

Computational Issues in Oil Field Applications:

Methodologies and Robust Algorithms

for Subsurface Simulators

Workshop I:

Multiphysics, Multiscale, and Coupled Problems in Subsurface Physics

Mary F. Wheeler

Acknowledge

Collaborators

Ben Ganis	Gergina Pencheva
Gurpreet Singh	Sanghyun Lee
Thomas Wick	Andro Mikelic
Baehyun Min	Deandre White
Mohammad Beygi	Mohammad Lotfollahi
Sogo Shiozawa	Mohammad Jammoul

Research Initiative: Closed-loop Workflow

V. BIG DATA: Cross-cutting Initiative

I. FLUID-DRIVEN FRACTURE PROPAGATION

Objectives

Develop a **fracture propagation** method (phase field) driven by multiphysics, multiphase fluid flow

Three dimensional computations using **mesh adaptivity** with coupling displacements, **phase field**, and pressure system

In the phase field fracture propagation model, primal-dual active set & fixed-stress iteration is coupled to solve the whole system

Demonstrate the potential of the phase field for treating practical engineering applications by providing numerical examples

Joining and branching of non-planar hydraulic fractures in 3D heterogeneous media.

Advantage of Phase Field Model

- Classical theory of crack propagation [Griffith 1921]
- Diffusive crack zones for free discontinuity problems
- **C-Convergent approximation** [Ambrosio-Tortorelli 1992]
- Variational methods based on energy minimization

[Francfort-Marigo 2003], [Miehe et al. 2010]

Advantage of Phase Field Model

- Fixed-topology approach avoiding re-meshing
- Determine crack nucleation, propagation, and the path automatically
- Simple to handle joining and branching of (multiple) cracks
- Promising findings for future ideas as an indicator function based on theory and numerical simulations

Governing System: Biot's System

Biot's system

Pressure Diffraction System

$$\begin{split} \rho_R \partial_t (\frac{1}{M} p_R + \alpha \nabla \cdot \mathbf{u}) - \nabla \cdot \frac{K_R \rho_R}{\eta_R} (\nabla p_R - \rho_R \mathbf{g}) &= q_R \quad \text{in} \quad \frac{\Omega_R(t)}{\Omega_R(t)} \times (0, T] \\ \rho_F \partial_t (c_F p_F) - \nabla \cdot \frac{K_F \rho_F}{\eta_F} (\nabla p_F - \rho_F \mathbf{g}) &= q_F - q_L \quad \quad \text{in} \quad \Omega_F(t) \times (0, T] \\ [p_j] &= 0 \quad \quad \text{on} \quad \Gamma(t) \times (0, T] \\ [K_j (\nabla p_j - \rho_j \mathbf{g})] \cdot \mathbf{n} &= 0 \quad \quad \text{on} \quad \Gamma(t) \times (0, T] \end{split}$$

[Mikelic-W.-Wick 2015 SIAM MMS]

Mechanics and Phase Field

$$E_{\varepsilon}(\mathbf{u}, p, \varphi) = \int_{\Lambda} \frac{1}{2} ((1 - k)\varphi^{2} + k) \mathcal{G}e(\mathbf{u}) : e(\mathbf{u}) \ dx - \int_{\partial \Lambda} \tau \cdot \mathbf{u} \ dS$$

$$- \int_{\Lambda} (\alpha - 1)\varphi^{2} p \operatorname{div} \mathbf{u} \ dx + \int_{\Lambda} (\varphi^{2} \nabla p) \mathbf{u} \ dx + G_{c} \int_{\Lambda} \left(\frac{1}{2\varepsilon} (1 - \varphi^{2}) + \frac{\varepsilon}{2} |\nabla \varphi^{2}| \right) \ dx$$

- Linear Elasticity
- Newton Iteration
- Primal-dual Active Set Method

[Heister-W.Wick 2015 CMAME]

Fracture with maximum pressure

The pressure starts to decrease
 when the fracture starts to propagate.

(a) Phase Field

(b) Pressure

[Lee-W.-Wick 2016 CMAME]

Numerical Examples of Phase Field

Multiple fractures propagating near wellbore [Lee-W.-Wick 2016]

Fracture propagation

Pressure distribution

Numerical Examples of Phase Field

Three parallel fractures in 3D domain [Lee-W.-Wick 2016]

Not all fractures are growing due to stress-shadowed effects.

