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Introduction SE I S COPE

Kinematic source model?

Earthquake: Sudden release of energy (partly transformed into waves).

Stress relaxation: Dynamic source model (rupture physics).

Shear slip on fault: Kinematic source model (seismograms computation).

Our problem: kinematic inversion?

On a discrete fault plane, find the spatio-temporel evolution of the slip during the

seismic rupture.
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Forward problem: Linear relation between slip-rate and observationsSE I S COPE

On the shelf, precomputed stress-state kernel Tni from Green’s functions in a known
velocity medium from fault points to receiver positions

Tni (x, t − τ ; ξ, 0) =
∑
m

µ(ξ)
[
Gni,m(x, t − τ ; ξ, 0) + Gnm,i (x, t − τ ; ξ, 0)

]
ηm.

1. Model: slip-rate vector V T (ξ, t) at fault position ξ for time t.

2. Data: particle velocity v(x , t) at # receivers through a simple integral

vn(x, t) =
∑
i

∫ t2

t1

dτ

∫ ∫
ξ

VTi
(ξ, τ)Tni (ξ, t − τ ; x, 0)dξ.

(n ∈ {1, 2, 3} and i ∈ {1, 2})
from representation theorem (Aki and Richards, 2002)

Synthetic windowed seismograms computed from a rupture time interval.
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Model reduction: Linear vs Non-linear formulations SE I S COPE

Please note that the slip could be a vector

• Two choices: for each sub-fault,
Linear formulation: slip time series −→ thousands of unknowns.

Non-linear formulation: defined by few parameters (rupture time, peak and rise times).

• Non-linear formulation: favorite approach → Why?

few seismograms per earthquake

� Time approach for 1979 Imperial Valley quake (Hartzell and Heaton, 1983; Archuleta, 1984)

� Frequency approach (low/high hierarchy) for 1992 Landers quake (Cotton and Campillo, 1995)

Both strategies have difficulties ...
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No unique solution! SE I S COPE

VARIABILITY AMONG SOLUTIONS FOR THE SAME EARTHQUAKE!

Which of them is the good one?
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Linear formulation of the kinematic source inversion SE I S COPE

With denser and denser seismic networks around active faults,

linear inversion has attracted more and more interest both in frequency (Fan et al.,

2014) and in time (Somala et al., 2014).

Spatio-temporal slip vector on fault plane (dip and strike directions).

� Frequency approach:

• Possible negative slip-rate.

• Challenging integration of prior rupture physics.

� Time approach:

• Slip-rate positivity honored.

• Prior rupture physics, such as sparsity (Heaton, 1990) and causality

(Olson and Apsel, 1982).

Objective of our kinematic inversion scheme

Spatio-temporal slip-rate inversion
through linear formulation

Kinematic inversion 6



This presentation: linear formulation in time SE I S COPE

Adjoint-state method for getting the gradient when considering a linear formulation.

Model parameters: two slip-rate components over planar subfaults

defined by a normal n
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are the unknowns

Slip-rate functions

Slip-rate component on each subfault

Contributions:

+ Adjoint formulation and necessary regularization

+ Benchmark illustration

+ Real earthquake application

+ Time-evolution reconstruction using causality.
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Misfit function of a linear forward problem SE I S COPE

• Least-squares misfit function (convex quadratic function): sum of squared sample

differences of observed and synthetic seismograms.

C(V T ) =
1

2

∫ t2

t1

(v − u)TW TW (v − u)dt

with observed seismograms u and data covariance matrix W often taken as diagonal

matrix.

• Constrained local optimization using the gradient of the misfit function.

min
VT

C(V T ) =
1

2

∫ t2

t1

(v − u)TW TW (v − u)dt,

s. t. F (x , t) = vn(x , t)−
∑
i

∫ t2

t1

dτ

∫ ∫
ξ

VTi (ξ, τ)Tni (ξ, t − τ ; x , 0)dξ = 0.

