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Motivation: seismic oil and gas exploration

Problems addressed:
1 Inversion: quantitative

velocity estimation, FWI

2 Imaging: qualitative on
top of velocity model

3 Data preprocessing:
multiple suppression

Common framework:
Reduced Order Models
(ROM)
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Forward model: acoustic wave equation

Acoustic wave equation in the time domain

utt = Au in Ω, t ∈ [0,T ]

with initial conditions

u|t=0 = B, ut |t=0 = 0,

sources are columns of B ∈ RN×m

The spatial operator A ∈ RN×N is a (symmetrized) fine grid
discretization of

A = c2∆

with appropriate boundary conditions
Wavefields for all sources are columns of

u(t) = cos(t
√
−A)B ∈ RN×m
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Data model and problem formulations

For simplicity assume that sources and receivers are collocated,
receiver matrix is also B
The data model is

D(t) = BT u(t) = BT cos(t
√
−A)B,

an m ×m matrix function of time

Problem formulations:
1 Inversion: given D(t) estimate c
2 Imaging: given D(t) and a smooth kinematic velocity model c0,

estimate “reflectors”, discontinuities of c
3 Data preprocessing: given D(t) obtain F(t) with multiple

reflection events suppressed/removed
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Reduced order models

Data is always discretely sampled, say uniformly at tk = kτ
The choice of τ is very important, optimally τ around Nyquist rate
Discrete data samples are

Dk = D(kτ) = BT cos
(

kτ
√
−A
)

B = BT Tk (P)B,

where Tk is Chebyshev polynomial and the propagator is

P = cos
(
τ
√
−A
)
∈ RN×N

A reduced order model (ROM) P̃, B̃ should fit the data

Dk = BT Tk (P)B = B̃T Tk (P̃)B̃, k = 0,1, . . . ,2n − 1
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Projection ROMs

Projection ROMs are of the form

P̃ = VT PV, B̃ = VT B,

where V is an orthonormal basis for some subspace
What subspace to project on to fit the data?
Consider a matrix of wavefield snapshots

U = [u0,u1, . . . ,un−1] ∈ RN×nm, uk = u(kτ) = Tk (P)B

We must project on Krylov subspace

Kn(P,B) = colspan[B,PB, . . . ,Pn−1B] = colspan U

The data only knows about what P does to wavefield
snapshots uk
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ROM from measured data

Wavefields in the whole domain U are unknown, thus V is
unknown
How to obtain ROM from just the data Dk?
Data does not give us U, but it gives us inner products!
Multiplicative property of Chebyshev polynomials

Ti(x)Tj(x) =
1
2

(Ti+j(x) + T|i−j|(x))

Since uk = Tk (P)B and Dk = BT Tk (P)B we get

(UT U)i,j = uT
i uj =

1
2

(Di+j + Di−j),

(UT PU)i,j = uT
i Puj =

1
4

(Dj+i+1 + Dj−i+1 + Dj+i−1 + Dj−i−1)
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ROM from measured data

Suppose U is orthogonalized by a block QR (Gram-Schmidt)
procedure

U = VLT , equivalently V = UL−T ,

where L is a block Cholesky factor of the Gramian UT U known
from the data

UT U = LLT

The projection is given by

P̃ = VT PV = L−1
(

UT PU
)

L−T ,

where UT PU is also known from the data
Cholesky factorization is essential, (block) lower triangular
structure is the linear algebraic equivalent of causality
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Problem 1: Inversion (FWI)

Conventional FWI (OLS)

minimize
c

‖D? − D( · ; c)‖22

Replace the objective with a “nonlinearly preconditioned”
functional

minimize
c

‖P̃? − P̃(c)‖2F ,

where P̃? is computed from the data D? and P̃(c) is a (highly)
nonlinear mapping

P̃ : c → A(c)→ U→ V→ P̃

Similar approach to diffusive inversion (parabolic PDE, CSEM)
converges in one Gauss-Newton iteration
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

CG iteration 1, E
r
 = 0.278869

 

 

CG
true

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

CG iteration 1, E
r
 = 0.272127

 

 

CG
true

Automatic removal of multiple reflections.