Numerical Examples of Phase Field

Multiple fractures in a 3D heterogeneous medium [Lee-W.-Wick 2015]

Dynamic mesh adaptivity: predictor-corrector method [Heister-Wheeler-Wick, 2015]

II. GEOCHEMICAL REACTIONS

Model geochemical reactions of injected CO₂ in carbonate reservoirs during EOR or CO₂ sequestration

In situ brines with reactive ionic species

Study the effect of reactive species on CO₂ concentration

Quantify the effect using changes in miscibility conditions during CO₂ EOR

Gas Phase

CO₂, _nC₁₄, & H₂O

Oleic Phase

CO₂, _nC₁₄, & H₂O

Aqueous Phase

CO₂, CO₃²⁻, HCO₃⁻, Ca²⁺, Cl⁻, CaCO₃, H⁺, OH⁻, & H₂O

Solid Phase

CaCO₃

[Phase & Chemical Equilibrium of CO₂]

Coupling with a Compositional Simulator

Coupled phase and chemical equilibrium

Gibbs Free Energy Minimization

Reactions

Gibbs free energy minimization

Stochiometric approach

Phase behavior

Equation of State (EOS)

$$\frac{\partial}{\partial t} \left(\sum_{j}^{N_p} \phi S_j \rho_j x_{ij} \right) + \nabla \cdot \sum_{j}^{N_p} \left(\rho_j x_{ij} u_j - \phi S_j D_{ij} \cdot \nabla \left(\rho_j x_{ij} \right) \right) = \sum_{j}^{N_p} \left(q_{ij} + r_{ij} \right)$$

$$u_j = -K \frac{k_{rj}}{\mu_j} \left(\nabla p_j - \rho_{m,j} g \right)$$

where r_{ij} : rate of change of component i in phase j due to chemical equilibrium $(r_{ij} = 0 \text{ if no reaction})$

Example: Effect of Reactions on CO₂ Concentration

Concentration profiles at $P_{avg} = 2,200$ psi after 0.12 hours of CO_2 injection

- Red curve (): concentration profiles with equilibrium reactions
- Black curve (): concentration profiles without equilibrium reactions
- Reactions in aqueous phase consume CO₂ altering phase equilibrium and hence miscibility conditions.
- Higher in situ water saturation results in lower CO₂ concentrations.

Locally Conservative Flow and Transport- Enhanced Galerkin

Transport Equation

$$\partial_t(\rho\phi c) + \nabla \cdot (\rho \mathbf{u}\mathbf{c} - \mathbf{D}(\mathbf{u})\nabla\mathbf{c}) = \mathbf{c}^*\mathbf{q}^*$$

- Inflow and outflow boundary conditions. $\rho(p) \sim \rho_0 (1 + c_F p)$, and $\varepsilon \equiv 0$
- Initial condition : $c(x,0) = c_0(x) \quad \forall x \in \Omega$. c^+, q^+ : source term, c^-, q^- : sink term.

Locally Conservative Flux: Weighted Interior Penalty (Ern et al., 2007)

$$\mathbf{U}^{n}|_{T} = -\boldsymbol{\kappa} \nabla P^{n}, \quad \forall T \in \mathcal{T}_{h}$$

$$\mathbf{U}^{n} \cdot \mathbf{n}|_{e} = -\boldsymbol{\kappa}_{e} \{\!\!\{ \nabla P^{n} \}\!\!\} \cdot \mathbf{n} + \alpha(k) h_{e}^{-1} \boldsymbol{\kappa}_{e} [\!\![P^{n}]\!\!], \quad \forall e \in \mathcal{E}_{h}^{o},$$

$$\mathbf{U}^{n} \cdot \mathbf{n}|_{e} = g_{N}, \quad \forall e \in \mathcal{E}_{h}^{N,\partial},$$

$$\mathbf{U}^{n} \cdot \mathbf{n}|_{e} = -\boldsymbol{\kappa} \nabla P^{n} \cdot \mathbf{n} + \alpha(k) h_{e}^{-1} \boldsymbol{\kappa} \left(P^{n} - g_{D} \right), \quad \forall e \in \mathcal{E}_{h}^{D,\partial},$$

