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Multiscale idea formulated as discrete operators

Ax = q

Initial fine-scale system,

incorporating all details of
geological model

Illustration: cell-centered TPFA

x = Pxc

P = basis(A)

Ac = RAP

qc = Rq

Multiscale expansion:

generate basis functions,

restrict fine-scale system

and right-hand side

xc = A−1
c qc

x ≈ Pxc

Solve reduced system,
prolongate to obtain
approximate pressure

Lee, Lunati, Nordbotten, Tchelepi, Zhou, . . . (2008)
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From Poisson’s equation to reservoir simulation

Geology

Flow physics

−∇(K∇p) = q

MsFV, MsMFE, 2003

0 =∂t(φboSo) +∇ · (bo ~vo)− boqo
0 =∂t(φbwSw) +∇ · (bw ~vw)− bwqw
0 =∂t

[
φ(bgSb + borsoSo)

]
+∇ · (bg~vg)

+∇ · (borso ~vo)− bgqg − borsoqo???
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Why is this challenging?

Geological models: complex unstructured grids
having many obscure challenges

Flow models: system of highly nonlinear parabolic
PDEs with elliptic and hyperbolic sub-character

Well models: analytic sub-models, strong impact
on flow

Challenges:

Industry standard: corner-point / stratigraphic grids

Grid topology is unstructured

Geometry: deviates from box shape, high aspect
ratios, many faces/neighbors, small faces, . . .

As a general rule: coarse blocks will be unstructured

Coarse blocks will have strange shapes, many special
cases to be handled

Coarse partition should adapt to features relevant to
flow: petrophysical properties, faults, flow direction,
wells, . . .
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Qualitatively correct solution → small fine-scale residual
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Qualitatively correct solution → small fine-scale residual

accuracy
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upscaling

fine scale solution

multiscale

extra
iterations

Residual iteration:

p∗ = pν + S(q −Apν)

pν+1 = p∗ +A−1
ms(q −Ap∗)

S is some inexpensive smoother, e.g., ILU(0)

Hajibeygi, Jenny, Tchelepi, Wang, . . . (2008–2015)
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The multiscale finite-volume (MsFV) method

Developed by the INTERSECT research alliance (Chevron,Schlumberger,++)

In 2012: extensive research over the past decade, more than 40 papers by
Jenny, Lee, Tchelepi, Lunati, Hajibeygi, etc:

correction functions to handle non-elliptic features

extension to compressible flow

adaptive updating of basis functions (and transport equations)

iterative formulation with smoothers (Jacobi, GMRES, . . . )

algebraic formulation

...

However...

Monotonicity issues requires many iterations for strong heterogeneity

Method only applied to Cartesian models with conceptual faults

Our focus: Extension to unstructured grids with realistic geology
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MsFE/MsFV: prolongation operator in more detail

Coarse grid

∇t · (K∇tp) = 0

Φ = 1

Φ = 0

∇ · (K∇p) = 0

Hou & Wu (1997), Jenny, Lee, Tchelepi (2003)
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MsFE/MsFV: prolongation operator in more detail
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MsFV for unstructured grids (Møyner & Lie, 2013)

Algorithm for generating admissible primal–dual partitions on general grids

automated on rectilinear, curvilinear, triangular, and Voronoi grids

semi-automated on corner-point grids and grids with non-matching faces
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Problems encountered: permeability contrasts

Automated algorithms will generally give:

Dual block centers in low-permeable regions

Dual edges crossing strong permeability contrasts (twice)

Large number of cells categorized as edges

−→ nonmonotone multipoint stencil for coarse-scale equations
−→ poor decoupling, does not reproduce linear flow
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Rethinking the basis functions: Requirements

What do we want from numerical basis functions P?

Partition of unity to represent constant fields∑
j

Pij = 1→ Exact interpolation of constant modes

Algebraically smooth:

Minimize ‖AP‖1 → APpc ≈ Ap locally.

Localization:

Coarse system Ac = RAP becomes dense as support of basis functions grow
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Alternative approach: support regions (Møyner & Lie, 2015)

Basis functions require a coarse grid and a support region

Support region: logical indices, topological search, distance measures,..

