Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis

Houman Owhadi

Joint work with Clint Scovel

IPAM Apr 3, 2017

[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017. arXiv:1703.10761]

LINSTITUTE OF IECHNOLOGIES

DARPA EQUiPS / AFOSR award no FA9550-16-1-0054 (Computational Information Games)

Question

 Can we design a scalable solver that could be applied to nearly all linear operators?

"Of course no one method of approximation of a "linear operator" can be universal. " [Sard, 1967]

Answer

Yes under two minor conditions: (1) The operator must be bounded and invertible (2) Its image space must have a regular multiresolution decomposition

Problem: Solve (1) as fast as possible to a given accuracy

.

0

-

Multigrid Methods

Multigrid: [Fedorenko, 1961, Brandt, 1973, Hackbusch, 1978]

Multiresolution/Wavelet based methods

[Brewster and Beylkin, 1995, Beylkin and Coult, 1998, Averbuch et al., 1998]
[Beylkin, Coifman, Rokhlin, 1992] [Engquist, Osher, Zhong, 1992]
[Alpert, Beylkin, Coifman, Rokhlin, 1993]
[Cohen, Daubechies, Feauveau. 1992]
[Bacry, Mallat, Papanicolaou. 1993]

Linear complexity with smooth coefficients

Problem Severely affected by lack of smoothness

Robust/Algebraic multigrid

[Mandel et al., 1999, Wan-Chan-Smith, 1999, Xu and Zikatanov, 2004, Xu and Zhu, 2008], [Ruge-Stüben, 1987] [Panayot - 2010]

Stabilized Hierarchical bases, Multilevel preconditioners

[Vassilevski - Wang, 1997, 1998] [Panayot - Vassilevski, 1997] [Chow - Vassilevski, 2003] [Aksoylu- Holst, 2010]

 Some degree of robustness but problem remains open with rough coefficients

Why? Interpolation operators are unknown Don't know how to bridge scales with rough coefficients!

Low Rank Matrix Decomposition methods

Fast Multipole Method: [Greengard and Rokhlin, 1987] Hierarchical Matrix Method: [Hackbusch et al., 2002] [Bebendorf, 2008]:

 $N \ln^{2d+8} N$ complexity

To achieve grid-size accuracy in L^2 -norm

Common theme between these methods

Their process of discovery is based on intuition, brilliant insight, and guesswork

Can we turn this process of discovery into an algorithm?

[H. Owhadi, Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. SIAM Review, 2017]

Hierarchy of nested Measurement functions

$$\phi_i^{(k)} \in L^2(\Omega) \text{ with } k \in \{1, \dots, q\}$$
$$\phi_i^{(k)} = \sum_j \pi_{i,j}^{(k,k+1)} \phi_j^{(k+1)}$$

Example

 $\phi_i^{(k)}$: Indicator functions of a

hierarchical nested partition of Ω of resolution $H_k = 2^{-k}$

$$\begin{cases} -\operatorname{div}(a\nabla u) = g \text{ in } \Omega, \\ u = 0 \text{ on } \partial\Omega, \end{cases} \longleftrightarrow \begin{cases} \xi \sim \mathcal{N}(0, G) \\ \xi \sim \mathcal{N}(0, G) \end{cases}$$
$$\underset{\|u\|^2}{\text{Loss } \frac{\|u - u^{(k)}\|}{\|u\|}}{\|u\|} \\ \|u\|^2 := \int_{\Omega} (\nabla u)^T a\nabla u \end{cases} \longleftrightarrow \begin{cases} \|u - u^{(k)}\| \\ \|u\|^2 \\ \|f\|^2_* := \int_{\Omega^2} f(x)G(x, y)f(y) \, dx \, dy \end{cases}$$

Player II's bets

 $u^{(k)}(x) := \mathbb{E}\left[\xi(x) \left| \int_{\Omega} \xi(y) \phi_i^{(k)}(y) \, dy = \int_{\Omega} u(y) \phi_i^{(k)}(y) \, dy, \, i \in \mathcal{I}_k \right]$

Gamblets Elementary gambles form a hierarchy of deterministic basis functions for player II's hierarchy of bets

Theorem
$$u^{(k)}(x) = \sum_i \psi_i^{(k)}(x) \int_{\Omega} u(y) \phi_i^{(k)}(y) \, dy$$

 $\psi_i^{(k)}$: Elementary gambles/bets at resolution $H_k = 2^{-k}$

$$\psi_i^{(k)}(x) := \mathbb{E}\left[\xi(x) \middle| \int_{\Omega} \xi(y) \phi_j^{(k)}(y) \, dy = \delta_{i,j}, \, j \in \mathcal{I}_k\right]$$

Your best bet on the value of u given the information that

$$\int_{\tau_i^{(k)}} u = 1$$
 and $\int_{\tau_j^{(k)}} u = 0$ for $j \neq i$

Multiresolution decomposition of the solution space

$$\mathfrak{V}^{(k)} := \operatorname{span}\{\psi_i^{(k)}, i \in \mathcal{I}_k\}$$

 $\mathfrak{W}^{(k)} := \operatorname{span}\{\chi_i^{(k)}, i\}$

 $\mathfrak{W}^{(k+1)}: \text{ Orthogonal complement of } \mathfrak{V}^{(k)} \text{ in } \mathfrak{V}^{(k+1)}$ with respect to $\langle \psi, \chi \rangle_a := \int_{\Omega} (\nabla \psi)^T a \nabla \chi$

Theorem

$$H_0^1(\Omega) = \mathfrak{V}^{(1)} \oplus_a \mathfrak{W}^{(2)} \oplus_a \cdots \oplus_a \mathfrak{W}^{(k)} \oplus_a \cdots$$

Multiresolution decomposition of the solution

Theorem

 $u^{(k+1)} - u^{(k)} =$ F.E. sol. of PDE in $\mathfrak{W}^{(k+1)}$

Subband solutions $u^{(k+1)} - u^{(k)}$ can be computed independently

If r.h.s. is regular we don't need to compute all subbands

Numerical Homogenization

Harmonic Coordinates Kozlov, 1979 Babuska, Caloz, Osborn, 1994 Allaire Brizzi 2005; Owhadi, Zhang 2005
MSFEM [Hou, Wu: 1997]; [Efendiev, Hou, Wu: 1999]
[Fish - Wagiman, 1993] [Chung-Efendiev-Hou, JCP 2016]

