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V.  BIG DATA: Cross-cutting Initiative

Exascale Computing



I. FLUID-DRIVEN FRACTURE PROPAGATION

Three dimensional computations using mesh 

adaptivity with coupling displacements, 

phase field, and pressure system

In the phase field fracture propagation model, 

primal-dual active set & fixed-stress

iteration is coupled to solve the whole system

Demonstrate the potential of the phase field   

for treating practical engineering applications 

by providing numerical examples

Objectives
Develop a fracture propagation method (phase field)   

driven by multiphysics, multiphase fluid flow

Joining and branching of

non-planar hydraulic fractures

in 3D heterogeneous media.



Advantage of Phase Field Model

 Classical theory of crack propagation [Griffith 1921]

 Diffusive crack zones for free discontinuity problems

 Γ-Convergent approximation [Ambrosio-Tortorelli 1992]

 Variational methods based on energy minimization                                      

[Francfort-Marigo 2003], [Miehe et al. 2010]

Variation methods based energy minimization

[Real fractures]     [Interface approach]    [Diffusive approach using Phase field]



Advantage of Phase Field Model

 Fixed-topology approach avoiding re-meshing

 Determine crack nucleation, propagation, and the path automatically

 Simple to handle joining and branching of (multiple) cracks

 Promising findings for future ideas as an indicator function                         

based on theory and numerical simulations

Before joining After joining Branching



Governing System: Biot’s System

Biot’s system Fracture with maximum pressure

• Pressure Diffraction System

• Mechanics and Phase Field

• Linear Elasticity

• Newton Iteration

• Primal-dual Active Set Method

• The pressure starts to decrease

when the fracture starts to propagate.

(a) Phase Field         (b) Pressure

[Lee-W.-Wick 2016 CMAME]

[Mikelic-W.-Wick 2015 SIAM MMS]

[Heister-W.Wick 2015 CMAME]



Numerical Examples of Phase Field

Multiple fractures propagating near wellbore [Lee-W.-Wick 2016]

• Fracture propagation • Pressure distribution



Numerical Examples of Phase Field

Three parallel fractures in 3D domain [Lee-W.-Wick 2016]

• Not all fractures are growing due to stress-shadowed effects.

Fractures

Horizontal well



Numerical Examples of Phase Field

Multiple fractures in a 3D heterogeneous medium [Lee-W.-Wick 2015]

• Dynamic mesh adaptivity: predictor-corrector method [Heister-Wheeler-Wick, 2015]

Heterogeneous Young’s Modulus

Adaptive Mesh

Fracture



II. GEOCHEMICAL REACTIONS

In situ brines with reactive ionic species

Study the effect of reactive species 

on CO2 concentration

Quantify the effect using changes in 

miscibility conditions during CO2 EOR

Objectives
Model geochemical reactions of injected CO2

in carbonate reservoirs during EOR or CO2 sequestration

[ Phase & Chemical Equilibrium of CO2 ]

Gas Phase
CO2, nC14, 

& H2O

Oleic Phase

CO2, nC14, 

& H2O

Aqueous Phase

CO2, CO3
2-, HCO3

-, Ca2+, Cl-,

CaCO3, H
+, OH-, & H2O

Solid Phase

CaCO3



Coupled phase and chemical equilibrium

• Gibbs Free Energy Minimization

• Equation of State (EOS)

where rij : rate of change of component i in phase j due to chemical equilibrium 

(rij = 0 if no reaction)

Coupling with a Compositional Simulator

Reactions Phase behavior

Gibbs free energy minimization

Stochiometric approach



Example: Effect of Reactions on CO2 Concentration

Concentration profiles at Pavg = 2,200 psi after 0.12 hours of CO2 injection

• Red curve    (         ): concentration profiles with      equilibrium reactions

• Black curve  ( ): concentration profiles without equilibrium reactions

• Reactions in aqueous phase consume CO2 altering phase equilibrium and hence 

miscibility conditions.

• Higher in situ water saturation results in lower CO2 concentrations.

CO2 w/   reaction

CO2 w/o reaction

C14 w/   reaction

C14 w/o reaction

CO2 w/   reaction

CO2 w/o reaction

C14 w/   reaction

C14 w/o reaction

Sw = 0.3 Sw = 0.5



Locally Conservative Flow and Transport- Enhanced Galerkin

Transport Equation

Locally Conservative Flux : Weighted Interior Penalty (Ern et al., 2007)

.

.
.
.

.

