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Dimension reduction appears nearly everywhere in science and
engineering.
@ Solving elliptic equations with multiscale coefficients: multiscale
finite element basis for the elliptic operator.

@ Principal component analysis (PCA): principle modes of the
covariance operator.

@ Quantum chemistry: eigen states of the Hamiltonian.

For computational efficiency and/or good interpretability, localized basis
functions are preferred.

@ Localized multiscale finite element basis: Babuska-Caloz-Osbron-94,
Hou-Wu-1997, Hughes-Feijéo-Mazzei-98, E-Engquist-03,
Owhadi-Zhang-07, Malqvist-Peterseim-14, Owhadi-15, etc.

@ Sparse principle modes obtained by Sparse PCA or sparse dictionary
learning: Zou-Hastie-Tibshirani-04, Witten-Tibshirani-Hastie-09, etc.

@ Compressed Wannier modes: Ozolin$-Lai-Caflisch-Osher-13,
E-Li-Lu-10, Lai-Lu-Osher-15, etc.



Schrodinger Equation

Maximally-localized generalized Wannier functions for composite energy bands

Nicola Marzari and David Vanderbilt
Department of Physics and Astronomy, Rutgers Uni . v, NJ 08855-0849, USA
(July 10, 1997)
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Methods Based on L! Minimization: motivation

@ Min-max principle: ¥ with the first d eigenvectors as columns is the
optimizer for

minimize —trace(U7Covl)  subject to: W e R™4 WTW =1,.
o Consider X = U7 € R™*" and define fantope
Fl={XeR™ : X =XT 0=<X <1,, trace(X) = d}.

(Lai-Lu-Osher-14): projection to the first d-dimensional eigenspace
is the optimizer for

minimizexcra — trace(CovX).

o Idea: add L' penalty to force ¥ or X sparse.



Methods Based on L' Minimization: methods

@ Sparse PCA (Zou-Hastie-Tibshirani-04) and Convex relaxation of
Sparse PCA (d'Aspremont et al 07, Vu et al 13): Given a symmetric
input matrix S € R™"*", seek for a d-dimensional sparse principal
space estimator X by

minimizexcra — trace(SX) + M| X |1

Take the first d eigenvectors of X as the estimated sparse basis
elements.

@ Compressed modes for variational problems
(Ozolins-Lai-Caflisch-Osher-13) and its convex relaxation
(Lai-Lu-Osher-14): Given a symmetric input matrix H € R"*", seek
for a d-dimensional sparse principal space estimator P by

1
minimizepcra  trace(HP) + —|| Pl
W

Take d columns of P as the estimated sparse basis elements.
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Q: How to parametrize the random field?



Random Field Parametrization, continued

Karhunen-Loéve expansion? :

Rl,w) = Eln(e,w)] + 32 VA fu(@)s
i
fr(z) : eigenfunctions of Cov(z,y)

Given error tolerance € > 0,

K
minimize K, subject to: [|Cov — Z Mefr(@) fe(y)ll2 < €.
k=1

KL modes

3Loéve, 77



Random Field Parametrization, continued

Karhunen-Loéve expansion? :
K(w,w) = Els(z,0)] + > Ve fr(®@)én
k

fr(z) : eigenfunctions of Cov(z,y)

Given error tolerance € > 0,

K
minimize K, subject to: [|Cov — Z Mefr(@) fe(y)ll2 < €.
k=1

KL modes Ground Truth Physical Modes

0 05 1 15

3Loéve, 77



. Intrinsic Sparse Mode Decomposition (ISMD)

Given a low rank symmetric positive semidefinite matrix Cov € RV*V,

@ Our goal is to decompose Cov into rank-one matrices, i.e.
K
T
Cov=> grgp -
k=1

@ The modes {gk}f:1 are required to be as sparse as possible.
K K
min Z llgxllo, subject to: Cov = ngg,{.
k=1 k=1
This minimization problem is extremely difficult:
@ Number of modes K is unknown, typically K ~ 100;
e Each unknown physical mode gi(z) is represented by a long vector
(9x € RN, N ~ 10, 000);
o [ minimization problem with 10% unknowns, NP hard!



