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Motivation: seismic oil and gas exploration
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Problems addressed:

@ Inversion: quantitative
velocity estimation, FWI

@ Imaging: qualitative on
top of velocity model

© Data preprocessing:
multiple suppression

@ Common framework:
Reduced Order Models
(ROM)
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Forward model: acoustic wave equation

@ Acoustic wave equation in the time domain
ur=Au inQ, t€][0,T]
with initial conditions
Ult=o =B, U= =0,

sources are columns of B € RVx™
@ The spatial operator A ¢ RV*N is a (symmetrized) fine grid
discretization of
A=A
with appropriate boundary conditions
@ Wavefields for all sources are columns of

u(t) = cos(tv/—A)B € RNx™ llll
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Data model and problem formulations

@ For simplicity assume that sources and receivers are collocated,
receiver matrix is also B

@ The data model is
D(t) = B"u(t) = B cos(tv/—A)B,

an m x m matrix function of time

Problem formulations:
@ Inversion: given D(t) estimate ¢

@ Imaging: given D(t) and a smooth kinematic velocity model ¢y,
estimate “reflectors”, discontinuities of ¢

© Data preprocessing: given D(t) obtain F(t) with multiple
reflection events suppressed/removed
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Reduced order models

@ Data is always discretely sampled, say uniformly at t, = k7
@ The choice of 7 is very important, optimally 7 around Nyquist rate
@ Discrete data samples are

Dy = D(k7) = BT cos (/m/—A> B = B” 7x(P)B,
where Ty is Chebyshev polynomial and the propagator is
P = cos (rﬂ) e RV<N

@ A reduced order model (ROM) P, B should fit the data

D, =B'T,(P)B=B'T(P)B, k=0,1,...,2n—1

|
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Projection ROMs

@ Projection ROMs are of the form
P=V'PV, B=V'B,

where V is an orthonormal basis for some subspace
@ What subspace to project on to fit the data?
@ Consider a matrix of wavefield snapshots

U=[uo,us,...,up1] € RV uy = u(kr) = T(P)B
@ We must project on Krylov subspace
Kn(P,B) = colspan[B, PB, ...,P"~'B] = colspan U

@ The data only knows about what P does to wavefield
snapshots u, llll
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ROM from measured data

@ Wavefields in the whole domain U are unknown, thus V is
unknown

@ How to obtain ROM from just the data D, ?
@ Data does not give us U, but it gives us inner products!
@ Multiplicative property of Chebyshev polynomials

TOOTiX) = (T () + Ty ()

@ Since uy = T¢(P)B and Dy = B” T4(P)B we get

’
(UTU);; =u/u; = E(DiJrj +Di)),

1
(UTPU);; = u/Pu; = 2(Djsiv1 +Djips + Djyig + D) llll
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ROM from measured data

@ Suppose U is orthogonalized by a block QR (Gram-Schmidt)
procedure
U=VL', equivalently V= UL,

where L is a block Cholesky factor of the Gramian U”U known

from the data
u'u=LL"

@ The projection is given by
P-—VPV=L" <UTPU> L7,

where UTPU is also known from the data

@ Cholesky factorization is essential, (block) lower triangular
structure is the linear algebraic equivalent of causality lﬂl
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Problem 1: Inversion (FWI)

@ Conventional FWI (OLS)
minimize |D* — D(-; o)|I3

@ Replace the objective with a “nonlinearly preconditioned”
functional L
minimize |P* — P(c)|2,

where P* is computed from the data D* and I~9(c) is a (highly)
nonlinear mapping

P:coA(c)>U->VP

@ Similar approach to diffusive inversion (parabolic PDE, CSEM
converges in one Gauss-Newton iteration
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
CG iteration 1, Er =0.278869 CG iteration 1, Er =0.272127
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
CG iteration 5, Er =0.265722 CG iteration 5, Er =0.197026
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
CG iteration 10, Er =0.273922 CG iteration 10, Er =0.157774
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
CG iteration 15, Er =0.268569 CG iteration 15, Er =0.138945
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM-preconditioned
CG iteration 1, E = 0.173770 CG iteration 1, E = 0.147049
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Conventional vs. ROM-preconditioned FWI in 1D

0.2

Conventional ROM-preconditioned
CG iteration 5, Er =0.174695 CG iteration 5, Er =0.105966
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Conventional vs. ROM-preconditioned FWI in 1D

