground cost

• What about W 2 using the Mainini decomposition ? → more convex /

smoother w.r.t time shift?

To do so, we now need an efficient numerical strategy for general W p problems

Conventional approaches for large scale transport problems:

• Monge-Ampère equation (Philippis and Figalli, 2014)

• Benamou-Brenier formulation (Benamou and Brenier, 2000)

• Entropic regularization (Cuturi, 2013; Benamou et al., 2015)
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Entropic regularization strategy SE I S COPE

• Entropic regularized problem (Cuturi, 2013; Benamou et al., 2015)

W p
ε (dcal, dobs) = min

γ∈Π(dcal,dobs)

N∑
i,j=1

Cijγij + ε︸︷︷︸
regularization

N∑
i,j=1

γij(log(γij)− 1)︸ ︷︷ ︸
entropy

(21)

with:

• Π(dcal, dobs) :=
{
γ ∈ RN×N≥0 ;

∑N
i=1 γij = dcal,i ,

∑N
j=1 γij = dobs,j

}
• Cij := dist(xi, yj)

• ε > 0

• if γij = 0, the convention is that 0 log(0) = 0
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Numerical solution through alternate projection SE I S COPE

• An alternate projection algorithm based on the Sinkhorn iteration has been

proposed to solve this problem (Bregman, 1967; Sinkhorn and Knopp,

1967; Cuturi, 2013; Benamou et al., 2015)

γ∗ε = lim
n→+∞

γ(n) = lim
n→+∞

diag
(
u(n)

)
K diag

(
v(n)

)
(22)

Kij = e−
Cij

ε (23)

• Algorithm

• u(n+1)
i =

dcal,i

(Kv(n))i

• v(n+1)
j =

dobs,j

(KTu(n+1))j
• u(n) ∈ RN , v(n) ∈ RN , K ∈ RN×N
• u(0) = v(0) = (1, ..., 1)T ∈ RN
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Entropic regularization: computational complexity SE I S COPE

The computational complexity depends on the product: Kv

• naive implementation Kv → O(N2)

• exploiting the symmetric Toeplitz structure of K → O(N log(N)) (FFT

acceleration, no approximation)

• exploiting the sparsity of K → O(N) (approximation)
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Preliminary results SE I S COPE

• We come back to 1D time-shifted Ricker functions now with the Mainini

(2012) approach

=⇒
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Preliminary results SE I S COPE

Comparison between Mainini cost with W1 and W2 computed through the

entropic regularization approach (Cuturi, 2013; Benamou et al., 2015)
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Conclusion and perspectives SE I S COPE

• Optimal transport appears as an interesting approach to mitigate cycle

skipping in FWI

• The main difficulty is however to deal with non-positive meausres: the

seismic data is oscillatory
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Conclusion and perspectives SE I S COPE

• Optimal transport appears as an interesting approach to mitigate cycle

skipping in FWI

• The main difficulty is however to deal with non-positive meausres: the

seismic data is oscillatory

• A first implementation based on the dual form of the W1 distance has

been proposed in (Métivier et al., 2016a,b,c)

• In this presentation, we have shown that this is actually a special case of a

more general approach proposed by Mainini (2012) to extend optimal

transport to signed measures

• This opens the way to work with more general Wp, p > 1 distance, that

might be more convex and/or smoother than W1

• As a preliminary step, we have focused on the entropic regularization

approach (Cuturi, 2013; Benamou et al., 2015), an efficient strategy to

solve general large scale optimal transport problems

OT for FWI 59



Acknowledgments SE I S COPE

Thank you for your attention

• IDRIS and TGCC, French national computing centers

• CIMENT, Grenoble computing center

• SEISCOPE sponsors : http://seiscope2.osug.fr

Questions?

OT for FWI 60

http://seiscope2.osug.fr


Adams, J. C. (1989). MUDPACK: Multigrid portable FORTRAN software for the efficient solution

of linear elliptic partial differential equations. Applied Mathematics and Computation,

34(2):113–146.

Ambrosio, L., Mainini, E., and Serfaty, S. (2011). Gradient flow of the

Chapman–Rubinstein–Schatzman model for signed vortices. Annales de l’Institut Henri Poincaré
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