Variational Multiscale Method, Orthogonal decomposition

[Hughes, Feijóo, Mazzei, Quincy. 1998] [Malqvist-Peterseim 2012] Local Orthogonal Decomposition **Projection based method** Nolen, Papanicolaou, Pironneau, 2008 **HMM** Engquist, E, Abdulle, Runborg, Schwab, et Al. 2003-... Flux norm Berlyand, Owhadi 2010; Symes 2012 **Bayesian Numerical Homogenization** Owhadi 2014 Gamblets – Operator compression [Owhadi, SIREV 2017] [Owhadi, Zhang, 2016] [Hou, Qin, Zhang, 2016] [Hou, Zhang, 2017]

Beyond numerical homogenization (gamblet mesh refinement)

Uniformly bounded condition numbers

$$A_{i,j}^{(k)} := \left\langle \psi_i^{(k)}, \psi_j^{(k)} \right\rangle_a$$

$$B_{i,j}^{(k)} := \left\langle \chi_i^{(k)}, \chi_j^{(k)} \right\rangle_a$$

Gamblets are not only localized in space and their linear combinations remain localized in frequency They behave like wavelets and Wannier functions

Wannier functions

[Wannier. Dynamics of band electrons in electric and magnetic fields. 1962]

[Kohn. Analytic properties of Bloch waves and Wannier functions, 1959]

[Marzari, Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. 1997]

[E, Tiejun, Jianfeng. Localized bases of eigensubspaces and operator compression, 2010]

[Vidvuds, Lai, Caflisch, Osher, Compressed modes for variational problems in mathematics and physics, 2013]

[Owhadi, Multiresolution operator decomposition, SIREV 2017]

[Owhadi, Zhang, gamblets for hyperbolic and parabolic PDEs, 2016]

[Hou, Qin, Zhang, A sparse decomposition

of low rank symmetric positive semi-definite matrices, 2016]

[Hou, Zhang, Sparse operator compression of elliptic operators. 2017]

Operator adapted wavelets

First Generation Wavelets: Signal and imaging processing

- [Mallat, 1989] [Daubechies, 1990]
- [Coifman, Meyer, and Wickerhauser, 1992]

First Generation Operator Adapted Wavelets (shift and scale invariant)

[Cohen, Daubechies, Feauveau. Biorthogonal bases of compactly supported wavelets. 1992]
[Beylkin, Coifman, Rokhlin, 1992] [Engquist, Osher, Zhong, 1992]
[Alpert, Beylkin, Coifman, Rokhlin, 1993] [Jawerth, Sweldens, 1993]
[Dahlke, Weinreich, 1993] [Bacry, Mallat, Papanicolaou. 1993]
[Bertoluzza, Maday, Ravel, 1994] [Vasilyev, Paolucci, 1996]

[Dahmen, Kunoth, 2005] [Stevenson, 2009]

Lazy wavelets (Multiresolution decomposition of solution space)

[Yserentant. Multilevel splitting, 1986]

[Bank, Dupont, Yserentant. Hierarchical basis multigrid method. 1988]

Operator adapted wavelets

Second Generation Operator Adapted Wavelets

[Sweldens. The lifting scheme, 1998] [Dorobantu - Engquist. 1998]
[Vassilevski, Wang. Stabilizing the hierarchical basis, 1997]
[Carnicer, Dahmen, Peña, 1996] [Lounsbery, DeRose, Warren, 1997]
[Vassilevski, Wang. Stabilizing hierarchical basis, 1997-1998]
[Barinka, Barsch, Charton, Cohen, Dahlke, Dahmen, Urban, 2001]
[Cohen, Dahmen, DeVore, 2001] [Chiavassa, Liandrat, 2001]
[Dahmen, Kunoth, 2005] [Schwab, Stevenson, 2008]
[Sudarshan, 2005] [Engquist, Runborg, 2009] [Yin, Liandrat, 2016]
We want (open problem solved here)

1. Scale-orthogonal wavelets with respect to operator scalar product (leads to block-diagonalization)

- 2. Operator to be well conditioned within each subband
- 3. Wavelets need to be localized (compact support or exp. decay)

[Owhadi, Multiresolution operator decomposition, SIREV 2017] [Owhadi, Zhang, gamblets for hyperbolic and parabolic PDEs, 2016]

1. For
$$i, j \in \mathcal{I}^{(q)}$$
, $A_{i,j}^{\varphi} = \langle \varphi_i, \varphi_j \rangle //$ Stiffness matrix
2. For $i \in \mathcal{I}^{(q)}$, $\psi_i^{(q)} = \varphi_i //$ Level q gamblets
3. For $i, j \in \mathcal{I}^{(q)}$, $A_{i,j}^{(q)} = \langle \psi_i^{(q)}, \psi_j^{(q)} \rangle$
4. For $k = q$ to 2
5. For $i \in \mathcal{J}^{(k)}$, $\chi_i^{(k)} = \sum_{j \in \mathcal{I}^{(k)}} W_{i,j}^{(k)} \psi_j^{(k)} //$ Level k, χ gamblets
6. $B^{(k)} = W^{(k)}A^{(k)}W^{(k),T} // B_{i,j}^{(k)} = \langle \chi_i^{(k)}, \chi_j^{(k)} \rangle$
7. $D^{(k,k-1)} = -B^{(k),-1}W^{(k)}A^{(k)}\overline{\pi}^{(k,k-1)} // B^{(k),-1}$ =matrix inverse of $B^{(k)}$
8. $R^{(k-1,k)} = \overline{\pi}^{(k-1,k)} + D^{(k-1,k)}W^{(k)} //$ Interpolation/restriction operator
9. For $i \in \mathcal{I}^{(k-1)}$, $\psi_i^{(k-1)} = \sum_{j \in \mathcal{I}^{(k)}} R_{i,j}^{(k-1,k)} \psi_j^{(k)} //$ Level $k - 1$, ψ gamblets
10. $A^{(k-1)} = R^{(k-1,k)}A^{(k)}R^{(k,k-1)} // A_{i,j}^{(k-1)} = \langle \psi_i^{(k-1)}, \psi_j^{(k-1)} \rangle$
11. End For