0.2

Conventional ROM:-preconditioned
CG iteration 10, E = 0.174688 CG iteration 10, E = 0.095547
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Avoiding the cycle skipping.
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Conventional vs. ROM-preconditioned FWI in 1D

Conventional ROM:-preconditioned
CG iteration 15, E = 0.174689 CG iteration 15, E = 0.086519
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Problem 2: Imaging

@ ROM is a projection, we can use backprojection

e If span(U) is suffiently rich, then columns of VVT should be good
approximations of é-functions, hence

P~ VV'PVV' = VPV’
@ Problem: U and V are unknown
@ We have a rough idea of kinematics, i.e. the travel times
@ Equivalent to knowing a smooth kinematic velocity model ¢

@ For known ¢y we can compute

Up, Vo, Py ll!'l
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Backprojection imaging functional

@ Take backprojection P ~ VPVT and make another approximation:
replace unknown V with Vg

P~ VoPV]
@ For the kinematic model we know V; exactly
Po ~ VoPoV{

@ Take the diagonals of backprojections to extract approximate
Green’s functions

G(-, -, 7)~Gol, -, 7) = diag(P—Po) ~ diag (Vo(P — Po)V{ ) =T

@ Approximation quality depends only on how well columns of
VV[ and VoV[ approximate s-functions llll
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Simple example: layered model

True sound speed ¢
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Backprojection: ¢y + aZ
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A simple layered model, p = 32
sources/receivers (black x)
Constant velocity kinematic
model ¢o = 1500 m/s

Multiple reflections from waves
bouncing between layers and
surface

Each multiple creates an RTM
artifact below actual layers
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Snapshot orthogonalization
Snapshots U

Orthogonalized snapshots V
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Snapshot orthogonalization
Snapshots U Orthogonalized snapshots V
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Approximation of ¢-functions
Columns of VoV/ Columns of VV[
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Approximation of ¢-functions
Columns of VoV{ Columns of VV[
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High contrast example: hydraulic fractures

True ¢ Backprojection image Z

..................
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@ Important application: hydraulic fracturing

@ Three fractures 10 cm wide each

@ Very high contrasts: ¢ = 4500 m/s in the surrounding rock, lﬂ.l
¢ = 1500 m/s in the fluid inside fractures

w
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High contrast example: hydraulic fractures
True ¢ RTM image
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@ Important application: hydraulic fracturing
@ Three fractures 10 cm wide each

@ Very high contrasts: ¢ = 4500 m/s in the surrounding rock, wl
¢ = 1500 m/s in the fluid inside fractures

A.V. Mamonov ROMs for inversion and imaging 26/31



04 08 12 1.6 2 24 28 3.2 36 4 44 48 52 56 6 64 68 72 7.6 8 84 88 9.2 9.6 10 10410811.211.612 124128132

04 08 12 1.6 2 24 28 32 36 4 44 48 52 56 6 64 68 7.2 7.6 8 84 88 92 9.6 10 10410811211.612 124128132

04 08 12 1.6 2 24 28 32 36 4 44 48 52 56 6 64 68 7.2 7.6 8 84 88 92 9.6 10 10410.811211.612 124128132

A.V. Mamonov ROMs for inversion and imaging 27 /31



Problem 3: Data preprocessing

@ Use multiple-suppression properties of ROM to preprocess data
@ Compute P from D and P, from Dg corresponding to ¢
@ Propagator perturbation

ise = iso—}—e(is—iso)

@ Propagate the perturbation

De,k = ETTk(Pe)B

@ Generate filtered data

dD,
Fr = Dok + K
de | _p

@ Can show that Fy corresponds to data that a Born forward
model will generate lll'l
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Example: seismogram comparison

. ’ @ Three direct arrivals +

_ three multiples

_ @ Direct arrival from small

_ scatterer masked by the
first multiple
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Conclusions and future work

@ ROMs for inversion, imaging, data preprocessing

@ Time domain formulation is essential, linear algebraic analogues
of causality: Gram-Schmidt, Cholesky

@ Implicit orthogonalization of wavefield snapshots: suppression
of multiples in backprojection imaging and data preprocessing

@ Accelerated convergence, alleviated cycle-skipping in
ROM-preconditioned FWI
Future work:
@ Non-symmetric ROM for non-collocated sources/receivers
@ Noise effects and stability
@ ROM-preconditioned FWI in 2D/3D lﬂ-l
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