A.V. Mamonov ROMs for inversion and imaging 10 / 31



Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
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Problem 2: Imaging

ROM is a projection, we can use backprojection

If span(U) is suffiently rich, then columns of VVT should be good
approximations of δ-functions, hence

P ≈ VVT PVVT = VP̃VT

Problem: U and V are unknown

We have a rough idea of kinematics, i.e. the travel times

Equivalent to knowing a smooth kinematic velocity model c0

For known c0 we can compute

U0, V0, P̃0
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Backprojection imaging functional

Take backprojection P ≈ VP̃VT and make another approximation:
replace unknown V with V0

P ≈ V0P̃VT
0

For the kinematic model we know V0 exactly

P0 ≈ V0P̃0VT
0

Take the diagonals of backprojections to extract approximate
Green’s functions

G( · , · , τ)−G0( · , · , τ) = diag(P−P0) ≈ diag
(

V0(P̃− P̃0)VT
0

)
= I

Approximation quality depends only on how well columns of
VVT

0 and V0VT
0 approximate δ-functions
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Simple example: layered model
True sound speed c Backprojection: c0 + αI

RTM imageA simple layered model, p = 32
sources/receivers (black ×)
Constant velocity kinematic
model c0 = 1500 m/s
Multiple reflections from waves
bouncing between layers and
surface
Each multiple creates an RTM
artifact below actual layers
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V

t = 10τ

t = 15τ

t = 20τ
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V

t = 25τ

t = 30τ

t = 35τ
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Approximation of δ-functions
Columns of V0VT

0 Columns of VVT
0

y = 345 m

y = 510 m

y = 675 m
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Approximation of δ-functions
Columns of V0VT

0 Columns of VVT
0

y = 840 m

y = 1020 m

y = 1185 m

A.V. Mamonov ROMs for inversion and imaging 24 / 31



High contrast example: hydraulic fractures
True c Backprojection image I

Important application: hydraulic fracturing

Three fractures 10 cm wide each

Very high contrasts: c = 4500 m/s in the surrounding rock,
c = 1500 m/s in the fluid inside fractures
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High contrast example: hydraulic fractures
True c RTM image

Important application: hydraulic fracturing

Three fractures 10 cm wide each

Very high contrasts: c = 4500 m/s in the surrounding rock,
c = 1500 m/s in the fluid inside fractures
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Backprojection imaging: Marmousi model
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Problem 3: Data preprocessing

Use multiple-suppression properties of ROM to preprocess data
Compute P̃ from D and P̃0 from D0 corresponding to c0

Propagator perturbation

P̃ε = P̃0 + ε(P̃− P̃0)

Propagate the perturbation

Dε,k = B̃T Tk (P̃ε)B̃

Generate filtered data

Fk = D0,k +
dDε,k

dε

∣∣∣∣
ε=0

Can show that Fk corresponds to data that a Born forward
model will generate

A.V. Mamonov ROMs for inversion and imaging 28 / 31



Example: seismogram comparison

Three direct arrivals +
three multiples
Direct arrival from small
scatterer masked by the
first multiple

Dk − D0,k Fk − D0,k
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Conclusions and future work

ROMs for inversion, imaging, data preprocessing
Time domain formulation is essential, linear algebraic analogues
of causality: Gram-Schmidt, Cholesky
Implicit orthogonalization of wavefield snapshots: suppression
of multiples in backprojection imaging and data preprocessing
Accelerated convergence, alleviated cycle-skipping in
ROM-preconditioned FWI

Future work:
Non-symmetric ROM for non-collocated sources/receivers
Noise effects and stability
ROM-preconditioned FWI in 2D/3D
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