Region constructed using triangulation of nodal coarse neighbors, resulting
in a multipoint stencil on the coarse scale

Avoid solving reduced flow problem along perimeter

Main point: simple to implement in 3D for fully unstructured meshes

Coarse grid + triangulation support region basis function
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MsRSB: restricted, smoothed basis functions

Permeability and grid

Ideally, operators are both smooth and local

1 Start with constant functions on primal grid

2 Apply Jacobi-like iterations as in algebraic
multigrid methods (Vanek et al),

Pn+1 = Pn − ωD−1(AP )

3 Restrict each function to its support region

4 Repeat steps 2 and 3 until convergence

Initial constant basis After one pass After 10 passes Converged (n ≈ 100)
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MsRSB: computing basis functions

Ij

Bj

G ∩ Ij

Define preliminary update by Jacobi relaxation,

d̂j = −ωD−1APnj .

Modify the update according to cell category,

dij =


d̂ij−Pn

ij

∑
k∈Hi

d̂ik

1+
∑

k∈Hi
d̂ik

, i ∈ Ij , i ∈ G,

d̂ij , i ∈ Ij , i 6∈ G,

0, i 6∈ Ij .

Finally, apply the update and proceed to next iteration

Pn+1
ij = Pnij + dij

Jacobi iteration ensures algebraic smoothness

Limited support by construction

Modified update for partition of unity
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Examples: Single-phase flow
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SPE10 full model

Horizontal permeability

MsRSB

Reference solution

MsFV,

Error Grid p (L2) p (L∞) v (L2) v (L∞)
MsFV 6× 11× 17 3.580 128.461 2.288 11.957
MsRSB 6× 11× 17 0.039 0.309 0.397 0.487
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Example: unstructured PEBI grid

Porosity and grid

Permability from SPE 10, Layer 35

Detailed view of refinement

Unstructured grid designed to minimize grid
orientation effects

Two embedded radial grids near wells

Fine grid adapts to faults

The faults are sealed, i.e. allow no fluid
flow through
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Example: unstructured PEBI grid
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Two-step preconditioner, ILU(0) as 2nd stage, Richardson iterations
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Metis (146 cells)

Slow convergence: ILU(0)
Adapted grid gives better
prolongation operator →
faster initial convergence

Metis grid has more block
connections → faster two-
level convergence

Two-step preconditioner, ILU(0) as 2nd stage, Richardson iterations
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Example: Gullfaks field

Early field model of a giant reservoir from the
Norwegian North Sea

216 000 cells with a large number of faults and
eroded layers

Very challenging anisotropic permeability and grid

Model includes cells with nearly 40 faces

Synthetic well configuration with four vertical wells
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MsRSB: Gullfaks field

First coarsening strategy:
Uniform blocks, split over faults

Second coarsening strategy:
Use Metis with same number of
DoF

Grid type DoF p (L2) p (L∞)

15× 15× 20 416 0.032 0.102

Metis 416 0.032 0.100

10× 10× 10 1028 0.028 0.597

Metis 1028 0.015 0.112

Fine scale (216 000 DoF)

MsRSB (416 DoF)
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MsRSB: Gullfaks field

20 40 60 80 100
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  10 DoF
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 250 DoF

 500 DoF

1000 DoF

Control volume

Finite element
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Examples: Compressible, multi-phase flow
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Industry-standard flow simulation

The black-oil equations on residual form:

Rw =
1

∆t

[
(φ bwSw)n+1 − (φ bwSw)n

]
+∇ · (bw~vw)n+1 − (bwqw)n+1 = 0,

Ro =
1

∆t

[
(φ boSo)

n+1 − (φ boSo)
n
]

+∇ · (bo~vo)n+1 − (boqo)
n+1 = 0,

Rg =
1

∆t

[
(φ bgSg + φ rsoboSo)

n+1 − (φ bgSg + φ rsoboSo)
n
]

+∇ · (bg~vg + borso~vo)
n+1 − (bgqg + borsoqo)

n+1 = 0.

Pressure equation found by eliminating saturation values at the next time step,

Rp =
Rw
bn+1
w

+
[ 1

bn+1
o

−
rn+1
so

bn+1
g

]
Ro +

Rg
bn+1
g

= 0,

Transport step: fractional flow formulation with standard two-point,
upstream-mobility weighting.
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Sequentially-implicit solution strategy

Set pn+1
0 = pn, i = 0

Assemble Jp and rp

Solve −Jp∆p = rp to rough
tolerance εp using MS

Update pressure,
pn+1
i+1 = pn+1

i + ∆p

Converged?
Reconstruct
velocity field

Compute
vT =

∑
α vα

Set sn+1
0 = sn, j = 0

Assemble Js and rs

Solve −Js∆s = rs

Update saturation,
sn+1
i+1 = sn+1

i + ∆s

Converged?

