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Motivations

Dimension reduction appears nearly everywhere in science and
engineering.

Solving elliptic equations with multiscale coefficients: multiscale
finite element basis for the elliptic operator.

Principal component analysis (PCA): principle modes of the
covariance operator.

Quantum chemistry: eigen states of the Hamiltonian.

For computational efficiency and/or good interpretability, localized basis
functions are preferred.

Localized multiscale finite element basis: Babuska-Caloz-Osbron-94,
Hou-Wu-1997, Hughes-Feijóo-Mazzei-98, E-Engquist-03,
Owhadi-Zhang-07, Målqvist-Peterseim-14, Owhadi-15, etc.

Sparse principle modes obtained by Sparse PCA or sparse dictionary
learning: Zou-Hastie-Tibshirani-04, Witten-Tibshirani-Hastie-09, etc.

Compressed Wannier modes: Ozoliņš-Lai-Caflisch-Osher-13,
E-Li-Lu-10, Lai-Lu-Osher-15, etc.



Schrödinger Equation
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Maximally-localized generalized Wannier functions for composite energy bands

Nicola Marzari and David Vanderbilt
Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849, USA

(July 10, 1997)

We discuss a method for determining the optimally-localized set of generalized Wannier functions
associated with a set of Bloch bands in a crystalline solid. By “generalized Wannier functions”
we mean a set of localized orthonormal orbitals spanning the same space as the specified set of
Bloch bands. Although we minimize a functional that represents the total spread

∑
n

⟨r2⟩n − ⟨r⟩2n
of the Wannier functions in real space, our method proceeds directly from the Bloch functions as
represented on a mesh of k-points, and carries out the minimization in a space of unitary matrices
U

(k)
mn describing the rotation among the Bloch bands at each k-point. The method is thus suitable

for use in connection with conventional electronic-structure codes. The procedure also returns the
total electric polarization as well as the location of each Wannier center. Sample results for Si,
GaAs, molecular C2H4 and LiCl will be presented.

I. INTRODUCTION

The study of periodic crystalline solids leads naturally
to a representation for the electronic ground state in
terms of extended Bloch orbitals ψnk(r), labeled via their
band n and crystal-momentum k quantum numbers. An
alternative representation can be derived in terms of lo-
calized orbitals or Wannier functions wn(r − R), that
are formally defined via a unitary transformation of the
Bloch orbitals, and are labeled in real space according to
the band n and the lattice vector of the unit cell R to
which they belong.1–4

The Wannier representation of the electronic problem
is widely known for its usefulness as a starting point for
various formal developments, such as the semiclassical
theory of electron dynamics or the theory of magnetic
interactions in solids. But until recently, the practical
importance of Wannier functions in computational elec-
tronic structure theory has been fairly minimal. How-
ever, this situation is now beginning to change, in view
of two recent developments. First, there is a vigorous ef-
fort underway on the part of many groups to develop so-
called “order-N” or “linear-scaling” methods, i.e., meth-
ods for which the computational time for solving for the
electronic ground state scales only as the first power of
system size,5 instead of the third power typical of conven-
tional methods based on solving for Bloch states. Many
of these methods are based on solving directly for local-
ized Wannier or Wannier-like orbitals that span the occu-
pied subspace,6–13 and thus rely on the localization prop-
erties of the Wannier functions. Second, a modern theory
of electric polarization of crystalline insulators has just
recently emerged;14–19 it can be formulated in terms of
a geometric phase in the Bloch representation, or equiv-
alently, in terms of the locations of the Wannier centers.