Fast/Localized Gamblet Transform

1. For
$$i, j \in \mathcal{I}^{(q)}, A_{i,j}^{\varphi} = \langle \varphi_i, \varphi_j \rangle$$

- 2. For $i \in \mathcal{I}^{(q)}, \psi_i^{(q), \text{loc}} = \varphi_i // \text{Localized basis at level } q$
- 3. For $i, j \in \mathcal{I}^{(q)}, A_{i,j}^{(q),\text{loc}} = \langle \psi_i^{(q),\text{loc}}, \psi_j^{(q),\text{loc}} \rangle$

4. For k = q to 2

5.
$$B^{(k),\zeta,\text{loc}} = W^{(k)}A^{(k),\text{loc}}W^{(k),T}$$

6. For
$$i \in \mathcal{J}^{(k)}, \, \chi_i^{(k), \text{loc}} = \sum_{j \in \mathcal{I}^{(k)}} W_{i,j}^{(k)} \psi_j^{(k), \text{loc}}$$

- 7. Inv $(B^{(k),\text{loc}}D^{(k,k-1),\text{loc}} = -W^{(k)}A^{(k),\text{loc}}\bar{\pi}^{(k,k-1)},\rho_{k-1})$
- 8. $R^{(k-1,k),\text{loc}} = \bar{\pi}^{(k-1,k)} + D^{(k-1,k),\text{loc}}W^{(k)}$ // Localized restriction operator

9.
$$A^{(k-1),\text{loc}} = R^{(k-1,k),\text{loc}}A^{(k),\text{loc}}R^{(k,k-1),\text{loc}}$$

10. For
$$i \in \mathcal{I}^{(k-1)}$$
, $\psi_i^{(k-1), \text{loc}} = \sum_{j \in \mathcal{I}^{(k)}} R_{i,j}^{(k-1,k), \text{loc}} \psi_j^{(k), \text{loc}} / / \text{Localized basis at level } k$

11. End For

Theorem

The number of operations to compute gamblets and achieve accuracy ϵ is $\mathcal{O}(N \ln^{3d} (\max(\frac{1}{\epsilon}, N^{1/d})))$ (and $\mathcal{O}(N \ln^d (N^{1/d}) \ln \frac{1}{\epsilon})$ for subsequent solves)

$\begin{array}{l} \begin{array}{l} \textbf{Complexity} \\ \text{Gamblet} \\ \text{Transform} \end{array} \mathcal{O}(N \ln^{3d} N) \end{array} \begin{array}{l} \text{Linear} \\ \text{Solve} \end{array} \mathcal{O}(N \ln^{d+1} N) \end{array}$

To achieve grid-size accuracy in H^1 -norm

Can we design a universal scalable solver?

Sparse matrix Laplacians

Sparsified Cholesky and Multigrid Solvers for Connection Laplacians: [Kyng, Lee, Peng, Sachdeva, Spielman , 2016]

Approximate Gaussian Elimination: [Kyng and Sachdeva, 2016]

$N \operatorname{polylog}(N) \operatorname{complexity}$

Structured sparse matrices (SDD matrices)

Graph sparsification: [Spielman and Teng , 2004]
Diagonally dominant linear systems: [Spielman and Teng , 2014]
[Koutis, Miller, Gary and Peng , 2014]
[Cohen, Kyng, Miller, Pachocki, Peng, Rao, and Xu, 2014]
[Kelner, Orecchia, Sidford, Zhu, 2013]

The problem

 $\mathcal{T}: \text{ Continuous linear bijection} \\ \mathcal{B} _ \underbrace{\mathcal{T}} \quad \mathcal{B}^*$

We want to approximate \mathcal{T}^{-1} and all its eigen-subpaces in near-linear complexity

For
$$u, v \in \mathcal{B}$$
,
• $[\mathcal{T}u, v] = [\mathcal{T}v, u],$
• $[\mathcal{T}u, u] \ge 0$

$$\|u\|^2 := [\mathcal{T}u, u]$$

 $(\mathcal{B}, \|\cdot\|)$: separable Banach space

$$egin{cases} -\operatorname{div}(a
abla u)=g, & x\in\Omega,\ u=0, & x\in\partial\Omega, \end{cases}$$

$$\mathcal{T} = -\operatorname{div}(a\nabla \cdot)$$

$$(H_0^1(\Omega), \|\cdot\|_{H_0^1(\Omega)}) \xrightarrow{-\operatorname{div}(a\nabla\cdot)} (H^{-1}(\Omega), \|\cdot\|_{H^{-1}(\Omega)})$$
$$\mathcal{B} := H_0^1(\Omega)$$

$$\|u\|^2 := \int_{\Omega} (\nabla u)^T a \nabla u$$

Example $\mathcal{L}u = q$

 \mathcal{L} : arbitrary continuous linear bijection

 $(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{L}} (H^{-s}(\Omega), \|\cdot\|_{H^{-s}(\Omega)})$

 \mathcal{L} : Symmetric and positive

•
$$[\mathcal{L}u, v] = [\mathcal{L}v, u],$$

•
$$[\mathcal{L}u, u] \ge 0$$

$$\mathcal{B} := H_0^s(\Omega)$$
$$\mathcal{T} = \mathcal{L}$$
$$\|u\|^2 := [\mathcal{L}u, u]$$