Next
timestep

Yes

i = i+ 1 i = i+ 1

Yes
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Example: SPE 10 model 2 benchmark

Iterated sequential solver:

- 0.001 pressure increment tolerance

- 10−6 tolerance for algebraic multigrid

Iterated multiscale solver:

- 0.005 pressure increment tolerance

- 10−2 tolerance for MsRSB solver

Approximate MsRSB solver is ten times
faster than baseline sequential

Time [year]

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5
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0.8
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P1 Ref

P2 Ref

P3 Ref

P4 Ref

P1 MS

P2 MS

P3 MS

P4 MS

Sequential MsRSB
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Pressure+Transport

Pressure

Reconstruction

Transport

Other
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Example: realistic waterflooding
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Injector BHP: Producer BHP:

i = 25

i = 100

i = 200

Watt Field: water flooding

415 711 active cells, three rock types

7 injectors, 15 horizontal producers

Møyner & Lie, SPE J. (2016)
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Example: realistic waterflooding
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Thin solid: fine-scale solution Multiscale: 800 blocks, tolerance 0.05
Thick dashed: multiscale solution Solver speedup: 9×

Møyner & Lie, SPE J. (2016) 23 / 52



Example: 3-phase flow

Synthetic model with fluid model based on SPE1 benchmark

Gas is injected at constant rate into a undersaturated reservoir

Producer at fixed bottom hole pressure

Highly sensitive to pressure approximation

Gas satuaration at breakthrough
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0 2 4 6 8 10

G
a

s
 p

ro
d

u
c
ti
o

n
 r

a
te

 [
m

3
/s

]

0

0.5

1

1.5

2

2.5

3

3.5

Reference

MsRSB (Tol = 0.1)

MsRSB (Tol = 1e-3)

MsRSB (Tol = 1e-6)

Time [year]

9.3 9.4 9.5 9.6 9.7

G
a

s
 p

ro
d

u
c
ti
o

n
 r

a
te

 [
m

3
/s

]

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Reference

MsRSB (Tol = 0.1)

MsRSB (Tol = 1e-3)

MsRSB (Tol = 1e-6)

Møyner & Lie, SPE J. (2016)

24 / 52
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Example: INTERSECT Prototype on Gullfaks

Field pressure

P
re

ss
u

re
[b

ar
]

Giant North Sea field, started production in 1986

Mainly water injection, but also gas and water-alternating-gas in some areas

Coarse 80× 100× 19 simulation model with real history (3-phase black oil)

MsRSB basis functions in Intersect R&P Multiscale simulator

Lie, Møyner, Natvig, Kozlova, Bratvedt, S. Watanabe, Z. Li, Successful Application of Multiscale Methods in a Real Reservoir Simulator
Environment, Comput. Geosciences 2017
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Recent developments: Compositional flow
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Compositional flow: Governing equations

Aqueous phase,

Rw = ∂t(φρwSw) +∇ · (ρw~vw)− ρwqw = 0.

Component i,

Ri = ∂t(φ [ρlSlXi + ρvSvYi])+∇·(ρlXi~vl + ρvYi~vv)−ρlXiql−ρvYiqv = 0.

Hydrocarbons assumed to exist in vapor/liquid – not in aqueous

Generalized cubic equation-of-state (Peng-Robinson in examples)

Lohrenz-Bray-Clark viscosity correlation
Møyner & Tchelepi, SPE RSC (2017)
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Isothermal flash

Flash equations,

fil(p, T, x1, ..., xn, Zl)− fiv(p, T, y1, ..., yn, Zv) = 0, for i ∈ {1, ..., N}
zi − Lxi − (1− L)yi = 0, for i ∈ {1, ..., N}

N∑

i=1

xi − yi = 0.

Applies in cells with two hydrocarbon phases.

Overall composition: Flash to be solved at every iteration
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Sequential total mass scheme: Pressure

Scheme suggested by Hajibeygi & Tchelepi (SPE J, 2014), where
pressure is found by total mass balance,

Rp =
φ

∆t

[
Rn+1
t −Rnt

]
+∇ · ~Vt −Qt = 0.

from unweighted sum over component equations.