The linear-scaling and polarization developments are
at the heart of the motivation for the present work. How-

ever, there is another motivation that goes back to a
theme that has recurred frequently in the chemistry lit-
erature over the last 40 years, namely the study of “lo-
calized molecular orbitals.”20–25 The idea is to carry out,
for a given molecule or cluster, a unitary transformation
from the occupied one-particle Hamiltonian eigenstates
to a set of localized orbitals that correspond more closely
to the chemical (Lewis) view of molecular bond-orbitals.
It seems not to be widely appreciated that these are
the exact analogues, for finite systems, of the Wannier
functions defined for infinite periodic systems. Various
criteria have been introduced for defining the localized
molecular orbitals,20–23 two of the most popular being
the maximization of the Coulomb22 or quadratic23 self-
interactions of the molecular orbitals. One of the motiva-
tions for such approaches is the notion that the localized
molecular orbitals may form the basis for an efficient rep-
resentation of electronic correlations in many-body ap-
proaches, and indeed this ought to be equally true in the
extended, solid-state case.

One major reason why the Wannier functions have seen
little practical use to date in solid-state applications is
undoubtedly their non-uniqueness. Even in the case of
a single isolated band, it is well known that the Wan-
nier functions wn(r) are not unique, due to a phase inde-
terminacy eiφn(k) in the Bloch orbitals ψnk(r). For this
case, the conditions required to obtain a set of maximally
localized, exponentially decaying Wannier functions are
known.2,26

In the present work we discuss the determination of
the maximally localized Wannier functions for the case
of composite bands. Now a stronger indeterminacy is

present, representable by a free unitary matrix U
(k)
mn

among the occupied Bloch orbitals at every wavevector.

We require the choice of a particular set of U
(k)
mn according

to the criterion that the sum Ω of the second moments
of the corresponding Wannier functions be minimized.

1

1

i~∂tu(t, x) =
(
− ~2

2
∆x + V (x)

)
︸ ︷︷ ︸

Schrödinger operator:L

u ⇒
{
Lψm = λmψm

u =
∑
αm(t)ψm(x)Figure 14: Left panel: WFCs (red) from a snapshot of a Car-Parrinello simulation of liquid

water. The hydrogen atoms are in black and the oxygens in white; hydrogen bonds have also
been highlighted. Center panel: MLWF for a O-H bond in a water dimer. Right panel: MLWF
for a lone pair in a water dimer. [Left panel courtesy of P. L. Silvestrelli [41]]

Figure 15: Snapshots of a rapid water-molecule dissociation under high-temperature (1390 K)
and high-pressure (27 GPa) conditions; one of the MLWFs in the proton-donor molecule is
highlighted in blue, and one of the MLWFs in the proton-acceptor molecule is highlighted in
green. [From Ref. [62]]

Finally, localized orbitals can embody the chemical concept of transferable functional

groups, and thus be used to construct a good approximation for the electronic-structure

of complex systems starting for the orbitals for the different fragments [75].

7.2 Local and Global Dielectric Properties

The modern theory of polarization [8, 9] directly relates the vector sum of the centers

of the Wannier functions to the polarization of an insulating system. This exact corre-

spondence to a macroscopic observable (rigorously speaking, the change in polarization

[76] upon a perturbation) cannot depend on the particular choice of representation: the

sum of the Wannier centers is in fact invariant – as it should be – with respect to unitary

transformations of the orbitals [35]. The existence of this exact relation between classical

electrostatics and the quantum-mechanical WFCs suggests a heuristic identification by

which the pattern of displacements of the WFCs can be regarded as defining a coarse-

155

TABLE III. Localization functional Ω and its decompo-
sition in invariant, off-diagonal, and diagonal parts, for the
case of GaAs (units are Å2). The bottom valence band, the
top three valence bands, and all four bands are separately in-
cluded in the minimization. The star (⋆) refers to the case
in which the minimization is not actually performed, and the
solution for the 1-band and 3-band cases is used. Sampling is
performed with a 8 × 8 × 8 mesh of k-points.

k set Ω ΩI ΩOD ΩD

1 band 1.968 1.944 0 0.0238
3 bands 10.428 9.844 0.560 0.0245
4 bands⋆ 12.396 8.038 4.309 0.0483
4 bands 8.599 8.038 0.555 0.0059

where we show the relative position of the centers along
the Ga-As bonds. Here β is the distance between the Ga
atom and the Wannier center, given as a fraction of the
bond length (in Si the centers were fixed by symmetry to
be in the middle of the bond, β = 0.5, irrespective of the
sampling).

