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ASCEM Program

Advanced Simulation Capability for Environmental Management
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Open source simulator Amanzi (github.com/amanzi)

Amanzi is the Multi-Process HPC Simulator for coupled flow
and reactive transport

modular C++ design, uses 22 external libraries

polytopal (MSTK), structured AMR (BoxLib) meshes

automatic update of state fields via a dependency graph

state-of-the-art solvers (Hypre, Trilinos, Amanzi)

parallel IO (ParMETIS, Exodus, HDF5)

chemistry packages (PFloTran, CrunchFlow, Amanzi)

standard and advanced discretization methods

quality control (400+ unit and 100+ regression tests)
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Simplified PDE model (1/2)

∂(φ ρ s)

∂t
+ div(ρq) = Q, q = −kr

µ
K (∇p− ρg)

∂(φ sCi)

∂t
+ div(qCi)− div(φe sDi∇Ci) = R(C1, . . . , Cn)

where φ, φe - porosities

ρ, µ - density and viscosity of water

s - saturation

K, kr - absolute and relative permeabilities

Ci - molar concentration of chemical species

Various extensions include the dual porosity model, energy
equation, water vapor model, coupled surface and subsurface
flow and transport, and multiphase flows.
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Simplified PDE model (2/2)

∂(φ s)

∂t
+ div(q) = 0, q = −K kr (∇p− ρg)

∂(φ sCi)

∂t
+ div(qCi)− div(φ sDi∇Ci) = 0
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Mathematical and physical properties

conservation laws (water, species)

positivity of concentration

maximum principles (hydraulic head, pressure)

symmetry and positive definiteness of operators
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Additional challenge: polytopal meshes
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Additional challenge

Development of physics-preserving schemes becomes more
challenging on polytopal meshes
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Requirement for the ideal scheme

be conservative

be convergent on polytopal meshes

handle degenerate and strongly varying coefficients

lead to an SPD matrix (e.g. for elliptic operators)

have discrete maximim principles

Konstantin Lipnikov Physics-Preserving Discretizations for Subsurface Flows



Discretization methods implemented in Amanzi

Finite volume scheme

Mimetic finite differences (MFD) with optimization

Nonlinear finite volume (NFV) scheme
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MFD

Mimetic finite differences
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Mimetic finite different method

Mimetic schemes are designed to work on unstructured
polygonal and polyhedral meshes.

Mimetic schemes preserve or mimic critical mathematical
and physical properties of systems of PDEs such as
conservation laws, exact identities, and symmetries.
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Design principles of MFD (1/2)

Coordinate invariant definition of primary mimetic operators
using the Stokes theorem in one, two and three dimensions.∫
e

∂p

∂τ e
dx = p(xn2)− p(xn1)

(
GRAD ph

)
e

=
pn2 − pn1

|e|∫
f
(curl u)·nf dx =

∮
∂f

u·τ dx
(
CURLuh

)
f

=
1

|f |
∑
e∈∂f

αf,e |e|ue

∫
c
divudx =

∮
∂c

u · ndx
(
DIVuh

)
c

=
1

|c|
∑
f∈∂c

αc,f |f |uf
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Design principles of MFD (2/2)

Duality between primary and derived mimetic operators.∫
Ω

(divu) p dx = −
∫

Ω
u · ∇p dx ∀u ∈ Hdiv(Ω), p ∈ H1

0 (Ω)

We define G̃RAD = −DIV∗ with respect to inner products[
DIVuh, ph

]
Ch

= −
[
uh, G̃RADph

]
Fh

∀uh ∈ Fh, ph ∈ Ch

An inner product is defined by an SPD matrix, e.g.

[uh, vh]Fh
= (uh)T MFh

vh
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Consequence of design principles

Exact identities, e.g.

DIV CURL = 0, C̃URL G̃RAD = 0

Symmetry, positive definiteness of discrete Laplacians

Helmholtz decompositions:

vh = G̃RAD qh + CURLuh

where vh ∈ Fh, qh ∈ Ch, and uh ∈ Eh with D̃IVuh = 0,

vh = GRAD qh + C̃URLuh
where vh ∈ Eh, qh ∈ Nh, and uh ∈ Fh with DIVuh = 0

Treatment of polyhedral meshes with curved faces1

1F.Brezzi, K.L., M.Shashkov, V.Simoncini, CMAME, 2007
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Flexibility the mimetic framework

∫
Ω

(divu) q dx = −
∫

Ω

K−1u · (K∇)q dx

leads to primary DIV that approximates div(·) and derived

G̃RAD that approximates K∇(·).