$$\kappa_e \{\!\!\{ \nabla v \}\!\!\} = \beta_e (\kappa^+ (\nabla v)^+) + (1 - \beta_e) (\kappa^- (\nabla v)^-)$$

$$\beta_e := \frac{\kappa^-}{\kappa^+ + \kappa^-} \qquad \kappa_e := \frac{2\kappa^+ \kappa^-}{\kappa^+ + \kappa^-} \qquad \bullet \qquad \kappa_e := \frac{K}{\mu}, \quad \kappa_e : \text{ Harmonic mean on the edge}$$

$$\delta_e := \frac{\kappa^-}{\kappa^+ + \kappa^-} \qquad \kappa_e := \frac{2\kappa^+ \kappa^-}{\kappa^+ + \kappa^-} \qquad \bullet \qquad \kappa_e : \kappa^- = \frac{K}{\mu}, \quad \kappa_e : \text{ Harmonic mean on the edge}$$

Locally Conservative Flow and Transport- Enhanced Galerkin

EG Transport – Entropy residual stabilization [Guermond et al. 08, 11]

Concentration values over the time steps (observe spurious oscillations)

Miscible two components single phase flow

Hele-Shaw cell: viscous fingering in a homogeneous channel [Lee-W. 2016]

Figure: Concentration values for each time steps with corresponding adaptive mesh refinement at the right column.

III. SIMULATOR DEVELOPMENT

Objectives

Complete simulator development with numerical schemes for coupled processes

Develop computational methods for coupled processes based on multiscale discretization for flow, geomechanics & geochemistry

Development of efficient solvers & pre-conditioners

Model CO₂ storage field sites & perform compositional simulations

CO₂ Sequestration Site at Cranfield, Mississippi, USA

Framework of IPARS

IPARS (Integrated Parallel Accurate Reservoir Simulator) **Development of integrated** flow, geochemistry, and geomechanics framework Interface Multiphase Advanced Well I/O Solvers Flow & Physics Grids Management Visualization Compositional 3 Phase Geochemical Hysteresis **Mobility Control** Geomechanics Kr-Pc Kr-Pc **EOS Flash** Reaction Uncertainty Quantification Parameter Estimation

Compositional Model

3-Phases: $\alpha \in \{o, w, g\}$ N_c -Components: $i \in \{w, 2, ..., N_c\}$

Mass Conservation of component i:

$$\frac{\partial}{\partial t} \left(\sum_{\alpha} \phi S_{\alpha} \rho_{\alpha} \xi_{i\alpha} \right) + \nabla \cdot \sum_{\alpha} \left(\rho_{\alpha} \xi_{i\alpha} u_{\alpha} - \phi S_{\alpha} D_{i\alpha} \cdot \nabla \left(\rho_{\alpha} \xi_{i\alpha} \right) \right) = \sum_{\alpha} q_{i\alpha}, \text{ in } \Omega \times (0, T].$$

Darcy's Law for phase
$$\alpha$$
 flux: $u_{\alpha} = -K \frac{k_{r\alpha}}{\mu_{\alpha}} (\nabla p_{\alpha} - \rho_{m,\alpha} g)$.

S_{α}	saturation	ξ_{ilpha}	mole fraction	μ_{lpha}	viscosity
ϕ	porosity	K	absolute permeability	$\rho_{m,\alpha}$	mass density
q_{ilpha}	source/sink	$k_{r\alpha}$	relative permeability	g	gravity
u_{α}	Darcy flux	D_{ilpha}	diffusion-dispersion		

Concise Form of Equations

Concentration of component i

$$N_i = \sum_{lpha}
ho_{lpha} S_{lpha} \xi_{ilpha},$$

Source of component i

$$q_i = \sum_{\alpha} q_{i\alpha},$$

Advective flux of component i

$$F_i = -K \sum_{lpha}
ho_{lpha} \xi_{ilpha} rac{k_{rlpha}}{\mu_{lpha}} \left(
abla p_{lpha} -
ho_{m,lpha} g
ight),$$