In Fig. 2, we present plots showing one of these
maximally-localized Wannier functions in GaAs, for the
8 × 8 × 8 k-point sampling. Again, at the minimum Ω,
all four Wannier functions have become identical (under
the symmetry operations of the tetrahedral group), and
they are real, except for an overall complex phase. The
shape of the Wannier functions is again that of sp3 hy-
brids combining to form σ-bond orbitals; inversion sym-
metry is now lost, but the overall shape is otherwise
closely similar to what was found in Si. The Wannier
centers are still found along the bonds, but they have
moved towards the As, at a position that is 0.617 times
the Ga-As bond distance. It should be noted that these
Wannier functions are also very similar to the localized
orbitals that are found in linear-scaling approaches,54

where orthonormality, although not imposed, becomes
exactly enforced in the limit of an increasingly large lo-
calization region. This example highlights the connec-
tions between the two approaches. The characterization
of the maximally-localized Wannier functions indicates
the typical localization of the orbitals that can be ex-
pected in the linear-scaling approach. Moreover, such in-
formation ought to be extremely valuable in constructing
an intelligent initial guess at the solution of the electronic
structure problem in the case of complex or disordered
systems.

As pointed out before, in GaAs we can have different
choices for the Hilbert spaces that can be considered, so
we also studied the case in which only the bottom band,
or the top three, are used as an input for the the min-
imization procedure. Table III shows the spread func-
tional and its various contributions for these different
choices, where the bottom band is first treated as iso-
lated; next the three p bands are treated as a separate
group; then these two solutions are used to construct a
four-band solution, without further minimization; and fi-
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FIG. 2. Maximally-localized Wannier function in GaAs, for
the 8 × 8 × 8 k-point sampling. (a) Profile along the Ga-As
bond. (b) Contour plot in the (110) plane of the bond chains.
The other Wannier functions lie on the other three tetrahedral
bonds and are related by tetrahedral symmetries to the one
shown.
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Methods Based on L1 Minimization: motivation

Min-max principle: Ψ with the first d eigenvectors as columns is the
optimizer for

minimize −trace(ΨTCovΨ) subject to: Ψ ∈ Rn×d, ΨTΨ = Id.

Consider X = ΨΨT ∈ Rn×n and define fantope

Fd := {X ∈ Rn×n : X = XT , 0 � X � In, trace(X) = d}.

(Lai-Lu-Osher-14): projection to the first d-dimensional eigenspace
is the optimizer for

minimizeX∈Fd − trace(CovX).

Idea: add L1 penalty to force Ψ or X sparse.



Methods Based on L1 Minimization: methods

Sparse PCA (Zou-Hastie-Tibshirani-04) and Convex relaxation of
Sparse PCA (d’Aspremont et al 07, Vu et al 13): Given a symmetric
input matrix S ∈ Rn×n, seek for a d-dimensional sparse principal
space estimator X̂ by

minimizeX∈Fd − trace(SX) + λ‖X‖1

Take the first d eigenvectors of X as the estimated sparse basis
elements.

Compressed modes for variational problems
(Ozolins-Lai-Caflisch-Osher-13) and its convex relaxation
(Lai-Lu-Osher-14): Given a symmetric input matrix H ∈ Rn×n, seek

for a d-dimensional sparse principal space estimator P̂ by

minimizeP∈Fd trace(HP ) +
1

µ
‖P‖1

Take d columns of P as the estimated sparse basis elements.



Random Field Parametrization

κ(x, ω) = E[κ(x, ω)] +
∑

k

gk(x)ηk(ω), E[ηk] = 0, E[ηiηj ] = δij .

What we have:
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Q: How to parametrize the random field?