.



Concentration values over the time steps (observe spurious oscillations)

Locally Conservative Flow and Transport- Enhanced Galerkin

 EG Transport – Entropy residual stabilization [Guermond et al. 08, 11]



Hele-Shaw cell: viscous fingering in a homogeneous channel [Lee-W. 2016]

Miscible two components single phase flow



III. SIMULATOR DEVELOPMENT

Develop computational methods for coupled 

processes based on multiscale discretization 

for flow, geomechanics & geochemistry

Development of efficient 

solvers & pre-conditioners 

Model CO2 storage field sites 

& perform compositional simulations

Objectives
Complete simulator development with numerical schemes 

for coupled processes

CO2 Sequestration Site at 

Cranfield, Mississippi, USA



 IPARS (Integrated Parallel Accurate Reservoir Simulator)

Framework of IPARS

Development of integrated

flow, geochemistry, and geomechanics framework



Compositional Model

Mass Conservation of component i:

3-Phases: Nc-Components:

Darcy’s Law for phase α flux:

saturation

porosity

source/sink

Darcy flux

mole fraction

absolute permeability

relative permeability

diffusion-dispersion

viscosity

mass density

gravity



Concise Form of Equations

Concise form of component concentration equation:

Concentration of component i

Source of component i

Advective flux of component i

Diffusive flux of component i



Constraints, Initial, and Boundary Conditions

Saturation constraint

Capillary pressure

Slightly compressible for water phase

Cubic EOS for hydrocarbon phases

Primary model unknowns

No-flow boundary conditions

Initial conditions



Hydrocarbon Phase Behavior Model

Peng-Robinson Equation of State
(1)

(2)Rachford-Rice Equation
(for vapor fraction v)

(for compressibility Z-factor; coefficients determin
ed by pressure, temperature, composition)

(3)“Mixing Rule”

= fugacity = fugacity coefficient

Fugacity Coefficient Equation
(4)

Flash Algorithm (Solved with Newton iteration)

1. Solve (2) for   . 

2. Evaluate      using (3).

3. Solve (1) for     . 

4. Evaluate     , check (4) for convergence. Update           , goto 1.

(for mass balance)



Multipoint Flux Mixed Finite Elements

velocity

pressure

2 fluxes/edge 4 fluxes/face

2D quadrilaterals 3D hexahedra

• Multipoint Flux Mixed Finite Element Spaces
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The spaces V RT
h and WRT

h on Ω and the project ion operator Π RT : (H 1(Ω))d → V RT
h are defined similarly to

the case of V h and Wh . By definit ion, we have

V RT
h,i ⊂ V h,i W RT

h,i = Wh,i . (3.21)

The project ion operator Π RT sat isfies

(∇ · (Π RT q − q), w) = 0, ∀w ∈ W RT
h,i , (3.22)

∇ ·Π RT v = ∇ · v , ∀v ∈ V h,i , (3.23)

and for all element E ∈ Th,i ,

∥Π RT v∥E ∥v∥E , ∀v ∈ V h,i . (3.24)

Furthermore, due to (3.15) and (3.20),

Π RTΠ q = Π RT q. (3.25)

3.3. A quadrat ure rule

Recall the variat ional formulat ion (2.3)–(2.4). In its mixed finite element discret izat ion, one needs to compute

the integral (K − 1q, v)Ω i
for q, v ∈ V h,i . The MFMFE method employs a quadrature rule for the velocity mass

matrix, in order to reduce the discrete problem on each subdomain to a cell-centered finite difference system

for the pressure. We follow the development in [39, 56]. The integrat ion on each element E is performed by

mapping to the reference element Ê , where the quadrature rule is defined. Using the definit ion (3.14) of the

finite element spaces, for q, v ∈ V h,i ,

(K − 1q, v)E =
1

JE

DF T
E K − 1(FE (x̂))DFE q̂, v̂

Ê

≡ (K− 1q̂, v̂ )
Ê

,

where

K− 1(x̂) =
1

JE

DF T
E K − 1(FE (x̂))DFE . (3.26)

Due to (3.6), we have

∥K− 1∥0,∞ ,Ê
h2− d∥K − 1∥0,∞ ,E . (3.27)

The quadrature rule on an element E is defined by the trapezoidal rule:

(K − 1q, v)Q,E = (K− 1q̂, v̂ )Q̂ ,Ê ≡
|Ê |

nv

n v

i = 1

K− 1(r̂ i )q̂(r̂ i ) · v̂ (r̂ i ), (3.28)

where nv is the number of vert ices of Ê . The global quadrature rule on Ωi is defined as

(K − 1q, v)Q,Ω i
≡

E ∈Th , i

(K − 1q, v)Q,E .