∫
Ω

(div (k u)) q dx = −
∫

Ω

k u · ∇ q dx

leads to primary DIV that approximates div(k ·) and derived

G̃RAD that approximates ∇(·). Symmetry is preserved even
when k is upwinded on each mesh face.2

2K.L., G.Manzini, D.Moulton, M.Shashkov, JCP, 2016
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Related methods and frameworks

Cell method

Compatible discrete operators

Co-volume method

Summation by parts

Hybrid FV, mixed FV, discrete duality FV

Mixed FE, weak Galerkin, VEM, Kuznetsov-Repin FE

Enhanced mixed FE

Exterior calculus
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Local inner products

Inner products are built cell-by-cell:[
vh, uh]Fh

=
∑
c∈Ωh

[
vc,h, uc,h]c,Fh

The cell-based inner product is defined by SPD matrix:[
vc,h, uc,h]c,Fh

= (vc,h)
TMc,Fh

uc,h ≈
∫
c

v · u dx
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Degrees of freedom

ufi =
1

|fi|

∫
fi

u · n dx
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Decomposition of matrix Mc,Fh

Derivation of an accurate inner product is based on the
consistency and stability conditions:

Mc,Fh = M(0)
c,Fh︸ ︷︷ ︸

consistency

+ M(1)
c,Fh︸ ︷︷ ︸

stability

Admissible inner product matrix is not unique
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Consistency condition

Let Vc be specially designed Hilbert space, and uc,h = Πc(u):

[
Πc(u

0), Πc(v)]c,Fh
=

∫
c
u0 · v dx ∀u0 ∈ P0(c), v ∈ Vc

The space Vc is typically infinite dimensional (see VEM
framework3 where Vc has finite dimension):

Vc =
{
v : v · nf ∈ P0(f), div(v) ∈ P0(c)

}

3L.Beiro da Veiga, F.Brezzi, A.Cangiani, G.Manzini, L.D.Marini, A.Russo,
M3AS, 2013
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Algebraic form of consistency condition (1/2)

Since u0 = ∇q1 and

∫
c
q1dx = 0, we have

[
Πc(u

0), Πc(v)]c,Fh
= (u0

c,h)TMc,F vc,h =

∫
c
∇q1 · v dx

= −
∫
c
q1div(v) dx+

∫
∂c
q1 v · ndx

=
∑
f∈∂c

vf

∫
f
q1 dx

Since vc,h is an arbitrary vector of DOFs, we conclude with
the matrix equation w.r.t. unknown Mc,Fh

:

Mc,Fh
u0
c,h = rc,h
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Algebraic form of consistency condition (2/2)

Mc,F

 u0
f1
...

u0
fm

 =



∫
f1

q1 dx

...∫
fm

q1 dx

 ∀u0 = ∇q1

It is sufficient to consider only linearly independent functions
q1. In 3D, we have q1

a = x− xc, q1
b = y − yc, and q1

c = z − zc.

Mc,Fh︸ ︷︷ ︸
m×m

Nc︸︷︷︸
m×3

= Rc︸︷︷︸
m×3

The problem is under-determined for any cell c (triangles:
Shashkov, Hyman; Shashkov, Liska; Nicolaides, Trapp).
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Solution of the mimetic matrix equation

Lemma

A family of SPD solutions to Mc,Fh
Nc = Rc is

Mc,Fh
= M(0)

c,Fh︸ ︷︷ ︸
consistency

+ M(1)
c,Fh︸ ︷︷ ︸

stability

where

M(0)
c,Fh

= Rc (RTc Nc)−1 RTc , RTc Nc = |c| I

and

M(1)
c,Fh

=
(
I− Nc

(
NTc Nc

)−1 NTc
)
Pc
(
I− Nc

(
NTc Nc

)−1 NTc
)

where Pc is an SPD matrix.
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Stability condition (1/2)

Consider a model elliptic problem and calculate Darcy flux
and pressure errors as functions of one normalize parameter:

Pc = acI

The free parameter ac
may vary 2-orders in
magnitude.
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Stability condition (2/2)

Mc,Fh
should behave like a mass matrix:

Mc,Fh
∼ |c| I

This imposes restrictions on the parameter matrix:

σ?|c| ‖vc,h‖2 ≤ vTc,hM
(0)
c,Fh

vc,h + vTc,hM
(1)
c,Fh

vc,h ≤ σ?|c| ‖vc,h‖2

In practice, a good choice is given by the scalar matrix

Pc =
1

3
|c| I.
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How rich is the family of MFD scheme?