Two options:

1 Adjoint-state method ( simple & efficient), (Plessix, 2006)

2 Fréchet derivatives (more computationally expensive but affordable)
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Gradient computation SE I S COPE

Adjoint-state field λ̂: residuals between synthetic and observed seismograms:

λ̂(x , t) = W TW (v(x , t)− u(x , t)) ,

Misfit gradient G: convolution between residuals and stress-state Tni

Gi (ξ, τ) =
∑
x

3∑
n=1

∫ τ2

τ1

λ̂n(x , t)Tni (ξ, τ − t; x , 0)dτ,

(n ∈ {1, 2, 3} and i ∈ {1, 2})

Two components to be recovered on the fault plane: they define the rake angle.
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Sum up! Kinematic source inversion based on data fitting... SE I S COPE

1: Require fault plane & acquisition definition and pre-computed stress state

2: Input observations: 3-C seismograms at each receiver

3: Initialize the slip-rate V̂
k

T (ξ, τ) = 0, k = 1

4: while convergence is not reached do

4.1: Compute v̂ k(x , t) (forward modeling) with V̂
k

T (ξ, τ)

4.2: Estimate residuals, λ̂
k
(x , t) = v̂ k(x , t)− u(x , t)

4.3: Calculate the gradient using the residuals

Gki (ξ, τ) =
∑
x

3∑
n=1

∫ τ2

τ1

λ̂k
n(x , t)Tni (ξ, τ − t; x , 0)dt

4.4: Update the slip-rate V̂
k+1

T = V̂
k

T + αk∆V̂
k

T (Gk), k = k + 1

end

Algorithm 1: Kinematic source inversion using the adjoint-state method.
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Few data: how to reduce the size of the null space SE I S COPE

Linear time formulation leads to a significant number of parameters

Full data window
(total time window)

• Rupture time regularization

• Boundary condition for

vanishing slip-rate

• Spatial coherence of slip

distribution

Increasing data window
(work in progress)

• Same items as for full window ... and

• Progressive assimilation of the new data

to be explained

• Prediction of the new slip

Kinematic inversion 11



Anticipation remark: prediction of future time-windows ... SE I S COPE
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Too few data: regularization based on prior information and preconditioningSE I S COPE

Null space can be quite large (reason for model reduction)

Regularization needed for linear time formulation:

• data term strategy: model preconditioning through smoothing data gradient

• model term strategy: emphasizing smooth model and

adding model gradient (prior model and model covariance)

C(V T ) = Cd(V T ) + C1m(V T ) + C2m(V T )

Cd(V T ) −→ Data misfit term

C1m(V T ) −→ Tikhonov model regularization term

C2m(V T ) −→ model misfit term

2D smoothing gaussian filter applied to the data gradient

Diagonal model covariance design based on expected rupture physics

Prior model design based on expected rupture physics

Kinematic inversion 13



Prior knowledge: Maximum expected rupture time regularization SE I S COPE

Model misfit function based on prior model V T0
and weighted matrix W

R

C2m(V T ) =
1
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Rupture could not occurred before a given time in this example.

Possible to prevent future slip after a given time

(Asnaashari et al., 2013)Kinematic inversion 14



Which type of covariance matrices can we design? SE I S COPE

Various prior model and covariance matrices promoting rupture physics:

• Rupture causality (time-space model penalization).

• Penalized slip at boundaries (discouraging infinite strain).

• Neighbouring coherence of temporal rupture over close subfaults.

Remark: many suggestions of promoting possible dynamic ruptures

Kinematic inversion 15



Time for verification exercises ... SE I S COPE

Questions / goals:

• Does it work for realistic configuration?

• Does it work for real data?

• How to design model-driven component?

• How far are the results from the true solution?

???

Kinematic inversion 16
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Exercise 1: Source Inversion Validation (SIV1) SE I S COPE

Fault plane geometry:

Strike = 90o , dip = 80o , rake = 90o
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SIV1 results from other teams: still strong variability! SE I S COPE
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Time approach versus frequency approach (both linear) SE I S COPE
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2016 Kumamoto fault geometry and available dataset SE I S COPE
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There are two fault segments:

• strike 205o , dip 72o

• strike 235o , dip 65o

Well recorded earthquake!

• 30 traces EW

• 30 traces NS

• 30 traces UD

(Asano and Iwata, 2016; Uchide et al., 2016)Kinematic inversion 20



Stratified velocity model SE I S COPE

Uchide et al. (2016)

17 stations used

After checking our dataset, the velocity structure on the right is preferred.
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An added hierarchical workflow for rake determination SE I S COPE

1: Select few high-quality stations and run a first inversion with no regularization

and no prior information: Invert for the slip-rate vector (2 components).

2: Detect the rake angle (relation between the two vector components).

3: Fix the rake angle and invert for the amplitude of the slip-rate vector.

4: Identify the rupture velocity by analysing the propagating slip-rate pulses.

5: Set the required regularization terms using the knowledge from previous

inversions to perform the last inversion.