Diffusive flux of component i

$$J_i = -\left(\sum_{lpha} \phi S_{lpha} D_{ilpha} \left(
abla
ho_{lpha} \xi_{ilpha}
ight)
ight).$$

Concise form of component concentration equation:

$$\frac{\partial}{\partial t} \left(\phi N_i \right) + \nabla \cdot \left(F_i + J_i \right) = q_i, \quad \text{ in } \Omega \times (0, T].$$

Constraints, Initial, and Boundary Conditions

Primary model unknowns $p_{ref}, N_1, ..., N_{N_c}$

$$p_{ref}, N_1, \ldots, N_{N_c}$$

Saturation constraint
$$\sum_{\alpha} S_{\alpha} = 1$$
 \Longrightarrow $\frac{N_w}{\rho_w} + \left(\frac{1-v}{\rho_o} + \frac{v}{\rho_g}\right) \sum_{i=2}^{N_c} N_i = 1$

Capillary pressure
$$p_{c\alpha}(S_{ref}) = p_{\alpha} - p_{ref}$$
 $p_{c\alpha}(p_{ref}, \vec{N}) = p_{c\alpha}(S_{ref})$

$$\rho_w(p_{ref}) = \rho_{w,0} exp \left[C_w(p_{ref} + p_{cw} - p_{ref,0}) \right]$$

Cubic EOS for hydrocarbon phases

$$ho_{lpha}(p_{ref}, \vec{N}_{HC}) = rac{p_{lpha}}{Z_{lpha}RT}, \, lpha
eq \mathrm{w}$$

$$(F_i + J_i) \cdot n = 0$$
, on $\partial \Omega \times [0, T]$

$$p_{\text{ref}} = p^0$$
, $N_i = N_i^0$, on $\Omega \times \{t = 0\}$

Hydrocarbon Phase Behavior Model

Peng-Robinson Equation of State

(for compressibility Z-factor; coefficients determin ed by pressure, temperature, composition)

Rachford-Rice Equation

(for vapor fraction v)

"Mixing Rule"

(for mass balance)

Fugacity Coefficient Equation

 f_i^{α} = fugacity $\Phi_i^{\alpha} = f_i^{\alpha}/(\xi_i^{\alpha}p)$ = fugacity coefficient

$$Z_{\alpha} = \overline{Z}_{\alpha} - C_{\alpha}$$

$$\overline{Z}_{\alpha}^{3} + h_{1}\overline{Z}_{\alpha}^{2} + h_{2}\overline{Z}_{\alpha} + h_{3} = 0$$
(1)

$$\mathcal{R}_g = \sum_{i} \frac{(k_i - 1)z_i}{1 + (k_i - 1)v} = 0$$
 (2)

$$\xi_i^o = \frac{z_i}{1 + (k_i - 1)v}, \quad \xi_i^g = k_i \xi_i^g$$
 (3)

$$f_i^g = f_i^g$$

$$\mathscr{R}_i = ln(\Phi_i^o) - ln(\Phi_i^g) - ln(k_i) = 0$$
(4)

<u>Flash Algorithm</u> (Solved with Newton iteration)

- 1. Solve (2) for v.
- 2. Evaluate ξ_i^{α} using (3).
- 3. Solve (1) for Z_{α} .
- 4. Evaluate Φ_i^{α} , check (4) for convergence. Update $\delta(\ln k_i)$, goto 1.

Multipoint Flux Mixed Finite Elements

Multipoint Flux Mixed Finite Element Spaces

2 fluxes/edge

pressure
velocity

3D hexahedra

Logically structured distorted hexahedral grids

Special Quadrature Rules

$$\begin{split} K^{-1}(\hat{x}) &= \frac{1}{J_E} D F_E^T K^{-1}(F_E(\hat{x})) D F_E. \\ (K^{-1} \mathbf{q}, \mathbf{v})_{Q, E} &= (K^{-1} \hat{\mathbf{q}}, \hat{\mathbf{v}})_{\hat{Q}, \hat{E}} \equiv \frac{|\hat{E}|}{n_v} \sum_{i=1}^{n_v} K^{-1}(\hat{\mathbf{r}}_i) \hat{\mathbf{q}}(\hat{\mathbf{r}}_i) \cdot \hat{\mathbf{v}}(\hat{\mathbf{r}}_i), \end{split}$$

 At every vertex, 12 flux DOFs eliminated in terms of 8 pressure DOFs.