Cell Pc # parameters

triangle/tetrahedron 1× 1 1

quadrilateral 2× 2 3

hexahedron 3× 3 6

tetrakaidecahedron 11× 11 66
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Equivalent solution of the mimetic matrix equation

Lemma

A family of SPD solutions to Nc =
(
Mc,Fh

)−1 Rc is(
Mc,Fh

)−1
= Wc,Fh

= W(0)
c,Fh︸ ︷︷ ︸

consistency

+ W(1)
c,Fh︸ ︷︷ ︸

stability

where
W(0)
c,Fh

= Nc (NTc Rc)−1 NTc
and

W(1)
c,Fh

=
(
I− Rc

(
RTc Rc

)−1 RTc
)
Pc
(
I− Rc

(
RTc Rc

)−1 RTc
)

where Pc is an SPD matrix.
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Maximum principle (1/2)

The cell-based stiffness matrix for an elliptic equation
appearing in the mixed-hydrid formulations looks like:

Ac =

 CTc Wc,Fh
Cc −CTc Wc,Fh

Bc

−BTc Wc,Fh
Cc BTc Wc,Fh

Bc

 , Bc = Cc1

Direct control of M-matrix property is not practical. We use
stronger criteria:

Lemma

(i) Let Wc,Fh
be a Z-matrix.

(ii) Let vector Wc,Fh
Bc have positive entries.

Then matrix Ac is a singular M-matrix with the null space
consisting of constant vectors.
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Maximum principle (2/2)

Cell-based matrix of parameters:

Pc =

[
a1 a3

a3 a2

]
.

Z-matrix property (Wc,Fh
)ij ≤ 0 for i 6= j leads to linear

inequality constraints

(Wc,Fh
Bc)i ≥ ε > 0 are also linear inequality constraints

A linear programming tools (simplex or interior point
methods) can be used to find an M-matrix Wc,Fh

. To
enforce its diagonal dominance, we maximize:

Φ(a1, . . . , a3) =

m∑
i,j=1

(Wc,Fh
)ij .
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Cost of the simplex method

cell Random perturbation Rotation of anisotropic K
optimized default optimized default

quad 15.3 µs 5.05µs 14.7µs 4.91µs
pentagon 28.0 µs 6.62µs 29.3µs 6.64µs

hexahedron — — 48.7µs 8.92µs

The optimized MFD method is 3-6 times more
expensive than the default method with Pc = αcI

The simplex method returns diagonal matrix Wc,Fh
on

Voronoi meshes and for scalar K
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Model diffusion problem

K(x, y) =

[
(x+ 1)2 + y2 −xy
−xy (x+ 1)2

]
p(x, y) = x3y2 + x sin(2πx) sin(2πy).

We observed that optimization typically improves errors on
polygonal meshes.
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PORFLOW Test 5.2.1

∂C

∂t
+ div(qC)− div(D∇C) = Q, D = αL

qq

‖q‖2
+ αT

(
I−

qq

‖q‖2
)

Velocity makes angle 30◦ with the x-axis.

Small undershoots were ob-
served in the base MFD
method. They go to zero
as the contamination front
moves away from the source.
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Precipitation of calcite along mixing interfaces

Ca2+ + CO2−
3 ↔ CaCO3
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Discrete MP is conditional

(1)

(2)
(3)

(4)

(5)

C

A B

D

y

x

E

−n2

−n1

n1

n1

n2

Cell aspect ratio:

r =
|AD|
|AB|

Let K be diagonal. Then, the optimized MFD scheme has
the discrete maximum principle if

r2 < 4
Kyy

Kxx
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NFV

Nonlinear finite volumes
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Brief history of nonlinear schemes

1998 Nonlinear scheme with the DMP for simplicial meshes
and scalar k (Bertolazzi)

2005 Its theoretical analysis (Bertolazzi,Manzini)

2005 TPFA scheme for triangular meshes (Le Potier)

2009 Interpolation-free scheme (L,Svyatsky,Vassilevski)

2010 1st-order FV scheme with DMP (Le Potier)

2011 2nd-order FV scheme with DMP (Sheng,Yuan)