Random Field Parametrization, continued

Karhunen-Loéve expansion3 :

κ(x, ω) = E[κ(x, ω)] +
∑

k

√
λkfk(x)ξk

fk(x) : eigenfunctions of Cov(x, y)

Given error tolerance ε > 0,

minimize K , subject to: ‖Cov−
K∑

k=1

λkfk(x)fk(y)‖2 ≤ ε .
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3Loéve, 77
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I. Intrinsic Sparse Mode Decomposition (ISMD)

Given a low rank symmetric positive semidefinite matrix Cov ∈ RN×N ,

Our goal is to decompose Cov into rank-one matrices, i.e.

Cov =

K∑

k=1

gkg
T
k .

The modes {gk}Kk=1 are required to be as sparse as possible.

min

K∑

k=1

‖gk‖0 , subject to: Cov =
K∑

k=1

gkg
T
k .

This minimization problem is extremely difficult:

Number of modes K is unknown, typically K ∼ 100;

Each unknown physical mode gk(x) is represented by a long vector
(gk ∈ RN , N ≈ 10, 000);

l0 minimization problem with 106 unknowns, NP hard!



From l0 Norm to Patch-wise Sparseness

Definition (Sparseness of a physical mode g)

Given domain partition: D = tMm=1Pm, define sparseness as

s(g) = #{Pm : g|Pm
6= 0, m = 1, 2, · · · ,M}.
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dm is the local dimension on the m’th patch Pm.

K∑

k=1

sk =
M∑

m=1

dm



Intrinsic Sparse Mode Decomposition

minimize

K∑

k=1

‖gk‖0 subject to: Cov =

K∑

k=1

gkg
T
k .

⇓

minimize
∑

k

sk =
∑

m

dm subject to: Cov =

K∑

k=1

gkg
T
k . (1)

Theorem (Theorem 3.5 in [Hou et al., 2017a])

Under the regular sparse assumption (sparse modes are linear
independent on every patch), ISMD generates one minimizer of the
patch-wise sparseness minimization problem (1).
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ISMD details: Construct Local Pieces by Local Rotations

Let Covm,m be the local covariance matrix on patch Pm.

1 Want: local sparse physical modes Gm ≡ [gm,1, gm,2, . . . , gm,dm ]

Covm,m = GmGT
m ≡

dm∑

k=1

gm,kg
T
m,k.

2 Have: local eigen-decomposition Hm ≡ [hm,1, hm,2, . . . , hm,Km ]

Covm,m = HmHT
m ≡

Km∑

k=1

hm,kh
T
m,k.

3

Gm = HmDm, DmD
T
m = IKm

.

4 Aim: find the right local rotation4 Dm on every patch Pm!

4Regular sparse assumption



ISMD Details: “Patch-up” Local Pieces

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

0

0.1

0.2

0.3

0.4

Ground Truth Sparse Modes

d
1
 = 1

d
2
 = 2 d

3
 = 1

d
4
 = 1

s
1
 = 2

s
2
 = 3

[g1, g2] =
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g1,1 g2,1
g1,2 g2,2
g1,3 g2,3
g1,4 g2,4


 =




g1,1 0
g1,2 g2,2
0 g2,3
0 g2,4




=




g1,1 0 0 0 0
0 g1,2 g2,2 0 0
0 0 0 g2,3 0
0 0 0 0 g2,4







1 0
1 0
0 1
0 1
0 1




⇒ [g1, g2] = diag(G1,G2,G3,G4)L

Aim: find the right “patch-up” matrix L!



ISMD Details: Flowchart of ISMD

Step 1 Local eigen decomposition: Covm,m = HmHT
m.

Output: Hext := diag(H1, · · · ,HM )

Step 2 Assemble correlation matrix: Cov = HextΛHT
ext.

Output: Λ

Step 3 Identify local rotations by joint diagonalization:

Dm = arg min
V ∈O(Km)

M∑

n=1

∑

i6=j

|(V TΛmnΛTmnV )i,j |2 .