Define total density, total mass fluxes

Rt =
∑

β=w,l,v

ρβSβ , ~Vt =
∑

β=w,l,v

ρβ~vβ , Qt =
∑

β=w,l,v

ρβqβ .

Total mass does not change during transport – reasonable?
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Sequential-implicit total mass scheme: Transport

Transport equation for hydrocarbon component i,

Rti =
φ

∆t

[
(XiRl)

n+1 + (YiRv)
n+1 − (XiRl)

n − (YiRv)
n
]

+∇ ·
(
Xi
~Vl + Yi~Vv

)
−XiQl − YiQv = 0.

Where we have used fixed masses to obtain,

Rα =
ραSα∑

β=w,l,v

ρβSβ
Rt, Qα =

ραλα∑
β=w,l,v

ρβλβ
Qt,

~Vα =
λαρα∑

β=w,l,v

λβρβ
(~Vt +K

∑

β=w,l,v

ρβλβ(ρβ − ρα)~g∇z)
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Sequential total volume scheme: Pressure

Pressure equation as total volume balance

Defined weighted sum (see Watts, 1986 or review by Coats, 2000)

Rp =

N∑

i=1

wiRi

Weights (partial component volumes) chosen such that accumulation

Ap =
∂

∂t

[
N∑

i=1

wi(ρlSlXi + ρvSvYi)

]

has zero derivatives w.r.t. all primary variables except pressure.
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Sequential-implicit total volume scheme: Transport

Transport equation for hydrocarbon component i,

Rti = ∂t(φ [ρlSlXi + ρvSvYi])+∇·(ρlXi~vl + ρvYi~vv)−ρlXiql−ρvYiqv = 0.

Phase velocity by fractional flow, keeping total velocity fixed

~vα =
λα∑

β=w,l,v

λβ
(~vt +K

∑

β=w,l,v

λβ(ρβ − ρα)~g∇z)
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CO2 injection: Layer of SPE 10 Model 2

Six component fluid from Mallison
et al (2005)

Initial concentration

I N2+CH4: 0.463
I CO2: 0.01640
I C2−5: 0.20520
I C6−13: 0.19108
I C14−24: 0.08113
I C25−80: 0.04319

CO2 and water injected at opposite
corners

Water and gas injection
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CO2 injection: Layer of SPE 10 Model 2

Sequential saturation at 2/3 PVI MsRSB saturation at 2/3 PVI
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CO2 injection: Layer of SPE 10 Model 2

Sequential saturation at 2/3 PVI |Sms − S| at 2/3 PVI
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CO2 injection: Layer of SPE 10 Model 2

CO2 concentration at 2/3 PVI CO2 concentration at 2/3 PVI
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CO2 injection: Layer of SPE 10 Model 2

CO2 concentration at 2/3 PVI |zms − z| at 2/3 PVI
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CO2 injection: Layer of SPE 10 Model 2
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CO2 injection: Layer of SPE 10 Model 2
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Example: Norne field

Subset of Norne field model

Synthetic wells injecting N2

Reservoir contains Methane,
n-Pentane and n-Decane

Low field pressure makes phase
behavior sensitive

Model contains faults,
anisotropy, pinched cells, ...

40,000 fine cells, 200 coarse
blocks

Permeability (millidarcy)
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Example: Norne field

Field pressure Gas saturation
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Example: Norne field

Field pressure N2 concentration
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Example: Norne field
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Example: Norne field
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Example: Nitrogen test

SPE 10 model with very thin layer

Use same fluid as for Norne field

Constructed to produce oscillations
in mass-scheme

Compare total mass and total
volume schemes

Configuration

Pressure Gas saturation
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Example: Nitrogen test

Fully implicit

Cumulative gas production Gas production
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Example: Nitrogen test

Total mass splitting

Cumulative gas production Gas production
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Example: Nitrogen test

Total volume splitting

Cumulative gas production Gas production
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Example: Nitrogen test

Producer gas-oil-ratio

Total mass splitting Total volume splitting
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Recent developments: Feature-enrichment
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Room for improvements

Slow convergence in certain cases with strong contrasts and long
correlation lengths

Desire to adapt coarse grid to geological features

Want improved resolution near wells

Flux reconstruction for transport can be expensive

Previous work:

generalized multiscale element methods (Efendiev et al)

hybrid finite-volume/Galerkin method (Cortinovis and Jenny)
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New idea: multiple multiscale operators