The corner vector q̂(r̂ i ) is uniquely determined by its normal components to the d faces that share the vertex.

Since we chose the velocity degrees freedom associated with each corner r̂ i , the d degrees of freedom associated

with each corner r̂ i uniquely determine the corner vector q̂(r̂ i ). More precisely,

q̂(r̂ i ) =

d

j = 1

(q̂ · n̂ i j )(r̂ i )n̂ i j ,
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u5 u6

u7u8

E3

E7
E8

E5

E2
E1

u1 u2

u3u4

Figur e 2. Interact ions of the velocity degrees of freedom in the MFMFE method.

3.4. Reduct ion t o a cel l cent er ed finit e di ffer ence syst em for t he pr essur e

We next describe how the quadrature rule for the velocity mass matrix allows one to reduce the MFMFE

method on each subdomain to a centered finite difference system for the pressure. We limit the discussion to

hexahedral grids; the other element types are t reated similarly. We refer to Figure 2 for the notat ion used in

this sect ion. Any interior vertex r is shared by 8 elements E1, . . . , E8. We denote the faces that share the vertex

by e1, . . . , e12, and the velocity basis funct ions on these faces that are associated with the vertex by v1, . . . , v12,

i .e., (v i ·n i )(r ) = 1, where n i is the unit normal on face ei . The corresponding values of the normal components

of uh , u1, . . . , u12 are depicted in the three images in direct ions x, y, and z, respect ively.

Recall that the quadrature rule (K − 1·, ·)Q localizes the basis funct ions interact ion, see (3.29). Therefore,

taking v = v1 in (K − 1uh , ·)Q , for example, will lead to coupling u1 only with u5, u8, u9, and u12. Similarly, u2 will

be coupled only with u6, u7, u9, and u12, etc. Therefore, the 12 equat ions obtained from taking v = v1, . . . , v12

form a linear system for u1, . . . , u12. The following result is a direct consequence of (3.31).

Pr oposi t ion 3.2. The 12× 12 local linear system described above is symmetric and positive definite.

The solut ion of the local 12 × 12 linear system allows for the velocit ies ui , i = 1, . . . , 12 to be expressed in

terms of the cell-centered pressures pi , i = 1, . . . , 8. Subst itut ing these expressions into the mass conservat ion

equat ion (4.2) leads to a cell-centered stencil. The pressure in each element E is coupled with the pressures

in the elements that share a vertex with E , leading to a 27 point stencil. The reader is referred to [39, 56] for

further details on the result ing cell-centered finite difference system.

4. M ul t iscal e mor t ar mul t ipoint f l ux mixed f init e el ement met hod

Define the global mesh part it ion on Ω as Th =
n
i = 1 Th,i and the finite element spaces on Ω as

V h =

n

i = 1

V h,i , V R T
h =

n

i = 1

V R T
h,i , Wh =

n

i = 1

Wh,i .

Let the mortar interface mesh TH ,i ,j be a quasi-uniform part it ion of Γ i ,j , with maximal element diameter H i , j .

Let H = max1≤ i , j ≤ n H i , j . Denote by ΛH ,i ,j ⊂ L 2(Γ i ,j ) the mortar space on Γ i , j , containing either cont inuous

or discont inuous piecewise polynomials of degree m on TH ,i ,j . Note that TH ,i ,j need not be conforming if ΛH ,i ,j

is a discont inuous space. Let

ΛH =

1≤ i < j ≤ n

ΛH ,i ,j

be the mortar finite element space on Γ .

• Special Quadrature Rules

– At every vertex, 12 flux DOFs eliminated 
in terms of 8 pressure DOFs.

• Logically structured distorted hexahedral grids

• No saddle point system with a mixed method.

– 27-point stencil

– Positive definite 
linear system

– Symmetric or    
non-symmetric

Matrix sparsity, 5x5x5 grid.• Other capabilities:

– Can handle full tensor permeability.

– Finite element convergence theory.

– Two-point flux schemes are not conv
ergent on distorted hexahedra.