Output: Dext ← diag(D1, · · · , DM )

Step 4 “Patch-up” by pivoted Cholesky decomposition

DT
extΛDext = PLLTPT

Output: L← PL.

Step 5 Assemble the intrinsic sparse modes: [g1, g2, . . . , gK ]←HextDextL.



ISMD: Numerical Example 1
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Figure: One sample and the bird’s-eye view. The covariance matrix is plotted
on the right.

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

KL recovery

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure: Eigen-decomposition: 12 out of 35 KL modes. Each mode contains
multiple pieces of the ground-truth media.



ISMD: Numerical Example 1 continued

ISMD: H=1/1 ISMD: H=1/1 ISMD: H=1/1 ISMD: H=1/1 ISMD: H=1/1 ISMD: H=1/1

ISMD: H=1/8 ISMD: H=1/8 ISMD: H=1/8 ISMD: H=1/8 ISMD: H=1/8 ISMD: H=1/8

ISMD: H=1/32 ISMD: H=1/32 ISMD: H=1/32 ISMD: H=1/32 ISMD: H=1/32 ISMD: H=1/32

Figure: First 6 eigenvectors (H=1); First 6 intrinsic sparse modes (H=1/8,
regular sparse); First 6 intrinsic sparse modes (H=1/32; not regular sparse)

Comments:

ISMD is proven to give the optimal sparse decomposition under the
regular sparse assumption.
Even when the regular sparse assumption fails (the partition is too
fine), ISMD still performs well in our numerical examples.



Other topics about ISMD

Computational complexity: much cheaper than the
eigen-decomposition.

subdomain size: H
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Figure: CPU time (unit: second) for different partition sizes H.

ISMD is insensitive to the partition of the domain, see Theorem 3.6
in [Hou et al., 2017a].
Robustness : ISMD is robust against small error, see Lemma 4.1 in
[Hou et al., 2017a].

Cov =

K∑

k=1

gkg
T
k + Error.
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Results from L1 Minimization
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Figure: Covariance Matrix and Variance Explained by the First 35 Eigenvectors
of P

Choose λ = 35.94 for the following result.
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Figure: The First 12 Eigenvectors of P . The first 35 eigenvectors of P explain
95% of the variance.



Results from L1 Minimization, continued
Columns of P with largest norms
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Figure: 12 Columns of P with largest norms. The first 35 columns with largest
norms only explain 31.46% of the variance.
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Figure: The First 12 Intrinsic Sparse Modes from ISMD (H = 1/8). The first
35 intrinsic sparse modes explain 100% of the variance, exact recovery!



Discussion on Computational Complexity

The main computational cost in ISMD is the first step: compute
local eigen-decomposition, which is about MEig(n/M). n is the
total number of fine grid nodes in the spatial domain. Here Eig(n) is
the computational cost of eigen-decomposition of a matrix of size n.

ADMM algorithm is used to solve the semidefinite program in
convex relaxation of sparse PCA, and the main computational cost is
a global eigen-decomposition Eig(n) in each iteration. Suppose N
iterations are needed to achieve convergence, the computational cost
is about NEig(n). Partial eigen-decomposition is used to reduced
the computational cost.

For the specific problem we consider here, our algorithm for ISMD
takes into account the special structure of the problem, and is more
efficient than the ADMM algorithm (sparse PCA). In a typical test
of the high contrast example, our method is 652 times faster than
the ADMM algorithm.



II. Stochastic Multiscale Model Reduction

minimize
∑

k

sk =
∑

m

dm subject to: Cov =

K∑

k=1

gkg
T
k ,

Figure: One sample of permeability field



Random PDEs

{
−∇x · (κε(x, ω)∇xu(x, ω)) = b(x), x ∈ D,ω ∈ Ω,

u(x, ω) = 0, x ∈ ∂D

Random coefficient κε(x, ω) has high dimensionality in the stochastic
space and has multiple scales (channels and inclusions) in the physical
space.