Example $\mathcal{L}u = g \iff \mathcal{L}^*\mathcal{L}u = \mathcal{L}^*g$

 \mathcal{L} : arbitrary continuous linear bijection

$$(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{L}} (L^2(\Omega), \|\cdot\|_{L^2(\Omega)})$$

$$\mathcal{B} := H_0^s(\Omega)$$
$$\mathcal{T} = \mathcal{L}^* \mathcal{L}$$

$$\|u\| := \|\mathcal{L}u\|_{L^2(\Omega)}$$

A: $N \times N$ symmetric postive definite matrix

$\mathcal{B} := \mathbb{R}^N$ $\mathcal{T} = A$

 $\|x\|^2 := x^T A x$

 $Ax = b \Leftrightarrow A^T Ax = A^T b$

A: $N \times N$ invertible matrix

 $\mathcal{B} := \mathbb{R}^N$ $\mathcal{T} = A^T A$

 $||x||^2 := |Ax|^2$

$$\mathcal{B} \longrightarrow \mathcal{B}^*$$

$$\|u\|^2 := [\mathcal{T}u, u]$$

Hierarchy of measurement functions

$$\phi_i^{(k)} \in \mathcal{B}^* \text{ with } k \in \{1, \dots, q\}$$

 $\phi_i^{(k)} = \sum_j \pi_{i,j}^{(k,k+1)} \phi_j^{(k+1)}$

Hierarchy of gamblets

$$\psi_i^{(k)} = \sum_{j \in \mathcal{I}^{(k)}} \Theta_{i,j}^{(k),-1} \mathcal{T}^{-1} \phi_j^{(k)}$$

$$\Theta_{i,j}^{(k)} := [\phi_i^{(k)}, \mathcal{T}^{-1}\phi_j^{(k)}]$$

Biorthogonal system

$$[\phi_j^{(k)}, \psi_i^{(k)}] = \delta_{i,j}$$

$$\mathfrak{V}^{(k)} := \operatorname{span}\{\psi_i^{(k)} \mid i \in \mathcal{I}^{(k)}\}$$

Theorem

The $\langle \cdot, \cdot \rangle$ orthogonal projection of $u \in \mathcal{B}$ onto $\mathfrak{V}^{(k)}$ is

$$u^{(k)} = \sum_{i \in \mathcal{I}^{(k)}} [\phi_i^{(k)}, u] \psi_i^{(k)}$$
Measurement functions are nested

$$\phi_i^{(k)} = \sum_j \pi_{i,j}^{(k,k+1)} \phi_j^{(k+1)}$$

Gamblets are nested

$$\psi_i^{(k)} = \sum_{j \in \mathcal{I}^{(k+1)}} R_{i,j}^{(k,k+1)} \psi_j^{(k+1)}$$

Orthogonalized gamblets

$$\chi_{i}^{(k)} := \sum_{j \in \mathcal{I}^{(k)}} W_{i,j}^{(k)} \psi_{j}^{(k)}$$

For $k \ge 2$ $W^{(k)}$: $\mathcal{J}^{(k)} \times \mathcal{I}^{(k)}$ matrix such that
 $\operatorname{Img}(W^{(k),T}) = \operatorname{Ker}(\pi^{(k-1,k)})$
and $W^{(k)}(W^{(k)})^{T} = J^{(k)}$

Operator adapted MRA

$$\begin{split} \mathfrak{V}^{(k)} &:= \operatorname{span} \{ \psi_i^{(k)} \mid i \in \mathcal{I}^{(k)} \} \\ \mathfrak{W}^{(k)} &:= \operatorname{span} \{ \chi_i^{(k)} \mid i \in \mathcal{I}^{(k)} \} \\ \end{split}$$
Theorem
$$\mathfrak{V}^{(k)} &= \mathfrak{V}^{(k-1)} \oplus \mathfrak{W}^{(k)}$$

$$\mathcal{B} &= \mathfrak{V}^{(1)} \oplus \mathfrak{W}^{(2)} \oplus \mathfrak{W}^{(3)} \oplus \cdots$$

 $u^{(k)} - u^{(k-1)}$: The $\langle \cdot, \cdot \rangle$ orthogonal projection of $u \in \mathcal{B}$ onto $\mathfrak{W}^{(k)}$

$$\begin{array}{ll} \text{Theorem} & u = v^{(1)} + \dots + v^{(k)} + \dots \\ & v^{(k)} = \sum_{i \in \mathcal{I}^{(k)}} w_i^{(k)} \chi_i^{(k)} \\ & B^{(k)} w^{(k)} = g^{(k)} \\ & g_i^{(k)} = [g, \chi_i^{(k)}] & B_{i,j}^{(k)} = \langle \chi_i^{(k)}, \chi_j^{(k)} \rangle \end{array} \end{array}$$

Eigenspace adapted MRA

$$A_{i,j}^{(k)} = \left\langle \psi_i^{(k)}, \psi_j^{(k)} \right\rangle \qquad B_{i,j}^{(k)} = \left\langle \chi_i^{(k)}, \chi_j^{(k)} \right\rangle$$

Theorem Under regularity of measurement functions

$$\frac{1}{C}H^{-2(k-1)}J^{(k)} \le B^{(k)} \le CH^{-2k}J^{(k)}$$

Cond $(B^{(k)}) \le CH^{-2}$

$$\frac{1}{C}I^{(1)} \le A^{(1)} \le CH^{-2}I^{(1)}$$

Cond $(A^{(1)}) \le CH^{-2}$

Regularity Conditions

$$\begin{array}{ccc} (\mathcal{B}, \|\cdot\|) & \xrightarrow{\mathcal{T}} & \mathcal{B}^*, \|\cdot\|_*) \\ & & \bigcup \\ \phi_i^{(k)} \in \mathcal{B}_0 & (\mathcal{B}_0, \|\cdot\|_0) \end{array}$$

 $(\mathcal{B}_0, \|\cdot\|_0)$: Separable Banach subspace of $(\mathcal{B}^*, \|\cdot\|_*)$ Unit ball of $(\mathcal{B}_0, \|\cdot\|_0)$ compactly embedded in $(\mathcal{B}^*, \|\cdot\|_*)$ **The method**

Multi-resolution decomposition of $(\mathcal{B}_0, \|\cdot\|_0) \to (\mathcal{B}^*, \|\cdot\|_*)$ Gamblet transform Multi-resolution decomposition of $(\mathcal{B}, \|\cdot\|) \to (\mathcal{B}^*, \|\cdot\|_*)$

$(H_0^1(\Omega), \|\cdot\|_a) \xrightarrow{-\operatorname{div}(a\nabla \cdot)}_{(H^{-1}(\Omega), \|\cdot\|_{H^{-1}(\Omega)})} \bigcup_{(L^2(\Omega), \|\cdot\|_{L^2(\Omega)})} (L^2(\Omega), \|\cdot\|_{L^2(\Omega)})$

Haar-wavelet decomposition of $(L^2(\Omega), \|\cdot\|_{L^2(\Omega)}) \to (H^{-1}(\Omega), \|\cdot\|_{H^{-1}(\Omega)})$