Fully Discrete Formulation

Component Flux:

Component Conservation Equation:

 Solved with IMPEC scheme, iterative coupling

 Enhanced BDDF1 mixed finite element space

 Symmetric and non-symmetric quadrature rules (Q)

 Λi’s are positive quantities



Ex: Strong Scaling, Hard Phase Behavior

- Initial reservoir composition:  {C3=0.1, C6=0.3, C10=0.1, C15=0.1, C20=0.4}

- Gas injection well composition:  {C1=0.99, C3=0.01}

SGAS SOIL SWATPOIL

C3 C6 C10

C20 PCGO PCWO

C1

C15



Ex: Runtimes and Speedup

Strong Scaling, Hard Phase Behavior

Speedup normalized to 64 procs.

• Both coefficient assembly and updates scale optimally.  Coefficient time 
twice as large as previous cases.

• Flash calculations order of magnitude more expensive, but still small fra
ction of total time.  Scales better because not merely located by wells.

• Linear solver scales to 256 procs, and again decreases at 1024 procs.

Figure6 Top view of simulation resultsat final timefor Example3. Fromleft to right: C1 concentration,
C3 concentration, C6 concentration, C10 concentration, C15 concentration, C20 concentration, gas-
oil capillary pressure, water-oil capillary pressure, oil pressure, gas saturation, oil saturation, water
saturation.

Runtimes

Procs. Coeff. Flash Solve Update Total*
64 7510 404 3208 470 11530

128 3845 317 1993 262 6426
256 1956 105 1405 138 3616
512 1064 72 3404 68 4750

1024 592 36 1598 34 2460
0.5	

1	

2	

4	

8	

16	

64	 128	 256	 512	 1024	

Coeff.	 Ti me 	

Flash	Time	

Solver	Time	

Update	Time	

Total*	Time	

0.5	

1	

2	

4	

8	

16	

32	

32	 64	 128	 256	 512	 1024	

Coeff.	 Ti me 	

Flash	Time	

Solver	Time	

Update	Time	

Total*	Time	

Processors

S
p

e
e

d
u

p

Table 6 Breakdown of runtimes showing strong parallel scalability (left) and corresponding speedup
factors normalized to 64 processors (right) in Example 3.

ECMOR XV – 15th European Conference on the Mathematics of Oil Recovery

29 August – 1 September 2016, Amsterdam, Netherlands

Runtimes



• Same simple phase behavior as Example 2, but with weak scaling. 
Need to keep problem characteristics the same on different levels.

– Each processor owns 10,000 elements. Domain size increases with nu
mber of processors.

– Grid blocks remain 5x10x10 [ft3], in order to keep same time steps.

– Well locations are center of domain, and center of four quadrants.

Runtimes

• Coeff, flash, and update improved from 64 to 256 procs,                         
then remained const.

• Linear solver time increased slightly (note the problem is changing).

• Total time remains roughly constant, giving a positive weak scaling result.

Ex: Weak Scaling, Simple Phase Behavior



Low-Tension Gas Flood Case Study: CoInj, WAG, SAG

Gas mobility control methods 

• Water Alternating Gas (WAG)

• Surfactant-alternate-gas (SAG)

 The 1st surfactant lowers Sor: reducing IFT

 The 2nd surfactant controls gas mobility: generating foam

• Simultaneous Water and Gas (CoInj)

W

A

G

S

A

G

Co

Inj

• Inject the 1st surfactant. Then, alternate water & gas

• Inject the 1st surfactant. Then, alternate 2nd surfactant foam & gas

• SI: IFT-reduction surfactant; SF: Foam agent



Low-Tension Gas Flood Case Study: CoInj, WAG, SAG

Oil Saturation at the end of injection

Investigate hysteresis effects at gridblock M

Case 1: WAG

Case 2: SAG

Case 3: CoInj

Injector

Injector Producer

High permeability streak 

in a low permeability matrix

Producer

Model description Simulation results

• Φ = 0.2;
𝑘𝑣

𝑘ℎ
= 0.1; 𝑆𝑜

𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 𝑆𝑜𝑟𝑤 = 0.35

• Initial pore volume = 53.4 MSTB

• 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 90℉ ; 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 1,500 𝑝𝑠𝑖𝑎

• Initial oil composition: 

𝐶10=30%; 𝐶15=40%; 𝐶20=30%

• Oil composition effect on ME phase           

behavior (2 set of parameters vs. EACN)

• Lower residual oil saturation than WAG

in the high permeability streak 

• Higher residual oil saturation 

at lower layers

after WAG

• Lower residual oil saturation than SAG

in the high permeability streak 



Low-Tension Gas Flood Case Study: Krg and Sgt at the Gridblock M

Cycle-dependent relative permeability in multi-cycle WAG processes

• As the cycle number increases from the 1st to the 8th, 

 Gas relative permeability decreases in time.