No saddle point system with a mixed method.

- 27-point stencil
- Positive definite linear system
- Symmetric or non-symmetric

Other capabilities:

- Can handle full tensor permeability.
- Finite element convergence theory.
- Two-point flux schemes are not convergent on distorted hexahedra.

Fully Discrete Formulation

Component Flux:

$$\left\langle \frac{1}{\Lambda_{i,h}^{\tilde{k}}} K^{-1} F_{i,h}^{k+1}, v_h \right\rangle_{Q,E} - \left(p_{\text{ref},h}^{k+1}, \nabla \cdot v_h \right)_{E} = - \int_{\partial E \cap \partial \Omega} p_{\text{ref}} v_h \cdot n - \left(\frac{1}{\Lambda_{i,h}^{\tilde{k}}} \sum_{\alpha \neq \text{ref}} \rho_{\alpha,h}^{\tilde{k}} \xi_{i\alpha,h}^{\tilde{k}} \lambda_{\alpha,h}^{\tilde{k}} \nabla p_{c\alpha,h}^{\tilde{k}}, v_h \right)_{E} + \left(\frac{1}{\Lambda_{i,h}^{\tilde{k}}} \sum_{\alpha} \left(\rho_{\alpha,h}^{2} \right)^{\tilde{k}} \xi_{i\alpha,h}^{\tilde{k}} g, v_h \right)_{E},$$

Component Conservation Equation:

$$\left(\frac{\phi_h^{k+1} N_{i,h}^k}{\Delta t}, w_h\right)_E + \left(\nabla \cdot \boldsymbol{F}_{i,h}^{k+1}, w_h\right)_E - \left(\nabla \cdot \sum_{\alpha} \left\{\phi_h^{k+1} S_{\alpha,h}^{\tilde{k}} \boldsymbol{D}_{i\alpha,h} \cdot \nabla \left(\rho_{\alpha,h}^{\tilde{k}} \xi_{i\alpha,h}^{\tilde{k}}\right)\right\}, w_h\right)_E \\
= \left(q_{i,h}^{\tilde{k}}, w_h\right) + \left(\frac{\phi^n N_i^n}{\Delta t}, w_h\right)_E.$$

- Solved with IMPEC scheme, iterative coupling
- Enhanced BDDF₁ mixed finite element space
- Symmetric and non-symmetric quadrature rules (Q)
- Λ_i 's are positive quantities

Ex: Strong Scaling, Hard Phase Behavior

- Initial reservoir composition: {C3=0.1, C6=0.3, C10=0.1, C15=0.1, C20=0.4}
- Gas injection well composition: {C1=0.99, C3=0.01}

Ex: Runtimes and Speedup

Strong Scaling, Hard Phase Behavior

Runtimes

Procs.	Coeff.	Flash	Solve	Update	Total*
64	7510	404	3208	470	11530
128	3845	317	1993	262	6426
256	1956	105	1405	138	3616
512	1064	72	3404	68	4750
1024	592	36	1598	34	2460

Speedup normalized to 64 procs.

- Both coefficient assembly and updates scale optimally. Coefficient time twice as large as previous cases.
- Flash calculations order of magnitude more expensive, but still small fra ction of total time. Scales better because not merely located by wells.
- Linear solver scales to 256 procs, and again decreases at 1024 procs.

Ex: Weak Scaling, Simple Phase Behavior

- Same simple phase behavior as Example 2, but with weak scaling.
 Need to keep problem characteristics the same on different levels.
 - Each processor owns 10,000 elements. Domain size increases with number of processors.
 - Grid blocks remain 5x10x10 [ft³], in order to keep same time steps.
 - Well locations are center of domain, and center of four quadrants.

Runtimes

Procs.	Elements	Coeff.	Flash	Solve	Update	Total*
64	640,000	295	14	255	17	576
256	2,560,000	176	9	342	10	550
1024	10,240,000	172	8	440	9	732

- Coeff, flash, and update improved from 64 to 256 procs, then remained const.
- Linear solver time increased slightly (note the problem is changing).
- Total time remains roughly constant, giving a positive weak scaling result.