Gamblet transform

Multi-resolution decomposition of $(H_0^1(\Omega), \|\cdot\|_{H_0^1(\Omega)}) \to (H^{-1}(\Omega), \|\cdot\|_{H^{-1}(\Omega)})$

$$\Phi^{(k)} := \operatorname{span}\{\phi_i^{(k)} \mid i \in \mathcal{I}^{(k)}\}$$

Regularity Conditions

For some $H \in (0, 1)$ and $C_{\Phi} > 0$ 1. $\frac{1}{C_0} |x|^2 \le \|\sum_{i \in \mathcal{I}^{(k)}} x_i \phi_i^{(k)}\|_0^2 \le C_0 |x|^2$ for $x \in \mathbb{R}^{\mathcal{I}^{(k)}}$. 2. $\|\phi\|_0 \le C_0 H^{-k} \|\phi\|_*$ for $\phi \in \Phi^{(k)}$.

- 3. $\inf_{\phi \in \Phi^{(k)}} \|\varphi \phi\|_* \le C_0 H^k \|\varphi\|_0$ for $\varphi \in \mathcal{B}_0$
- 4. $\|\phi\|_* \leq C_0 H^k \|\phi\|_0$ for $\phi \in \{\sum_{i \in \mathcal{I}^{(k+1)}} x_i \phi_i^{(k+1)} \mid x \in \operatorname{Ker}(\pi^{(k,k+1)})\}$

Conditions are covariant under norm equivalence

Example
$$\mathcal{B}^* = H^{-s}(\Omega)$$
 $\mathcal{B}_0 = L^2(\Omega)$

Regularity Conditions

For some $H \in (0, 1)$ and C > 01. $\frac{1}{C} |x|^2 \leq \|\sum_{i \in \mathcal{I}^{(k)}} x_i \phi_i^{(k)}\|_{L^2(\Omega)}^2 \leq C |x|^2$ for $x \in \mathbb{R}^{\mathcal{I}^{(k)}}$ 2. $\|\phi\|_{L^2(\Omega)} \leq C H^{-k} \|\phi\|_{H^{-s}(\Omega)}$ for $\phi \in \Phi^{(k)}$ 3. $\inf_{\phi \in \Phi^{(k)}} \|\varphi - \phi\|_{H^{-s}(\Omega)} \leq C H^k \|\varphi\|_{L^2(\Omega)}$ for $\varphi \in L^2(\Omega)$ 4. $\|\phi\|_{H^{-s}(\Omega)} \leq C H^k \|\phi\|_{L^2(\Omega)}$

for $\phi \in \{\sum_{i \in \mathcal{I}^{(k+1)}} x_i \phi_i^{(k+1)} \mid x \in \text{Ker}(\pi^{(k,k+1)})\}$

 $\phi_i^{(k)}$: Weighted indicator functions of a hierarchical nested partition of Ω of resolution 2^{-k}

 $(\phi_{i,\alpha}^{(k)})_{\alpha\in\square}$: orthonormal basis functions of $\mathcal{P}_{s-1}(\tau_i^{(k)})$

 $\mathcal{P}_{s-1}(\tau_i^{(k)})$: polynomials of degree at most s-1

 $\tau_i^{(k)}$: Hierarchical nested partition of Ω of resolution 2^{-k}

[Hou and Zhang, 2017]: Numerical homogenization of strongly elliptic PDEs (h sufficiently small, and higher order polynomials as measurement functions)

Example $s \ge 2$ $H = \frac{1}{2^s}$

[Schäfer, Sullivan, Owhadi. 2017]: Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity.

 $\phi_i^{(k)}$: Weighted indicator functions of a hierarchical nested partition of Ω of resolution 2^{-k}

 $\phi_i^{(k)}:$ Subsampled delta Dirac functions

۰	•	•
•	•	•
0	•	•

0 0 0	000	000
0 0 0	000	000
• • •	• • •	000
		000
000	• • •	000
• • •	• • •	000
000	000	000
0 0 0	000	000
	000	000

Example
$$\mathcal{B} := \mathbb{R}^N$$
 $\|x\|^2 := x^T A x$ A: $N \times N$ symmetric $\|x\|_*^2 := x^T A^{-1} x$ postive definite matrix $\|x\|_0^2 := x^T x$ $\phi_i^{(q)} = e_i$ $\pi^{(k,k+1)} (\pi^{(k,k+1)})^T = I^{(k)}$ Regularity Conditions $\pi^{(k,q)} = \pi^{(k,k+1)} \cdots \pi^{(q-1,q)}$ For some $H \in (0,1)$ and $C > 0$

Conditions are covariant under quadratic form equivalence

1. $\frac{1}{C\sqrt{\lambda_{\min}(A)}}H^k \leq \inf_{x \in \operatorname{Img}(\pi^{(q,k)})} \frac{\sqrt{x^T A^{-1} x}}{|x|}$

2. $\sup_{x \in \operatorname{Ker}(\pi^{(k,q)})} \frac{\sqrt{x^T A^{-1} x}}{|x|} \le \frac{C}{\sqrt{\lambda_{\min}(A)}} H^k$

1: For
$$i \in \mathcal{I}^{(q)}$$
, $\psi_i^{(q)} = \varphi_i$
2: For $i \in \mathcal{I}^{(q)}$, $g_i^{(q)} = [g, \psi_i^{(q)}]$
3: For $i, j \in \mathcal{I}^{(q)}$, $A_{i,j}^{(q)} = \langle \psi_i^{(q)}, \psi_j^{(q)} \rangle$
4: for $k = q$ to 2 do
5: $B^{(k)} = W^{(k)}A^{(k)}W^{(k),T}$
6: $w^{(k)} = B^{(k),-1}W^{(k)}g^{(k)}$
7: For $i \in \mathcal{J}^{(k)}$, $\chi_i^{(k)} = \sum_{j \in \mathcal{I}^{(k)}} W_{i,j}^{(k)}\psi_j^{(k)}$
8: $u^{(k)} - u^{(k-1)} = \sum_{i \in \mathcal{J}^{(k)}} w_i^{(k)}\chi_i^{(k)}$
9: $D^{(k,k-1)} = -B^{(k),-1}W^{(k)}A^{(k)}\overline{\pi}^{(k,k-1)}$
10: $R^{(k-1,k)} = \overline{\pi}^{(k-1,k)} + D^{(k-1,k)}W^{(k)}$
11: $A^{(k-1)} = R^{(k-1,k)}A^{(k)}R^{(k,k-1)}$
12: For $i \in \mathcal{I}^{(k-1)}$, $\psi_i^{(k-1)} = \sum_{j \in \mathcal{I}^{(k)}} R_{i,j}^{(k-1,k)}\psi_j^{(k)}$
13: $g^{(k-1)} = R^{(k-1,k)}g^{(k)}$
14: end for
15: $U^{(1)} = A^{(1),-1}g^{(1)}$
16: $u^{(1)} = \sum_{i \in \mathcal{I}^{(1)}} U_i^{(1)}\psi_i^{(1)}$
17: $u = u^{(1)} + (u^{(2)} - u^{(1)}) + \dots + (u^{(q)} - u^{(q-1)})$