Algorithm 2: Hierarchical workflow to include prior information, such as the rake

angle or the expanding rupture front.
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Final slip (Asano and Iwata (2016) vs Uchide et al. (2016)) SE I S COPE

Uchide et al. (2016)

Asano and Iwata (2016)

Similarities

• 1rst segment strike-slip

• 2nd segment strike-dip-slip

• Maximum slip ≈ 18 km to the East

from hypocenter

Differences

• Depth of maximum slip patches

(different dataset/dip resolution)

• Number of patches

• Fault length
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2016 Kumamoto earthquake: slip-rate vector inversion SE I S COPE
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Model regularization design and model preconditioning not enough!

Non-physical effects still exist.
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Partial conclusion on the 2016 Kumamoto earthquake SE I S COPE

Decent results by smoothing the gradient and enforcing rupture causality.

Rake angle extracted from an initial inversion is fixed for the final inversion.

Our solution

Along strike (km)

1020304050

A
lo

n
g

 d
ip

 (
k
m

) 5

10

15

2016 Kumamoto earthquake (Mw7.1)

F
in

a
l 
s
li
p

 [
m

]

0

1

2

3

4

5

6

Along strike (km)

01020304050

A
lo

n
g
 d

ip
 (

k
m

)

0

5

10

15

20

Extracted rake                !  Strike

Uchide et al. (2016)

Asano and Iwata (2016)

Kinematic inversion 25



Slip-rates of 2016 Kumamoto earthquake SE I S COPE

Complex slip-rate functions.

Examples over few sub-faults
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Causality through a time progression of providing the data? SE I S COPE

Available precomputed stress-state, Tni (ξ, t − τ ; x , 0), has wave propagation

information and, therefore, time window relation between source points and

receivers!

vn(x, t) =
∑
i

∫ t2

t1

dτ

∫ ∫
ξ

VTi
(ξ, τ)Tni (ξ, t − τ ; x, 0)dξ.

Gi (ξ, τ) =
∑
x

3∑
n=1

∫ τ2

τ1

λ̂n(x, t)Tni (ξ, τ − t; x, 0)dξ.

Reminder:

λ̂−→ residuals

v −→ synthetics

u−→ observations

G −→ Gradient

V T −→ Slip-rate (unknowns)

• Existing relation between data time windows and source time-space windows.

• Causality is enforced drastically by data prediction

(in addition to model constraints).
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Relation between selected model zones and receiver windows SE I S COPE

Data time windowing strategy for progressive model increase

Data time-windows:

We assume that the first arrivals can only

come from the nucleation zone. Then,

Green’s functions and forward modeling

can be used to establish the limited data

time-window of each record used to invert

for a specific model time-space windows.

Model time-space-windows:

Considering as known the hypocentral

location and the origin time when the

rupture starts, expected zones and time

intervals where to perform slip-rate

inversion are known. These areas and

time intervals are estimated through an

Eikonal solver. Only an maximum upper

bound of the rupture velocity is assumed.
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Imaging the source while recording: quasi-real time strategy SE I S COPE

We increment the next solution from the previous one while still accepting

modifications where the rupture has already occurred.
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Perspectives and future work SE I S COPE

Real data application?

• Improve rake estimation and regularization for 2016 Kumamoto earthquake

• Apply time progressive strategy to 2016 Kumamoto earthquake

• Assessment of uncertainties, thanks to the linearity of the forward problem

• Write down all what I have found.

Room for improvements

Kinematic inversion 30



Conclusion SE I S COPE

• Linear formulation in the time domain with simple regularization terms shows

promising advantages.

• Complex reconstruction of the slip history is expected if acquisition density

increases.

• Rake constraint helps to focus the energy in the correct direction and at the

right time.

• Time progressive strategy integrates causality in a better way (synthetic

illustration).

Thanks for listening

(Please let me know about possible improvements)
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Synthetic circular rupture test for checking illumination SE I S COPE
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1-step inversion using ≈ H−1 (7000/16416 singular values) SE I S COPE
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Prior knowledge: Minimum slip at the edges SE I S COPE
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Penalizing effect at the edges of the fault for slip-rate estimation.

Avoid infinite strain at the edges of the rupture (Beresnev, 2003).
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Prior knowledge: Correlation between neighbouring subfaults SE I S COPE
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Spatial coherence: only neighbouring subfaults of a broken subfault (within a given

correlation length) are allowed to break.
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Causality: progressive windowing strategy SE I S COPE
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2016 Kumamoto fault geometry and data sets SE I S COPE

Asano and Iwata (2016), 15 stations

Local distance

Uchide et al. (2016) 17 stations

Regional distance
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