Low-Tension Gas Flood Case Study: Colnj, WAG, SAG

Low-Tension Gas Flood Case Study: Colnj, WAG, SAG

Model description

- $\Phi = 0.2$; $\frac{k_v}{k_h} = 0.1$; $S_o^{initial} = S_{orw} = 0.35$
- Initial pore volume = 53.4 MSTB
- $T^{initial} = 90$ °F; $P^{initial} = 1,500 psia$
- Initial oil composition:

$$C_{10}$$
=30%; C_{15} =40%; C_{20} =30%

 Oil composition effect on ME phase behavior (2 set of parameters vs. EACN)

Low-Tension Gas Flood Case Study: K_{rg} and S_{gt} at the Gridblock M

Cycle-dependent relative permeability in multi-cycle WAG processes

- As the cycle number increases from the 1st to the 8th,
 - Gas relative permeability decreases in time.
 - Gas normalized trapped saturation increases monotonically.

Effect of Water Alternating Gas (WAG) and Foam on CO₂ Sequestration

Introduction

- Three-phase relative permeability and hysteresis models are essential to accurately model CO₂ sequestration in aquifers.
- Once non-wetting phase saturation (here CO₂) decreases in porous media it traps by capillary forces (relative perm hysteresis, Beygi, 2016).
- Foam exhibits multiple steady-state behaviors at the same injection conditions (foam generation hysteresis, Lotfollahi et al., 2016).
- Three-phase relative permeability and hysteresis models have been implemented and coupled with foam models in IPARS.

Effect of Water Alternating Gas (WAG) and Foam on CO₂ Sequestration

Findings

- Missing relative permeability hysteresis during WAG process underestimate WAG performance significantly.
- In surfactant alternating gas (Foam) process, strong foam is generated in the high permeability streak and divert the flow into low permeability matrix.

Poro-plasticitiy

Geomechanical Effects of CO₂ Injection with a Poro-plasticity Model

Fluid Flow	$\frac{\partial(\rho(\phi_0 + \alpha\varepsilon_v + \frac{1}{M}(p - p_0)))}{\partial t} + \nabla \cdot \left(\rho \frac{K}{\mu}(\nabla p - \rho g \nabla h)\right) - q = 0$			
Stress Equilibrium	$\nabla \cdot (\sigma'' + \sigma_o - \alpha(p - p_0)I) + f = 0$			
Hooke's Law	$\sigma'' \ = \ D^e : (\varepsilon - \varepsilon^p)$	Druker-Prager Yield Surface		
Strain-Displacement Relation	$\varepsilon \ = \ \frac{1}{2}(\nabla u + \nabla^T u)$	σ_2		
Plastic Strain Evolution	$\dot{\varepsilon}^p = \lambda \frac{\partial F(\sigma'')}{\partial \sigma''}, \text{at } Y(\sigma'') = 0$ $\dot{\varepsilon}^p = 0, \text{at } Y(\sigma'') < 0$			
Yield and Flow Functions	$Y = q + \theta \sigma_m - \tau_0$ $F = q + \gamma \sigma_m - \tau_0$	σ_3 σ_1		

Model Field Sites

Objectives

Modeling, simulation & uncertainty analysis with application to CO₂ storage sites (Cranfield, MS & Frio, TX)

Measure mechanical properties in laboratory

Collect other existing data (seismic, well logs, etc.)

Measure impact of geochemical alteration on mechanical properties

Study rock dissolution and its effect on weakening the rocks and creating leakage pathways

Enhanced simulation for studying and quantifying parameters, e.g. reservoir over pressure, chemical and thermal loading

Site 1: Cranfield, MS, USA

Site 2: Frio, TX, USA

Example 2: Large-Scale Parallel Cranfield CO₂ Sequestration Case

IV. UNCERTAINTY QUANTIFICATION

Calibration process of rock and fluid properties in subsurface models

Parallel Multi-objective Optimization for CCS at Cranfield

Modeling of CCS Site: Cranfield, Mississippi, USA

Numerical validation of pulse testing results

Objective: validate pulse testing as an active monitoring tool for potential CO₂ leakage
 detection at geological carbon sequestration sites