Gamblet Transform/Solve

Fast Gamblet Transform obtained by truncation/localization

Complexity Theorem
$$N = \operatorname{Card}(\mathcal{I}^{(q)})$$

 $N \log^{3d}(N)$: Computation of all gamblets $N \log^{d+1}(N)$: Gamblet transform/solve of $u \in \mathcal{B}$ to accuracy H^q in $\|\cdot\|$ norm

Based on exponential decay of gamblets and locality of the operator

d: Hausdorff dimension of d^A . d^A : Graph distance of A on $\mathcal{I}^{(q)}$ $A_{i,j} := \langle \varphi_i, \varphi_j \rangle$, stiffness matrix of the operator $\operatorname{Card}\{j | d^A_{i,j} \leq r\} \leq C r^d$

Localization of Gamblets

Localization problem in Numerical Homogenization

[Chu-Graham-Hou-2010] (limited inclusions) [Efendiev-Galvis-Wu-2010] (limited inclusions or mask) [Babuska-Lipton 2010] (local boundary eigenvectors) [Owhadi-Zhang 2011] (localized transfer property) [Malqvist-Peterseim 2012] Local Orthogonal Decomposition [Owhadi-Zhang-Berlyand 2013] (Rough Polyharmonic Splines) A. Gloria, S. Neukamm, and F. Otto, 2015] (quantification of ergodicity) [Hou and Liu, DCDS-A, 2016] [Chung-Efendiev-Hou, JCP 2016] [Owhadi, Multiresolution operator decomposition, SIREV 2017] [Owhadi, Zhang, gamblets for hyperbolic and parabolic PDEs, 2016] [Hou, Qin, Zhang, 2016] [Hou, Zhang, 2017] [Hou and Zhang, 2017]: Higher order PDEs (localization under strong ellipticity, h sufficiently small, and higher order polynomials as measurement functions) [Kornhuber, Yserentant, 2016]: Subspace decomposition

Subspace decomposition/correction and Schwarz iterative methods

[J. Xu, 1992]: Iterative methods by space decomposition and subspace correction [Griebel-Oswald, 1995]: Schwarz algorithms

$$\mathcal{B} := H_0^s(\Omega) \qquad \|u\|^2 := [\mathcal{L}u, u]$$

 $\mathcal{L}:$ arbitrary continuous positive symmetric linear bijection

$$(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{L}} (H^{-s}(\Omega), \|\cdot\|_{H^{-s}(\Omega)})$$

$$\mathcal{L}$$
 is local $\langle u, v \rangle = 0$ if u and v
have disjoint supports

$$H_0^s(\Omega) = \sum_{i \in \beth} H_0^s(\Omega_i)$$

Example

 $\Omega = \cup_i \Omega_i$

Condition for localization

For $\varphi \in H^{-s}(\Omega)$

$$C_{\min} \leq \frac{\sum_{i} \inf_{\phi \in \Phi} \|\varphi - \phi\|_{H^{-s}(\Omega_{i})}^{2}}{\inf_{\phi \in \Phi} \|\varphi - \phi\|_{H^{-s}(\Omega)}^{2}} \leq C_{\max}$$

$$\Phi = \{\phi_{i,\alpha} \mid (i,\alpha) \in \beth \times \aleph\}$$

 $\Omega = \cup_i \Omega_i$

$$\Omega = \bigcup_i \tau_i$$

 $B(x_i,\delta h) \subset \tau_i$

 $\tau_i \subset B(x_i, h)$

•
$$\phi_i = \frac{1_{\tau_i}}{\sqrt{|\tau_i|}}.$$

•
$$\phi_i = \delta(\cdot - x_i),$$

 $(s > \frac{d}{2})$

• $(\phi_{i,\alpha})_{\alpha \in \square}$ forms an orthonormal basis of $\mathcal{P}_{s-1}(\tau_i)$

Theorem

Assume that there exists a constant C_0 such that $|\aleph| \leq C_0$,

- $||D^t f||_{L^2(\Omega)} \leq C_0 h^{s-t} ||f||_{H^s_0(\Omega)}$ for $t \in \{0, 1, \dots, s\}$, for $f \in H^s_0(\Omega)$ such that $[\phi_{i,\alpha}, f] = 0$ for $(i, \alpha) \in \beth \times \aleph$,
- $\sum_{i \in \exists, \alpha \in \aleph} [\phi_{i,\alpha}, f]^2 \leq C_0 (\|f\|_{L^2(\Omega)}^2 + h^{2s} \|f\|_{H^s_0(\Omega)}^2),$ for $f \in H^s_0(\Omega)$, and
- $|x|^2 \leq C_0 h^{-2s} \| \sum_{\alpha \in \mathbb{N}} x_\alpha \phi_{i,\alpha} \|_{H^{-s}(\tau_i)}^2$, for $i \in \beth$ and $x \in \mathbb{R}^{\aleph}$.