From {° Norm to Patch-wise Sparseness

Definition (Sparseness of a physical mode g)

Given domain partition: D = LIM_, P,,, define sparseness as

S(g):#{ng|Pm #Ovm:1727 7M}

Ground Truth Sparse Modes
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d, is the local dimension on the m'th patch P,,.
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Intrinsic Sparse Mode Decomposition

K K

minimize Z llgpllo  subject to: Cov = ngg,{.
k=1 k=1



Intrinsic Sparse Mode Decomposition

K K

minimize Z llgpllo  subject to: Cov = ngg,{.
k=1 k=1

I

K

minimize Z Sp = Z d,, subject to: Cov= ngng . ()
k=1



Intrinsic Sparse Mode Decomposition

K K
minimize Z llgpllo  subject to: Cov = ngg,{.
k=1 k=1
I
K
minimize Z Sp = Z d,, subject to: Cov= ngng . ()
k=1

Theorem (Theorem 3.5 in [Hou et al., 2017a])

Under the regular sparse assumption (sparse modes are linear
independent on every patch), ISMD generates one minimizer of the
patch-wise sparseness minimization problem (1).




ISMD details: Construct Local Pieces by Local Rotations

Let Covyp m be the local covariance matrix on patch P,.

@ Want: local sparse physical modes G, = [gm.,1,9m.2; - - - Im.d., )
dm
Covm,m - GmGi = Z gm,kg;z;,k'
k=1
@ Have: local eigen-decomposition H,,, = [Ap 1, A2, - - - B, K, |

K
T __ T
CoVipm = H HY =" hoy ihF 4.
k=1

G,=H,D,, D,DL=Ik

m

@ Aim: find the right local rotation* D,,, on every patch P,,!

4Regular sparse assumption



ISMD Details: “Patch-up” Local Pieces

Ground Truth Sparse Modes
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Aim: find the right “patch-up” matrix L!



ISMD Details: Flowchart of ISMD

Step 1 Local eigen decomposition: Covyy, ,, = HmHﬁ.
Output: H oy :=diag(Hy,- -+, Hyy)

Step 2 Assemble correlation matrix: Cov = H.;AH
Output: A

Step 3 ldentify local rotations by joint diagonalization:

T
ext:

M
D,, = argmin Z Z (VT A AL V)i 57
VEO(Km) 4 i#j
Output: Dyt < diag(Dy,---, D)
Step 4 "Patch-up” by pivoted Cholesky decomposition

DT AD.,; = PLLTPT

ext

Output: L + PL.
Step 5 Assemble the intrinsic sparse modes: [g1, g2, ..., 9k] < H ezt Dext L.



Numerical Example 1

fieldSample

fieldgSample

Figure: One sample and the bird’'s-eye view. The covariance matrix is plotted
on the right.
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Figure: Eigen-decomposition: 12 out of 35 KL modes. Each mode contains
multiple pieces of the ground-truth media.



ISMD: Numerical Example 1 continued

15D He11 1sw0: Het 1SMD: Het 15MD: H 1sw0: Hert

fT :ZZ% o]

1sMD: Hets 150 Hets 1sw0: Hatg 1sMD: Het 15D: He 1sw0: Hatg

Figure: First 6 eigenvectors (H=1); First 6 intrinsic sparse modes (H=1/8,
regular sparse); First 6 intrinsic sparse modes (H=1/32; not regular sparse)

Comments:
@ ISMD is proven to give the optimal sparse decomposition under the
regular sparse assumption.
@ Even when the regular sparse assumption fails (the partition is too
fine), ISMD still performs well in our numerical examples.



Other topics about ISMD

o Computational complexity: much cheaper than the
eigen-decomposition.

CPU Time

e

Figure: CPU time (unit: second) for different partition sizes H.



Other topics about ISMD

o Computational complexity: much cheaper than the

eigen-decomposition.