Multiple scales in physical space: fine mesh required for standard
FEM, large computational cost for one sample.

Stochastic high dimensional:

Monte Carlo : large number of samples needed.
gPC based methods, curse of dimensionality! Prohibitively huge
number of collocation nodes.

We propose a stochastic multiscale method that explores the locally
low dimensional feature of the solution in the stochastic space and
upscales the solution in the physical space simultaneously for all
random samples.



Stochastic Multiscale Model Reduction

{
−∇x · (κε(x, ω)∇xu(x, ω)) = b(x), x ∈ D,ω ∈ Ω,

u(x, ω) = 0, x ∈ ∂D

Step 0. Locally low dimensional parametrization of κε(x, ω) by ISMD, local
KL expansion, sparse PCA, etc.

Step 1. Offline stage: prepare high-order polynomial interpolants for local
upscaled quantities. Various local upscaling methods are available,
see e.g. Babuska-Caloz-Osborn 1997, Hou-Wu 1997, Hughes et al
1998, E-Engquist 2003, Owhadi-Zhang 2014, Owhadi-2015.

Step 2. Online stage: for each parameter configuration, interpolate the
upscaled quantities from the pre-computed interpolants in Step 1
and solve the upscaled system. Online cost saving is of order
(H/h)d/(log(H/h))k, where H/h is the ratio between the coarse
and the fine gird sizes, d is the physical dimension and k is the local
stochastic dimension.

For details, see [Hou et al., 2017b].



A synthetic example with high contrast random medium

κ(x, ω) = ξ(ω) +

K∑

k=1

gk(x)ηk(ω)

where global variable ξ uniformly distributed in [0.1, 1.1], local variables
{ηk}Kk=1 are i.i.d. variables uniformly distributed in [104, 2× 104].

Figure: Left: one sample medium; middle: medium mean; right: medium
variance. There are 13 high permeability (of order 104) channels in the x
direction and a few high permeability inclusions. The background permeability
is of order 1.



Step 0: Medium Parametrization by ISMD

minimize
∑

k

sk =
∑

m

dm , subject to: Cov =

K∑

k=1

gkg
T
k .
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Figure: ISMD: the constant background mode and three channels. The number
of local parameters is much less than the total number of parameters.
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Figure: KL expansion: KL modes mixed the global and local modes together.
The number of local parameters equals to the total number of parameters.



Step 1: Local Upscaling

Coarse mesh size: H = 0.05, fine mesh size h = H/20, oversampling
domain size Hos = 3H.
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Figure: Two physical modes on patch (14,9) : dm = 2
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Figure: Left: the (1,1) element of local stiffness matrix on patch (14,9); Right:
relative error of surrogate by Chebyshev interpolation on a 5× 16 grid. The
maximal relative error is of order 10−6.



Step 2: Solve the upscaled system, one sample
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Figure: Left: one sample solution from direct MsFEM; right: solution absolute
error due to local interpolation. The error introduced by interpolation is of
order 10−10.

Table: Online cost saving for one sample

Direct MsFEM Local Interpolation Cost Saving
27.38 (s) 0.0133 (s) 2059



Step 2: Solve the upscaled system, solution statistics
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Figure: The statistics of the numerical solutions using 105 samples. Top left:
mean; top right: standard deviation; bottom: computational cost comparison.



III. Sparse Operator Compression
and Concluding Remarks



From ISMD to Sparse Operator Compression

κ(x, ω) ≈∑k gk(x)ηk(ω),
{ηk}Kk=1 uncorrelated or
indepedent.

ISMD

min
g1,...,gK

K∑

k=1

s(gk),

s.t. Cov ≈
K∑

k=1

gkg
T
k .

Applications in stochastic
multiscale mode reduction.

κ(x, ω) ≈∑k gk(x)ηk(ω),
{ηk}Kk=1 can be correlated.