 Gas normalized trapped saturation increases monotonically.

: due to hysteresis !



Effect of Water Alternating Gas (WAG) and Foam 

on CO2 Sequestration

Introduction

oThree-phase relative permeability and hysteresis models are essential to 

accurately model CO2 sequestration in aquifers.

oOnce non-wetting phase saturation (here CO2) decreases in porous media it

traps by capillary forces (relative perm hysteresis, Beygi, 2016).

oFoam exhibits multiple steady-state behaviors at the same injection conditions 

(foam generation hysteresis, Lotfollahi et al., 2016).

oThree-phase relative permeability and hysteresis models have been 

implemented and coupled with foam models in IPARS.

Gas Injection WAG with 
Hysteresis

WAG without 
Hysteresis

Foam

CO2 SaturationPermeability map



Effect of Water Alternating Gas (WAG) and Foam 

on CO2 Sequestration

Findings

Gas Injection WAG with 
Hysteresis

WAG without
Hysteresis

Foam

CO2 SaturationPermeability map

Missing relative permeability hysteresis during WAG process 

underestimate WAG performance significantly. 

 In surfactant alternating gas (Foam) process, strong foam is generated in the 

high permeability streak and divert the flow into low permeability matrix. 



Poro-plasticitiy

 Geomechanical Effects of CO2 Injection with a Poro-plasticity Model

Fluid Flow

Stress Equilibrium

Hooke’s Law Druker-Prager Yield Surface

Strain-Displacement Relation

Plastic Strain Evolution

Yield and Flow Functions



Model Field Sites

Measure mechanical properties in laboratory

Collect other existing data 

(seismic, well logs, etc.)

Enhanced simulation for studying and 

quantifying parameters, e.g. reservoir over 

pressure, chemical and thermal loading

Measure impact of geochemical alteration on 

mechanical properties

Study rock dissolution and its effect on 

weakening the rocks and creating leakage 

pathways

Site 1: Cranfield, MS, USA

Site 2: Frio, TX, USA

Objectives
Modeling, simulation & uncertainty analysis with application to CO2

storage sites (Cranfield, MS & Frio, TX) 



CO2 concentration on distorted grid

Example 2: Large-Scale Parallel Cranfield CO2 Sequestration Case



IV. UNCERTAINTY QUANTIFICATION

 Calibration process of rock and fluid properties in subsurface models 

A Priori Model History Matching A Posteriori Model

Multi-modal Gaussian Multi-modal

(permeability, md) (permeability, md)



Reservoir Characterization & Optimization

Parallel Multi-objective Optimization for CCS at Cranfield

OS Algorithm Simulator Run Storage

• Global-objective        

genetic 

algorithm

• Global-objective       

evolution 

strategy

• Multi-objective            

genetic 

algorithm

• Multi-objective           

evolution 

strategy

IPARS

• Serial

• Parallel

• PC

• Supercomputer
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Modeling of CCS Site: Cranfield, Mississippi, USA

Numerical validation of pulse testing results

• Objective: validate pulse testing as an active monitoring tool for potential CO2 leakage 

detection at geological carbon sequestration sites

(Lu et al., 2013) 

(DAS: detailed area of study)



Cranfield Sector Model

Three wells in the DAS (Detailed Area of Study) of Cranfield sector model

(http://www.beg.utexas.edu/gccc/cranfield.php)

200 ft 100 ft



Subsurface Modeling of Cranfield Sector Model

Grid top of Cranfield sector model

• 661,760 = 20x188x176 grid cells

• Grid size: 4 ft x 50 ft x 50 ft

• Side View

9,400 ft9,400 ft

8
,8

0
0
 f

t

y

(east)

x (vertical)

z

(south)

• Aerial View



History Matching of Cranfield Sector Model

Bottomhole pressure at the CO2 injection well 31F-1

(Delshad et al. 2013)   (Min et al. SPE-182641)
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Compositional Simulations of Pulse Testing in the DAS

150-minute baseline experiment at the monitoring well 31F-2

• Observed pressure

• Simulated pressure

• Pressure anomalies

obtained from observed      

& simulated pressure
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Observation results

Simulation results

150-minute Baseline and Leak Experiments at Well 31F-2
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Characterization Simulation Optimization