AN

CPU Time

Figure: CPU time (unit: second) for different partition sizes H.

@ ISMD is insensitive to the partition of the domain, see Theorem 3.6

in [Hou et al., 2017a].



Other topics about ISMD

o Computational complexity: much cheaper than the
eigen-decomposition.

AN

CPU Time

Figure: CPU time (unit: second) for different partition sizes H.

@ ISMD is insensitive to the partition of the domain, see Theorem 3.6

in [Hou et al., 2017a].
@ Robustness : ISMD is robust against small error, see Lemma 4.1 in

[Hou et al., 2017a].

K
Cov = ngng + Error.
k=1



Results from L! Minimization

Figure: Covariance Matrix and Variance Explained by the First 35 Eigenvectors

of P
Choose A = 35.94 for the following result.
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Figure: The First 12 Eigenvectors of P. The first 35 eigenvectors of P explain
95% of the variance.




Results from L! Minimization, continued

Figure: 12 Columns of P with largest norms. The first 35 columns with largest
norms only explain 31.46% of the variance.

1swD: Hot 15u0: o1 1swD: R swos o RTY 1SwD: Hee

Figure: The First 12 Intrinsic Sparse Modes from ISMD (H = 1/8). The first
35 intrinsic sparse modes explain 100% of the variance, exact recovery!



Discussion on Computational Complexity

@ The main computational cost in ISMD is the first step: compute
local eigen-decomposition, which is about MEig(n/M). n is the
total number of fine grid nodes in the spatial domain. Here Eig(n) is
the computational cost of eigen-decomposition of a matrix of size n.

o ADMM algorithm is used to solve the semidefinite program in
convex relaxation of sparse PCA, and the main computational cost is
a global eigen-decomposition Eig(n) in each iteration. Suppose N
iterations are needed to achieve convergence, the computational cost
is about NEig(n). Partial eigen-decomposition is used to reduced
the computational cost.

@ For the specific problem we consider here, our algorithm for ISMD
takes into account the special structure of the problem, and is more
efficient than the ADMM algorithm (sparse PCA). In a typical test
of the high contrast example, our method is 652 times faster than
the ADMM algorithm.



[1. Stochastic Multiscale Model Reduction

K

minimize Z Sk = Z d.  subject to:  Cov = ngng,
k m k=1

media sample

I 15000

110000

Figure: One sample of permeability field



Random PDEs

—V, - (k(z,w)Vyu(z,w)) = b(z), x€D,weq,
u(z,w) =0, x€dD

Random coefficient x€(x,w) has high dimensionality in the stochastic
space and has multiple scales (channels and inclusions) in the physical
space.

@ Multiple scales in physical space: fine mesh required for standard
FEM, large computational cost for one sample.

@ Stochastic high dimensional:
o Monte Carlo : large number of samples needed.
o gPC based methods, curse of dimensionality! Prohibitively huge
number of collocation nodes.

@ We propose a stochastic multiscale method that explores the locally
low dimensional feature of the solution in the stochastic space and
upscales the solution in the physical space simultaneously for all
random samples.



Stochastic Multiscale Model Reduction

V.- (k(z,w)Vu(z,w)) = blz), =€ DweQ,
u(z,w) =0, ze€dD

Step 0. Locally low dimensional parametrization of k°(x,w) by ISMD, local
KL expansion, sparse PCA, etc.

Step 1. Offline stage: prepare high-order polynomial interpolants for local
upscaled quantities. Various local upscaling methods are available,
see e.g. Babuska-Caloz-Osborn 1997, Hou-Wu 1997, Hughes et al
1998, E-Engquist 2003, Owhadi-Zhang 2014, Owhadi-2015.

Step 2. Online stage: for each parameter configuration, interpolate the
upscaled quantities from the pre-computed interpolants in Step 1
and solve the upscaled system. Online cost saving is of order
(H/h)%/(log(H/h))*, where H/h is the ratio between the coarse
and the fine gird sizes, d is the physical dimension and & is the local
stochastic dimension.