Assume N prolongation operators P 1, . . . , PN that may come from
different coarse grids and support regions, or different multiscale methods
(MsRSB, MsFV,. . . )

Likewise, there are N restriction operators R1, . . . , RN

Multiplicative multistep method:

p∗ = pk+(`−1)/N + S(q −Apk+(`−1)/N )

pk+`/N = p∗ + P `(R`AP `︸ ︷︷ ︸
A`

ms

)−1R`(q −Ap∗),

Example setup: P 1 is general and covers domain evenly, whereas P 2, . . . , PN are
feature specific
Lie, Møyner, Natvig, SPE RSC 2017
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Minimal assumptions on operators

1. P ` and R` are constructed from a non-overlapping partition of the
fine grid. Each column j in P ` is called a basis function and is
associated with a coarse grid block Ω`

j

2. The support S`j of each basis function is compact and contains Ω`
j

3. The columns of P ` form a partition of unity, i.e., each row in P ` has
unit row sum
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Examples of partition types

Rectilinear or structured subdivisions

Adapting to facies, rock types,
saturation regions, etc

Partitions adapting to faults,
fractures,. . .

From block-structured grids, LGR,. . .

Unstructured graph-based partitions

Amalgamations based on indicators

Adapting dynamically to flow

Separating near-well and far-field

. . .
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Numerical example: SPE10

Layer 85: 220× 60 subsample, pressure drop from
north to south, linear relperms, equal viscosities

fine rectangular metis combined

Partition L2 L∞

Rectangular 0.0307 0.1782
Metis 0.0791 0.5506
Combined 0.0293 0.2929
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Numerical example: SPE10
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Numerical example: Unstructured grid

PEBI grid adapting to five faults and
thirteen volumetric fractures.

Faults: 0.01 trans. multiplier
Fractures: 5 darcy
Background: average 100 md
Wells:

– injector, bhp: 500 bar
– producer, bhp: 200 bar
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Numerical example: Gullfaks

Higher resolution: 80× 100× 52 cells, 416 000 active
Partition: rectangular (upper) and by Metis (lower)
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Numerical example: Gullfaks
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Conclusion

Multiscale basis functions for pressure, fully unstructured

Applicable to wide range of flow problems through finite-volume
framework

Emphasis on robust local method for fine-scale transport

Unstructured coarsening allows for adaption to features

Very simple to implement regardless of grid complexity

Prototype in commercial simulator and MRST
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Basis functions: MsFV vs MsRSB

MsFV, Kx = Ky MsRSB, Kx = Ky MsFV, Kx = 8Ky MsRSB, Kx = 8Ky

[−0.08 −0.16 −0.09
−0.18 −0.16
−0.08 −0.17 −0.08

] [−0.08 −0.16 −0.09
−0.17 −0.16
−0.08 −0.17 −0.08

] [−0.09 +0.17 −0.09
−0.49 −0.49
−0.07 +0.14 −0.08

] [−0.03 +0.05 −0.04
−0.48 −0.48
−0.03 +0.05 −0.04

]

MsFV, Tarbert MsRSB, Tarbert MsFV, Upper Ness MsRSB, Upper Ness

[−0.01 −0.96 −0.02
−0.00 +0.00
−0.00 −0.01 −0.00

] [−0.01 −0.97 −0.01
−0.00 +0.01
−0.00 −0.01 −0.00

] [−0.00 −0.55 −0.02
−0.00 −0.32
−0.00 −0.09 −0.01

] [−0.18 −0.31 −0.02
−0.04 −0.17
−0.15 −0.12 −0.01

]

The matrices report the net fluxes into or out of the neighboring coarse blocks induced by a unit
pressure differential
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Example: water-based EOR

Full Eclipse 100 polymer model with adsorption, Todd-Langstaff mixing,
inaccessible pore volume, and permeability reduction

Polymer concentration changes water viscosity to achieve better sweep

Model includes shear thinning, i.e., water-polymer viscosity depends on the velocity.