Cranfield Sector Model

Three wells in the DAS (Detailed Area of Study) of Cranfield sector model

(http://www.beg.utexas.edu/gccc/cranfield.php)

Subsurface Modeling of Cranfield Sector Model

Grid top of Cranfield sector model

- 661,760 = 20x188x176 grid cells
- Grid size: 4 ft x 50 ft x 50 ft

Side View

History Matching of Cranfield Sector Model

Compositional Simulations of Pulse Testing in the DAS

150-minute baseline experiment at the monitoring well 31F-2

Observed pressure

Simulated pressure

 Pressure anomalies obtained from observed & simulated pressure

150-minute Baseline and Leak Experiments at Well 31F-2

Observation results

Simulation results

V. BIGDATA

Characterization

- Computation of seismic wave propagation in fractured media
- Statistical (pattern recognition) schemes for identification of fracture characteristics from dynamic data

- Large scale reservoir simulation of coupled compositional flow model and fracture propagation using Dataspaces
- Modeling of proppant filled fractures using Enhanced Galerkin

- Optimized well spacing for hydraulic fracturing
- Multi-objective optimization process to choose geologic models based on observed flow and geomechanical responses

BIGDATA: Collaborative Research for Fractured Subsurface Characterization Using High Performance Computing and Guided by Big Data

Production forecasts

Deep neural network

Enriched Galerkin and Wave Propagation

☐ Phase Field and Seismic Wave Propagation in Fractured Media (Sen et al., 2017)

Wavefield using discrete fractures 540,384 Fractures – DG.

Orthogonal fracture planes.

- (a) Parallel to fracture
- (b) Normal to fracture.

□ Locally Conservative Finite Element Method

- ✓ Enriched Galerkin approximations for flow & transport
- ✓ Chemical reactions and viscous fingering
- ✓ Extended for seismic wave propagation

Viscous fingering in a two homogeneous channel.

Dynamic mesh adaptivity.

Subsurface Fracture Characterization

□ Pattern Recognition for Fractured Reservoir Characterization Using
 Subsurface Big Data (led by Dr. Sanjay Srinivasan in Pennsylvania State University)

√ Objective

 Identify fracture location & orientation in low signal-to-noise ratio seismic data

✓ Input training images

- Seismic amplitude slices
- Fracture and non-fracture window examples

√ Validation data

- Ku-Maloob-Zaap fields (Gulf of Mexico)
- 3D seismic
- Number of traces: 6,476,056
- Number of fractures: 1,000,000+

Sample positive training images

Sample negative (non-fracture) training images

Toolbox for Subsurface Big Data Analytics

☐ Framework of a Computer-Assisted Optimization Toolbox: UT-OPT

Workflow for Multiphysics Coupling of IPARS and deal. II using Dataspaces

DataSpaces: Extreme Scale Data Management Framework for Data Staging

- □ Key Features of Service-Oriented Staging(led by Dr. Manish Parashar at Rutgers University)
- RUTGERS

 THE STATE UNIVERSITY
 OF NEW JERSEY

- Dynamic: coupled applications can join and leave staging areas without affecting other applications
- Persistent: The staging service and the staged data remains persistent across instances of the component applications. Applications can join and leave the staging service whenever they need access to it.
- ✓ Efficient: Optimizes the write perform ance by routing data from requesting client applications to the *closest* staging servers
- Resilient: The staging service can be backed up and restarted as needed.

Exascale Computing

Shared data space ADIOS that are to be coupled with forward models and assimilation/optimization algorithms.

Coupled Compositional Flow Simulations with Fracture Propagation

Conclusions

☐ Ongoing works: multidisciplinary collaboration with multi-universities, industry, government laboratories

· Part of training graduate students for future work force

- □ Big data: service-oriented data staging for coupling geophysics and flow with data
- Key features of data staging: dynamic, persistent, efficient, and resilient

- □ Development of high-fidelity algorithms: EG, Phase Field, Multipoint Flux, etc.
- · Flow, transport, and mechanics in fractured porous media
- Wave propagation
- Data assimilation & multiobjective optimization
- Machine learning & pattern recognition