For details, see [Hou et al., 2017b].



A synthetic example with high contrast random medium

K
r(e,w) =€) + Y grl@)new)
k=1

where global variable ¢ uniformly distributed in [0.1,1.1], local variables
{ni}_| are i.i.d. variables uniformly distributed in [10%,2 x 10].

media sample media mean media variance

0 0 02 04 06 08 1
X

04 06 08 1
Figure: Left: one sample medium; middle: medium mean; right: medium
variance. There are 13 high permeability (of order 10*) channels in the x
direction and a few high permeability inclusions. The background permeability
is of order 1.

3

SR e & G e o~ ® X




Step 0: Medium Parametrization by ISMD

K

minimize Z Sp = Z dpm, subject to: Cov = ngng .
k m k=1

Figure: ISMD: the constant background mode and three channels. The number
of local parameters is much less than the total number of parameters.

Figure: KL expansion: KL modes mixed the global and local modes together.
The number of local parameters equals to the total number of parameters.



Step 1: Local Upscaling

Coarse mesh size: H = 0.05, fine mesh size h = H/20, oversampling
domain size H,; = 3H.

MHL

Figure: Two physical modes on patch (14,9) : d,, = 2

s

Rolative error o Interpolation, S(1,1)

Figure: Left: the (1,1) element of local stiffness matrix on patch (14,9); Right:

relative error of surrogate by Chebyshev interpolation on a 5 x 16 grid. The
maximal relative error is of order 107,



Step 2: Solve the upscaled system, one sample

reference solution : u,,

random i ion error <1070
[T

Figure: Left: one sample solution from direct MsFEM; right: solution absolute
error due to local interpolation. The error introduced by interpolation is of
order 1071°.

Table: Online cost saving for one sample

Direct MsFEM | Local Interpolation | Cost Saving
27.38 (s) 0.0133 (s) 2059




Step 2: Solve the upscaled m, solution statistics

u,, mean from random interpolation u,, standard deviation from random interpolation
1

CPU time comparison

| interpolation
rect MSFEM

« 8000
°
£ 6000
]
o
© 4000

2000

0 100 300 400

200
Sample Size

Figure: The statistics of the numerical solutions using 10° samples. Top left:
mean; top right: standard deviation; bottom: computational cost comparison.



[11. Sparse Operator Compression
and Concluding Remarks



From ISMD to Sparse Operator Compression

o r(z,w) ~ 3 gr(@)nk(w),
{le}szl uncorrelated or

indepedent.
e ISMD
K
i, 2 o)

K

s.t. Cov= ngg,{.

k=1

@ Applications in stochastic

multiscale mode reduction.

o r(z,w) =3 gr()n(w),
{ni}_, can be correlated.

@ Sparse Operator Compression

K

min Zs(gk),

s g ,B=0
g1 9K,b~ Pt

s.t. Cov — Z Bk7k/gkg,z <e
kek!

@ B is the covariance matrix of the
factors {ny ;.

@ More applications in solving
deterministic elliptic equations,
constructing localized Wannier
functions.

For details, see [Hou and Zhang, 2017a, Hou and Zhang, 2017b].



Random field parametrization

The Matérn class covariance

i - (2 . ().

Widely used in spatial statistics, geoscience.

Compress the covariance operator with localized basis functions.

When v + g is an integer, we construct nearly optimally localized
basis functions {g;}™ ;:

Cilog(n)
n

Isupp(g:)| < 1<i<n.

We can approximate K, by rank-n operator with optimal accuracy:

min | K, — GBG"||, < CeAny1(Ky).

Sparsity/locality: better interpretability and computational efficiency.



Solving deterministic elliptic equations.

L is an elliptic operator of order 2k (k > 1) with rough multiscale
coefficients in L>°(D), and the load f € L?(D).

Lu=f,  ueHD). (2)

@ k = 1: heat equation, subsurface flow; & = 2: beam equation, plate
equation, etc...

o Compress the Green's function (£~!) with localized basis functions.