Sparse Operator Compression

min
g1,...,gK ,B�0

K∑

k=1

s(gk),

s.t.

∥∥∥∥∥∥
Cov−

∑

k,k′

Bk,k′gkg
T
k

∥∥∥∥∥∥
≤ ε

B is the covariance matrix of the
factors {ηk}Kk=1.

More applications in solving
deterministic elliptic equations,
constructing localized Wannier
functions.

For details, see [Hou and Zhang, 2017a, Hou and Zhang, 2017b].



Random field parametrization

The Matérn class covariance

Kν(x, y) = σ2 21−ν

Γ(ν)

(√
2ν
|x− y|
ρ

)ν
Kν

(√
2ν
|x− y|
ρ

)
,

Widely used in spatial statistics, geoscience.

Compress the covariance operator with localized basis functions.

When ν + d
2 is an integer, we construct nearly optimally localized

basis functions {gi}ni=1:

|supp(gi)| ≤
Cl log(n)

n
1 ≤ i ≤ n.

We can approximate Kν by rank-n operator with optimal accuracy:

min
B�0

∥∥Kν −GBGT
∥∥
2
≤ Ceλn+1(Kν).

Sparsity/locality: better interpretability and computational efficiency.



Solving deterministic elliptic equations.

L is an elliptic operator of order 2k (k ≥ 1) with rough multiscale
coefficients in L∞(D), and the load f ∈ L2(D).

Lu = f, u ∈ Hk
0 (D). (2)

k = 1: heat equation, subsurface flow; k = 2: beam equation, plate
equation, etc...

Compress the Green’s function (L−1) with localized basis functions.

We construct nearly optimally localized basis functions
{gi}ni=1 ⊂ Hk

0 (D). For a given mesh h, we have

|supp(gi)| ≤ Clh log(1/h) 1 ≤ i ≤ n.

The Galerkin finite element solution ums := GL−1n GT f satisfies

‖u− ums‖H ≤ Cehk‖f‖2 ∀f ∈ L2(D),

where ‖ · ‖H is the energy norm, Ce is indep. of small scale of aσγ .

Sparsity/locality: computational efficiency.



Our construction and theoretical results
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Figure: Left: 8 localized basis functions for −∆ with periodic BC.
Middle and right: 2 localized basis functions for ∆2 with homogeneous
Dirichlet BC.



Our construction of {ψloci }ni=1

1 Choose h > 0. Partition the physical domain
D using a regular partition {τi}mi=1 with mesh
size h.

2 Choose r > 0, say r = 2h log(1/h). For each
patch τi, Sr is the union of the subdomains
τi′ intersecting B(xi, r) (for some xi ∈ τi).

3 Pk−1(τi) is the space of all d-variate
polynomials of degree at most k − 1 on the
patch τi. Q =

(
k+d−1
d

)
is its dimension.

{ϕi,q}Qq=1 is a set of orthogonal basis
functions for Pk−1(τi).

Figure: A regular
partition, local patch τi
and its associated Sr.

ψloci,q = arg min
ψ∈Hk

B

‖ψ‖2H

s.t.

∫
Sr

ψϕj,q′ = δiq,jq′ , ∀1 ≤ j ≤ m, 1 ≤ q′ ≤ Q,

ψ(x) ≡ 0, x ∈ D\Sr,

where Hk
B is the solution space (with some prescribed BC), ‖ · ‖H is the energy

norm associated with L and the BC.



Our construction Ψ loc := {ψloci,q }m,Qi=1,q=1

Theorem (Hou-Zhang-2016)

Suppose Hk
B = Hk

0 (D) and Lu = (−1)k
∑

|σ|=|γ|=k
Dσ(aσγD

γu). Assume that

L is self-adjoint, positive definite and strongly elliptic, and that there exists
θmin, θmax > 0 such that

θmin‖ξ‖2k ≤
∑

|σ|=|γ|=k

aσγξ
σξγ ≤ θmax‖ξ‖2k, ∀ξ ∈ Rd.