2011 Convergence analysis (Le Potier, Droniou)

2012 Interpolation-free scheme with DMP
(L,Svyatsky,Vassilevski)

2014 Multiphase flows (Nikitin,Terekhov,Vassilevski)

2016 Non-isothermal two-phase flow
(Schneider,Flemisch,Helmig)

2017 Richards’ equation (L,Svyatsky)
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Two-point flux approximation

The classical 2-point flux approximation is

qf = Tf
pc1 − pc2
d12

The formula becomes inaccurate for arbitrarily-shaped cells
and/or tensorial material properties.
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Nonlinear FV scheme with the discrete MP (1/2)

Multi-point one-sides fluxes use positive decomposition of
co-normal:

q
(i)
f = αik

pci − pck
dik

+ αil
pci − pcl
dil

, αik, αil ≥ 0

Unique flux:

qf =
|q(2)
f |

|q(1)
f |+ |q

(2)
f |

q
(1)
f +

|q(1)
f |

|q(1)
f |+ |q

(2)
f |

(−q(2)
f )
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Nonlinear FV scheme with the discrete MP (2/2)

Unique flux has two equivalent representations

qf =
2 |q(2)

f |q
(1)
f

|q(1)
f |+ |q

(2)
f |

= −
2 |q(1)

f |q
(2)
f

|q(1)
f |+ |q

(2)
f |

This leads to a cell-centered FV scheme with an M-matrix.
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Harmonic averaging point (1/2)

Consider the affine space S of functions q(x):

q(x) is linear in both c1 and c2, q(xci) = pci

q(x) is continuous of interface f

q(x) has continuous flux across the interface f
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Harmonic averaging point (2/2)

The space S is one-dimensional in 2D. There exists a
function q? ∈ S and a point yf ∈ f such that4

q?(yf ) = γfpc1 + (1− γf )pc2 , 0 < γf < 1.

We use this value to modify the one-sided flux formula:

q
(1)
f = α11

pc1 − q?(yf )

d1f
+ α12

pc1 − pc3
d13

= α11(1− γf )
pc1 − pc2
d1f

+ α12
pc1 − pc3
d13

.

4L.Agelas, R.Eymard, R.Herbin, C. R. Acad. Sci. Paris, Ser.I, 2009
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Nonlinear FV scheme for Richards’ equation

∂(φ s)

∂t
+ div(q) = 0, q = −K kr(∇p− ρg)

To build a second-order NFV scheme with the discrete MP,
we need5

second-order upwind approximation of the relative
permeability kr

limiter based on neighboring pressure values

5D.Svyatsky, K.L., AWR, 2017
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Convergence analysis

# cells pressure error
1st 2nd

16x4 1.19e-01 3.34e-02
32x8 6.74e-02 1.25e-02

64x16 3.71e-02 4.34e-03
128x32 2.00e-02 1.44e-03
256x64 1.05e-02 4.35e-04
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Water infiltration into dry soil (1/3)

mass influx on the top boundary

atmospheric pressure on the bottom boundary

no flow otherwise

discontinuous anisotropic permeability tensor K
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Water infiltration into dry soil (2/3)

van Genuchten parameters n = 1.43, α = 2.0674 · 10−4 [Pa−1]

Pressure profile at steady state satisfies
maximum principles in each soil

TPFA NFV
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Water infiltration into dry soil (3/3)

van Genuchten parameters n = 3.18, α = 3.5959 · 10−4 [Pa−1]

Pressure profile at steady state satisfies
maximum principles in each soil

TPFA NFV

Konstantin Lipnikov Physics-Preserving Discretizations for Subsurface Flows



Consistent nonlinear solver

∂(φ s)

∂t
+ div(q) = 0, q = −K kr(∇p− ρg)

Calculation of the exact Jacobian is not prac-
tical for advanced discretizations. But such
schemes can be applied to continuum Jaco-
bian6:

J δp =
∂(φ s)

∂p

∂ δp

∂t
− div

(
K kr∇δp

)
+ div

(
Vδp

)
where

V = −K∂kr
∂p

(
∇p− ρg

)
= q

∂kr
∂p

1

kr

6J.Yue,G.Yuan, CCP 2011
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CNLS vs Picard

CNLS outperforms Picard and accelerated Picard:
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Conclusion

Physics-preserving discretizations mimic critical
properties of underlying PDEs (conservation laws,
symmetries, positivity, MPs).

Mimetic finite difference method addresses many
requirements for the ideal scheme; however, the discrete
maximum principle (DMP) is only conditional.

Nonlinear FV scheme is nonsymmetric but gives
unconditional DMP. It is well suited for solving nonlinear
Richards’ equation.

Consistent nonlinear solver is the promising framework
for building Jacobian-free iterative methods.
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