@ We construct nearly optimally localized basis functions
{gi}_, € HE(D). For a given mesh h, we have

supp(gi)| < Cihlog(1/h) 1<i<n.
e The Galerkin finite element solution w,,s := GL,, *G™ f satisfies
lu = wms|la < Cehk||fH2 Vfe LQ(D)a

where || - || is the energy norm, C, is indep. of small scale of as~.

@ Sparsity/locality: computational efficiency.



Our construction and theoretical results

10 J
5
0 I I ||
5

4 2 ] 2 4

Figure: Left: 8 localized basis functions for —A with periodic BC.
Middle and right: 2 localized basis functions for A% with homogeneous
Dirichlet BC.



loc\n

Our construction of {¢;*} |

@ Choose h > 0. Partition the physical domain
D using a regular partition {7;}/; with mesh
size h.

@ Choose r > 0, say r = 2hlog(1/h). For each
patch 7;, S, is the union of the subdomains
Ty intersecting B(z;,r) (for some x; € 7;).

© Pi_1(7;) is the space of all d-variate
polynomials of degree at most k£ — 1 on the
patch 7. @ = ("*97') is its dimension.
{(pi,q}qQ:l is a set of orthogonal basis
functions for Pr_1(7;).

Figure: A regular
partition, local patch 7;
and its associated ;.

g = argmin |7
YEHE
s.t. Vg =0igjq, V1<j<m,1<q <Q,
Sr
P(x) =0, x€ D\S,,
where HY is the solution space (with some prescribed BC), || - || is the energy

norm associated with £ and the BC.



: loc .__ locym,Q
Our construction ¥'¢ := {4/}

p=ll

Theorem (Hou-Zhang-2016)

Suppose Hi = HE(D) and Lu = (—1)F Y. D%(ao,Du). Assume that

lo|=|v|=k
L is self-adjoint, positive definite and strongly elliptic, and that there exists
Omin70mam > 0 such that

Ominll€l™* < D" aoy£7E" < Omaz €], VEER?

lo|=lvI=Fk

Then for r > C\-hlog(1/h), we have

o
|£_1f—WlOCL;1 Wloc f f2 VfGLQD,
| (T) flla mll I (D)
where L, is the stiffness matrix under basis functions W'°°.
Q

C2p2k

min

Eoc( Wloc; L:_l) S

Here, the constant C. only depends on the contrast ‘Zm#, and C. is
independent of the coefficients.

()

(8)




Several remarks

@ Theorem (Hou-Zhang-2016) also applies to £ with low order terms,
ie. Lu= (=1 Y D%as,DVu).
lol,lvI<k
@ Theorem (Hou-Zhang-2016) also applies to other homogeneous
boundary conditions, like periodic BC, Robin BC and mixed BC.

o For HE = H}(D), i.e. second order elliptic operators with zero
Dirichlet BC, Theorem (Hou-Zhang-2016) have been proved in
Owhadi-2015. A similar result for Hf = H}(D) was also provided in
Malqvist-Peterseim-2014. In this case, Our proof improves the
estimates of the constants C,. and C..

@ For other BCs, operators with lower order terms, and high-order
elliptic operators, new techniques and concepts have been developed.
Among them, the most important three new techniques are

@ a projection-type polynomial approximation property in Hk(D),
o the notion of the strong ellipticity 3,

e an inverse energy estimate for functions in
W= span{ti,q:1<i<m,1<qg<Q}

3Equivalent to uniform ellipticity when d = 1,2 or k = 1. Slightly stronger than
uniform ellipticity in other cases; counter examples exist but difficult to construct.