Then for $\varphi \in H^{-s}(\Omega)$ $C_{\min} \leq \frac{\sum_{i} \inf_{\phi \in \Phi} \|\varphi - \phi\|_{H^{-s}(\Omega_{i})}^{2}}{\inf_{\phi \in \Phi} \|\varphi - \phi\|_{H^{-s}(\Omega)}^{2}} \leq C_{\max}$

Where C_{\max}, C_{\min} depend only on C_0, d, δ and s

Straightforward generalization

$$\mathcal{B} := H_0^s(\Omega) \qquad \|u\| := \|\mathcal{L}u\|_{L^2(\Omega)}$$

 \mathcal{L} : arbitrary continuous linear bijection

$$(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{L}} (L^2(\Omega), \|\cdot\|_{L^2(\Omega)})$$

 \mathcal{L} is local $\langle u, v \rangle = 0$ if u and vhave disjoint supports

$$(H_0^s(\Omega), \|\cdot\|_{H_0^s(\Omega)}) \xrightarrow{\mathcal{T} = \mathcal{L}^*\mathcal{L}} (H^{-s}(\Omega), \|\cdot\|_{H^{-s}(\Omega)})$$

Localization of gamblets

$$\mathcal{B} = \sum_{i \in \beth} \mathcal{B}_i$$

 $\|\cdot\|_i$ and $\|\cdot\|_{i,*}$ norms induced by $\|\cdot\|$ on \mathcal{B}_i and \mathcal{B}_i^*

Operator connectivity distance

$$C: \square \times \square$$
 connectivity matrix

$$C_{i,j} = 1$$
 if $\exists (\chi_i, \chi_j) \in \mathcal{B}_i \times \mathcal{B}_j$ s.t. $\langle \chi_i, \chi_j \rangle \neq 0$

 $C_{i,j} = 0$ otherwise

d: Graph distance on \beth induced by C

$(\phi_{i,\alpha})_{(i,\alpha)\in \exists \times \aleph}$: Measurement functions $\phi_{i,\alpha}\in \mathcal{B}_i^*$

$$(\psi_{i,\alpha})_{(i,\alpha)\in \exists \times \varkappa}$$
: Gamblets
 $\psi_{i,\alpha}^n$: Localization of $\psi_{i,\alpha}$ to \mathcal{B}_i^n

$$\mathcal{B}_i^n = \bigcup_{j: \mathbf{d}(i,j) \le n} B_i$$

Theorem Under localization conditions

$$\|\psi_{i,\alpha} - \psi_{i,\alpha}^n\| \le Ce^{-n/C}$$

Measurement functions

$$(\phi_{i,\alpha})_{(i,\alpha)\in \exists \times \aleph}$$

Condition for localization

10.1

For
$$\varphi \in \mathcal{B}^*$$

$$C_{\min} \leq \frac{\sum_i \inf_{\phi \in \Phi} \|\varphi - \phi\|_{i,*}^2}{\inf_{\phi \in \Phi} \|\varphi - \phi\|_{*}^2} \leq C_{\max}$$

$$\Phi = \{\phi_{i,\alpha} \mid (i,\alpha) \in \exists \times \aleph\}$$

Conditions are covariant under norm equivalence

Game theoretic origin/interpreation

To compute fast we need to compute with partial information

$$u_m$$
 Missing information u
Problem
Given $([\phi_1, u], \dots, [\phi_m, u])$ recover u

Repeated adversarial information games

Motivations: loss in relative error translates into loss in CPU time and total CPU time is the sum of these losses

The optimal mixed strategy for Player I is $u^{I,\dagger} \sim \mathcal{N}(0,Q)$

 $\mathcal{N}(0,Q)$: Gaussian field on \mathcal{B} with covariance operator Q.

$$Q = \mathcal{T}^{-1}$$

 $\xi \sim \mathcal{N}(0, Q) \longleftrightarrow \xi$: Linear isometry mapping \mathcal{B}^* to a Gaussian Space

For
$$\phi, \varphi \in \mathcal{B}^*$$
,
• $[\phi, \xi] \sim \mathcal{N}(0, \|\phi\|_*^2),$
• $\mathbb{E}[[\varphi, \xi][\phi, \xi]] = \langle \varphi, \phi \rangle_*$

$$\|\phi\|_* := \sup_{v \in \mathcal{B}} \frac{[\phi, v]}{\|v\|}$$

The optimal measure (mixed strategy) for Player I is solely determined by the norm $\|\cdot\|$

Universal Optimal Measure

Theorem The optimal strategy for Player II is $u^{II,\dagger} = \mathbb{E} \left[\xi \mid [\phi_i, \xi] = [\phi_i, u^I] \text{ for } i \in \mathcal{I} \right]$ $\xi \sim \mathcal{N}(0, Q)$

The optimal measure (mixed strategy) for Player II is solely determined by the norm $\|\cdot\| = [Q^{-1}\cdot,\cdot]^{\frac{1}{2}}$

It is a universal optimal measure (it does not depend on the measurements)

Gamblets

Theorem The optimal strategy for Player II is

$$u^{II,\dagger} = \sum_{i \in \mathcal{I}} \psi_i[\phi_i, u^I]$$

$$\psi_{i} = \mathbb{E}\left[\xi \mid [\phi_{j}, \xi] = \delta_{i,j} \text{ for } j \in \mathcal{I}\right]$$
$$\xi \sim \mathcal{N}(0, Q)$$

 ψ_i : Best gamble/bet (gamblet) of Player II on the value of u^I given the information that $[\phi_j, u^I] = \delta_{i,j}$ for $j \in \{1, \ldots, m\}$.

Theorem ψ_i is the minimizer of

 $\begin{cases} \text{Minimize } \|v\|\\ \text{Subject to } v \in \mathcal{B} \text{ and } [\phi_j, v] = \delta_{i,j} \text{ for } j \in \mathcal{I} \end{cases}$

$$\psi_i = \sum_j \Theta_{i,j}^{-1} Q \phi_j \qquad \Theta_{i,j} = [\phi_i, Q \phi_j]$$

Gamblets ψ_i are optimal recovery splines in the sense of (Micchelli & Rivlin 1977)

Optimal recovery splines [Micchelli & Rivlin, 1972]

- Polyharmonic splines [Harder-Desmarais, 72] [Duchon 72]
- Variational Multiscale Methods [Hughes et al, 98]
- Rough Polyharmonic Splines [Owhadi-Zhang-Berlyand, 14]
- LOD basis [Malqvist-Peterseim, 14]
- Bayesian Inference interpretation of Numerical Homogenization [Owhadi, 15]
- Gamblets [Owhadi-15], [Owhadi-Zhang, 16]
- Numerical homogenization of higher order PDEs [Hou-Zhang, 17]