• Computation of 

seismic wave 

propagation in 

fractured media

• Statistical (pattern 

recognition) schemes 

for identification of 

fracture 

characteristics from 

dynamic data

• Large scale reservoir 

simulation of coupled 

compositional flow  

model and 

fracture propagation 

using Dataspaces

• Modeling of proppant 

filled fractures using 

Enhanced Galerkin

• Optimized well 

spacing for hydraulic 

fracturing 

• Multi-objective 

optimization process 

to choose geologic 

models based on 

observed flow and 

geomechanical 

responses

V. BIGDATA  



BIGDATA: Collaborative Research for Fractured Subsurface Characterization 

Using High Performance Computing and Guided by Big Data

 Data staging As-a-Service

Data staging enables coupling of multi-physics with big data

InSARSeismic Microseismic

• Pattern recognition

• Deep neural network

• Fracture propagation

• Data assimilation

• Production forecasts

 Geophysics

 Reservoir Engineering

Flow Fracture

 Big Data Analytics

• Wave propagation         

In fractured porous medium



Concentration
Enriched Galerkin and Wave Propagation 

 Locally Conservative Finite Element Method

 Enriched Galerkin approximations for flow & transport

 Chemical reactions and viscous fingering

 Extended for seismic wave propagation

Viscous fingering in a two homogeneous channel.  

 Phase Field and Seismic Wave Propagation in Fractured Media (Sen et al., 2017)

Dynamic mesh adaptivity. 

Wavefield using discrete fractures 

540,384 Fractures – DG.

Orthogonal 

fracture planes.

(a) Parallel to fracture 

(b) Normal to fracture.

(a) (b)



Subsurface Fracture Characterization

 Objective

• Identify fracture location & orientation

in low signal-to-noise ratio seismic

data

 Input training images

• Seismic amplitude slices

• Fracture and non-fracture window

examples

 Validation data

• Ku-Maloob-Zaap fields

(Gulf of Mexico)

• 3D seismic

• Number of traces: 6,476,056

• Number of fractures: 1,000,000+

Sample positive training images

Sample negative (non-fracture) 

training images

 Pattern Recognition for Fractured Reservoir Characterization Using 

Subsurface Big Data (led by Dr. Sanjay Srinivasan in Pennsylvania State University)



Toolbox for Subsurface Big Data Analytics

 Framework of a Computer-Assisted Optimization Toolbox: UT-OPT

Input builder
Choose              

optimization        
algorithm

Generation 1

Experiment 1

Experiment 2

…

Experiment Npop

Generation 2

…

Generation Ngen

Choose                     
reservoir             
simulator

CSM IPARS CMG-GEM

CMG-IMEX

CMG-STARS

CSM Phase-field

Global-objective 
optimization

Multi-objective    
optimization

Schlumberger    
ECLIPSE

Simulate            
& optimize              

multiple runs

Model order 

reduction

Level set

Feature          

selection

Non-Gaussian

Data science

Data                   
assimilation

Model Update
Framework of UT-OPT.



Workflow for Multiphysics Coupling of IPARS and deal.II using Dataspaces



DataSpaces: Extreme Scale Data Management Framework 

for Data Staging

 Key Features of Service-Oriented Staging

(led by Dr. Manish Parashar at Rutgers University)

 Dynamic: coupled applications can

join and leave staging areas without

affecting other applications

 Persistent: The staging service and

the staged data remains persistent

across instances of the component

applications. Applications can join and

leave the staging service whenever

they need access to it.

 Efficient: Optimizes the write perform

ance by routing data from requesting

client applications to the closest stag-

ing servers

 Resilient: The staging service can be

backed up and restarted as needed.

Exascale Computing

Shared data space ADIOS 

that are to be coupled with forward models 

and assimilation/optimization algorithms.



Coupled Compositional Flow Simulations 

with Fracture Propagation

Fluid
Pressure

Water
Saturation

C6 Component
Concentration



Conclusions

 Ongoing works: multidisciplinary collaboration with                     

multi-universities, industry, government laboratories 

• Part of training graduate students for future work force

 Development of high-fidelity algorithms: EG, Phase Field, 
Multipoint Flux, etc.

• Flow, transport, and mechanics in fractured porous media 

• Wave propagation

• Data assimilation & multiobjective optimization

• Machine learning & pattern recognition

 Big data: service-oriented data staging for coupling 

geophysics and flow with data

• Key features of data staging: dynamic, persistent, efficient, and resilient