Roadmap of the proof: Error estimate

Theorem (An error estimate based on projection-type approximation)

Suppose there is a n-dimensional subspace ® C L*(D) with basis {¢;}7—, such
that )
(L?) k
lu—"Pg “ullpz <knllullz Ve e HY(D). (9)

Let U be the n-dimensional subspace in H*(D) (also in Hf(D)) spanned by
{L7 p;}y. Then

@ Forany f € L*(D) and u = L™ f, we have
lu = PYullir < Fall s - (10)

@ We have

Eoc( W3 L7) < ki (11)

@ k=1: ® piecewise constant functions. By the Poincare inequality, it is
easy to obtain |lu — Pé Jull L2 < \/7HU||H

@ k > 2: ® piecewise polynomials with degree no more than K — 1. By a
projection-type polynomial approximation property in H*(D), see

Thm 3.1 in Hou-Zhang-Partll, we have |Ju — ’Pé Jul g2 < \/7||u||H



Roadmap of the proof: Error estimate, discussions

Take H{; = H{(D) as an example, where ® is the space of piecewise
constant functions.

@ Based on a projection-type approximation property, we obtain the
error estimates of the GFEM in the energy norm, i.e.

L? H!
lu =P ull 2 < Coroghlluller = [[u = PEullir < Cproghl| |-

Cproj does not depends on the small scales in the coefficients.

e Tranditional interpolation-type estimation requires higher regularity
of the solution u: assume u € H?(D)

|u — Zhuli2,p < Chlul22.p = |[u — Thullg < Cinterphl| fllL,-

Clinterp depends on the small scales in the coefficients.

@ Basis functions for Zu: optimally localized linear nodal basis
1
Basis functions for P\(I,HO)u: global basis functions {£L71p;}7™ |



Discrete setting: graph Laplacians

Lu = d (a(m)j—Z) . Lu=-V-(a(zx)Vu), Lu=71

Cdx :
ulap = 0. L : a graph Laplacian
u(0) = u(1)
:l :"»_‘__17 :Z,;;.:'
...o.oo..... = 7“““ T - EH ::
Fl 5" - ,m - =
- . - e

Big

P
- S !
L =
o
ok 53 N
=5 Ty
e

..‘000000°.
Figure: A 2D lattice Figure: A social network
graph. graph.

Figure: A 1D circular
graph.

@ Social networks and transportation networks; genetic data and web
pages; spectral clustering of images; electrical resistor circuits;
elliptic partial differential equations discretized by finite elements; etc

@ Fundamental problems: fast algorithms for Lu = f and eigen
decomposition of L.



Discrete setting: graph Laplacians

Lu=f

@ Spielman-Teng (STOC-04, SICOMP-13, SIMAX-14): Nearly-Linear
Time Algorithms for Graph Partitioning and Solving Linear Systems

o Maximal spanning tree, support-graph preconditioners, graph
sparsification, etc.
o Theoretical results, impractical algorithms.
o Godel Prize 2008, 2015.
@ Livne-Brandt-2012: Lean Algebraic Multigrid. Practical nearly-linear
time algorithm, no theoretical guarantee.
@ Sparse operator compression for graph Laplacians? The key is an
efficient algorithm to find a partition {7,}72, of the graph vertices

such that 2
=P ull 2 < Cpv/Mn(£) ul

which is the Poincare inequality on graphs.

@ Implementing the sparse operator compression in a multigrid manner
leads to a nearly-linear time algorithm.



Concluding Remarks

@ We propose an intrinsic sparse mode decomposition method (ISMD)
to decompose a symmetric positive semidefinite matrix into a finite
sum of sparse rank one components. We apply ISMD to the
covariance matrix of a random field and obtain a locally low
dimensional parametrization of the random field.

@ Based on ISMD-like locally low dimensional parametrization
methods, we propose the Stochastic Multiscale Finite Element
Method (StoMsFEM). It can significantly reduce the computational
cost for every single evaluation of the solution sample.

© Our recent work Sparse Operator Compression shows that many
symmetric positive semidefinite operator can be localized, for
example, the Green's function of elliptic operators and the Matérn
class kernels.

@ Representing/approximating an operator with localized basis
functions has potential applications in solving deterministic elliptic
equations with rough coefficients and constructing localized orbits
for Hamiltonians in quantum physics.
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