Theorem We have

The optimal game theoretic solution is equal to the optimal recovery solution

Theorem $u^{II,\dagger}$ is the minimizer of

 $\begin{cases} \text{Minimize } \|v\| \\ \text{Subject to } v \in \mathcal{B} \text{ and } [\phi_i, v] = [\phi_i, u^I] \text{ for } i \in \mathcal{I} \end{cases}$

Link between numerical analysis and statistical inference

$$u^{I} \sim \mathcal{N}(0, Q) \iff u^{I} - u^{II} \sim \mathcal{N}(0, Q^{\Phi})$$
$$Q^{\Phi} = (I - P_{Q\Phi})Q(I - P_{Q\Phi})^{*}$$
$$P_{Q\Phi} = \sum_{i \in \mathcal{I}} \psi_{i} \otimes \phi_{i}$$
$$P_{Q\Phi}^{*} = Q^{-1}P_{Q\Phi}Q$$

- Express numerical approximation errors as (posterior) probability distributions.
- Statistical inference approaches to numerical analysis: enables seamless coupling of numerical approximation errors with model uncertainty.

Coupling numerical approximation error with model uncertainty

Statistical inference approaches to numerical approximation

Pioneering work

[Henri Poincaré. Calcul des probabilités. 1896.]

[A. V. Sul'din, Wiener measure and its applications to approximation methods. Matematika 1959]

[A. Sard. Linear approximation. 1963.]

[G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. 1970]

[F.M. Larkin. Gaussian measure in Hilbert space and applications in numerical analysis. Rocky Mountain J. Math, 1972]

Statistical inference approaches to numerical approximation

Information based complexity

[H. Woźniakowski. Probabilistic setting of information-based complexity. J. Complexity, 1986.]

[E. W. Packel. The algorithm designer versus nature: a game-theoretic approach to information-based complexity. J. Complexity, 1987]

[J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-based complexity. 1988]

[Erich Novak and Henryk Woźniakowski, Tractability of Multivariate Problems, 2008-2010]

Statistical inference approaches to numerical approximation

Bayesian Numerical Analysis

[P. Diaconis. Bayesian numerical analysis. In Statistical decision theory and related topics, 1988]

[J. E. H. Shaw. A quasirandom approach to integration in Bayesian statistics. Ann. Statist, 1988.]

[A. O'Hagan. Bayes-Hermite quadrature. J. Statist. Plann. Inference, 29(3):245 260, 1991.]

[A. O'Hagan. Some Bayesian numerical analysis. Bayesian statistics, 1992.]

[Skilling, J. Bayesian solution of ordinary differential equations. 1992.]

Probabilistic Numerics

[Chkrebtii, O. A., Campbell, D. A., Girolami, M. A. and Calderhead, B. Bayesian uncertainty quantification for differential equations. arXiv:1306.2365. 2013]

[H. Owhadi. Bayesian Numerical Homogenization. SIAM MMS, 2015]

[P. R. Conrad, M. Girolami, S. Srkk, A. Stuart, and K. Zygalakis. Probability measures for numerical solutions of differential equations. 2015.]

[P. Hennig. Probabilistic interpretation of linear solvers. SIAM Journal on Optimization, 2015.]

[P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in computations. Journal of the Royal Society A, 2015.]

[Owhadi 2016, Multi-grid with rough coefficients and Multiresolution PDE decomposition from Hierarchical Information Games, arXiv:1503.03467, SIREV]

[Towards Machine Wald (2015). H. Owhadi and C. Scovel. arXiv:1508.02449 (Springer Handbook on UQ)]

[Owhadi-Zhang 2016, Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic PDEs with rough coefficients, arXiv:1606.07686]
Probabilistic Numerics

[J. Cockayne, C. J. Oates, T. Sullivan, and M. A. Girolami. Probabilistic meshless methods for partial differential equations and baye sian inverse problems. arXiv:1605.07811, 2016]

[I. Bilionis. Probabilistic solvers for partial differential equations. arXiv:1607.03526, 2016]

[Jon Cockayne, Chris Oates, Tim Sullivan, Mark Girolami. Bayesian Probabilistic Numerical Methods. arXiv:1702.03673, 2017]

[H. Owhadi and C. Scovel. Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis 2017.]

[Schäfer, Sullivan, Owhadi. Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity, 2017]

Game Theoretic approach to Numerical Analysis

- Here distributions are not arbitrary and are minimax optimal from both the numerical analysis (optimal recovery) and the decision theoretic perspectives.
- To compute posterior distribution we need to invert dense kernel (covariance) matrices (complexity bottleneck for Probabilistic Numerics)
- Can be done in near-linear complexity with gamblets [Schäfer, Sullivan, Owhadi, 2017]: Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity.
- Express numerical approximation errors as sums of of independent Gaussian fields (probabilistic version of mesh refinement).

Thank you

- Universal Scalable Robust Solvers from Computational Information Games and fast eigenspace adapted Multiresolution Analysis, 2017. arXiv:1703.10761. H. Owhadi and C. Scovel.
- Compression, inversion, and approximate PCA of dense kernel matrices at near-linear computational complexity, Schäfer, Sullivan, Owhadi. 2017.
- Multigrid with gamblets. L. Zhang and H. Owhadi, 2017
- Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients, 2016. H. Owhadi and L. Zhang. arXiv:1606.07686
- Multigrid with rough coefficients and Multiresolution operator decomposition from Hierarchical Information Games. H. Owhadi. SIAM Review, 59(1), 99149, 2017. arXiv:1503.03467
- Towards Machine Wald (book chapter). Houman Owhadi and Clint Scovel. Springer Handbook of Uncertainty Quantification, 2016, arXiv:1508.02449.
- Bayesian Numerical Homogenization. H. Owhadi. SIAM Multiscale Modeling & Simulation, 13(3), 812828, 2015. arXiv:1406.6668

DARPA EQUiPS / AFOSR award no FA9550-16-1-0054 (Computational Information Games)

Florian Schäfer

Clint Scovel

Tim Sullivan

Lei Zhang