Non-Newtonian fluid rheology makes the pressure equation highly nonlinear
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Example: validation on SPE10 layers

Error Grid p (L2) p (L∞) v (L2) v (L∞)

MsFV 6× 11 0.0313 0.0910 0.1138 0.4151

MsRSB 6× 11 0.0204 0.0766 0.0880 0.4071
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Example: validation on SPE10 layers

Error Grid p (L2) p (L∞) v (L2) v (L∞)

MsFV 6× 11 0.2299 2.0725 0.4913 0.7124

MsRSB 6× 11 0.0232 0.0801 0.1658 0.3240

4 / 9



Numerical example: well basis

Gaussian Layered
Basis L2 L∞ L2 L∞

6× 6 0.0641 0.1679 0.0619 0.1750
Well basis 0.0760 0.1131 0.1015 0.1215
Well basis + 6× 6 0.0303 0.1136 0.0280 0.0634
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Example: Validation of compositional simulator

Compare MRST implementation to AD-GPRS research simulator

Simple one dimensional
example

Pressure drop of 50 bar over
domain

Compare different schemes to
validate
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Example: unstructured PEBI grid

Porosity and grid

Permability from SPE 10, Layer 35

Detailed view of refinement

Unstructured grid designed to minimize grid
orientation effects

Two embedded radial grids near wells

Fine grid adapts to faults

The faults are sealed, i.e. allow no fluid
flow through

7 / 9



Example: unstructured PEBI grid
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Two-step preconditioner, ILU(0) as 2nd stage, Richardson iterations
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prolongation operator →
faster initial convergence
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level convergence
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Example: unstructured PEBI grid

Water front, fine-scale solution Water front, multiscale solution

Injector: 1 PVI at constant rate. Producer: fixed bottom-hole pressure.

Relative mobility: λrw = s2w, λro = (1− sw)2/5

Basis functions: adapted grid, updated by reapplying smoother
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MsRSB: computing basis functions

Ij

Bj

G ∩ Ij

Divide set of fine cells F into m coarse blocks,

Cj ⊆ F, Cj∩Ci = ∅ ∀ i 6= j, i, j ∈ [1,m], |F | = n.

Define support Ij and its boundary Bj for each block,

Pj(x) > 0, x ∈ Ij Pj(x) = 0 otherwise.

For convenience, define global boundary/dual as union
of all boundaries

G = B1 ∪B2 ∪ ... ∪Bm−1 ∪Bm.

For cells in G, let Hi be the set of blocks where it is
active,

Hi = {j | i ∈ Ij , i ∈ G}.
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MsRSB: computing basis functions

Ij

Bj

G ∩ Ij

Define preliminary update by Jacobi relaxation,

d̂j = −ωD−1APnj .

Modify the update according to cell category,

dij =


d̂ij−Pn

ij

∑
k∈Hi

d̂ik

1+
∑

k∈Hi
d̂ik

, i ∈ Ij , i ∈ G,

d̂ij , i ∈ Ij , i 6∈ G,

0, i 6∈ Ij .

Finally, apply the update and proceed to next iteration

Pn+1
ij = Pnij + dij
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MsRSB: computing basis functions

Jacobi iterations ensures algebraic smoothness

Limited support by construction

Does the proposed basis functions have partition of unity?

Two cases: i ∈ G and i 6∈ G. First, consider i 6∈ G:∑
j

Pn+1
ij =

∑
j

Pnij −
ω

Aii

∑
j

∑
k

AikP
n
kj

=1− ω

Aii

∑
k

Aik

(∑
j

Pnkj

)
=1− ω

Aii

∑
k

Aik = 1.

We have used that
∑
j∈Hi

Pnij = 1 by assumption and that Pnij is nonzero only
in Hi.

9 / 9



MsRSB: computing basis functions

Jacobi iterations ensures algebraic smoothness

Limited support by construction

Does the proposed basis functions have partition of unity?

Two cases: i ∈ G and i 6∈ G. Next, consider i ∈ G.

∑
j∈{1,...,m}

Pn+1
ij =

∑
j∈Hi

(
Pnij +

d̂ij − Pnij
∑
k∈Hi

d̂ik

1 +
∑
k∈Hi

d̂ik

)

=1 +
∑
j∈Hi

d̂ij − Pnij
∑
k∈Hi

d̂ik

1 +
∑
k∈Hi

d̂ik

=1 +

∑
k∈Hi

d̂ik

1 +
∑
k∈Hi

d̂ik
−

∑
k∈Hi

d̂ik

1 +
∑
k∈Hi

d̂ik

∑
j∈Hi

Pnij = 1.

We have used that
∑
j∈Hi

Pnij = 1 by assumption and that Pnij is nonzero only
in Hi.

9 / 9


	Appendix