Then for r ≥ Crh log(1/h), we have

1

‖L−1f −Ψ locL−1
n (Ψ loc)T f‖H ≤ Ceh

k

√
θmin

‖f‖2 ∀f ∈ L2(D), (7)

where Ln is the stiffness matrix under basis functions Ψ loc.

2

Eoc(Ψ
loc;L−1) ≤ C2

eh
2k

θmin
. (8)

Here, the constant Cr only depends on the contrast θmax
θmin

, and Ce is
independent of the coefficients.



Several remarks

Theorem (Hou-Zhang-2016) also applies to L with low order terms,
i.e. Lu = (−1)k

∑
|σ|,|γ|≤k

Dσ(aσγD
γu).

Theorem (Hou-Zhang-2016) also applies to other homogeneous
boundary conditions, like periodic BC, Robin BC and mixed BC.

For Hk
B = H1

0 (D), i.e. second order elliptic operators with zero
Dirichlet BC, Theorem (Hou-Zhang-2016) have been proved in
Owhadi-2015. A similar result for Hk

B = H1
0 (D) was also provided in

Målqvist-Peterseim-2014. In this case, Our proof improves the
estimates of the constants Cr and Ce.

For other BCs, operators with lower order terms, and high-order
elliptic operators, new techniques and concepts have been developed.
Among them, the most important three new techniques are

a projection-type polynomial approximation property in Hk(D),
the notion of the strong ellipticity 3,
an inverse energy estimate for functions in
Ψ := span{ψi,q : 1 ≤ i ≤ m, 1 ≤ q ≤ Q}.

3Equivalent to uniform ellipticity when d = 1, 2 or k = 1. Slightly stronger than
uniform ellipticity in other cases; counter examples exist but difficult to construct.



Roadmap of the proof: Error estimate

Theorem (An error estimate based on projection-type approximation)

Suppose there is a n-dimensional subspace Φ ⊂ L2(D) with basis {ϕi}ni=1 such
that

‖u− P(L2)
Φ u‖L2 ≤ kn‖u‖H ∀u ∈ Hk(D). (9)

Let Ψ be the n-dimensional subspace in Hk(D) (also in Hk
B(D)) spanned by

{L−1ϕi}ni=1. Then

1 For any f ∈ L2(D) and u = L−1f , we have

‖u− P(Hk
B)

Ψ u‖H ≤ kn‖f‖L2 . (10)

2 We have
Eoc(Ψ ;L−1) ≤ k2

n . (11)

k = 1: Φ piecewise constant functions. By the Poincare inequality, it is

easy to obtain ‖u− P(L2)
Φ u‖L2 ≤ Cph√

θmin

‖u‖H .

k ≥ 2: Φ piecewise polynomials with degree no more than k − 1. By a
projection-type polynomial approximation property in Hk(D), see

Thm 3.1 in Hou-Zhang-PartII, we have ‖u− P(L2)
Φ u‖L2 ≤ Cph

k√
θmin

‖u‖H .



Roadmap of the proof: Error estimate, discussions

Take Hk
B = H1

0 (D) as an example, where Φ is the space of piecewise
constant functions.

Based on a projection-type approximation property, we obtain the
error estimates of the GFEM in the energy norm, i.e.

‖u− P(L2)
Φ u‖L2 ≤ Cprojh‖u‖H ⇒ ‖u− P(H1

0 )
Ψ u‖H ≤ Cprojh‖f‖L2

.

Cproj does not depends on the small scales in the coefficients.

Tranditional interpolation-type estimation requires higher regularity
of the solution u: assume u ∈ H2(D)

|u− Ihu|1,2,D ≤ Ch|u|2,2,D ⇒ ‖u− Ihu‖H ≤ Cinterph‖f‖L2 .

Cinterp depends on the small scales in the coefficients.

Basis functions for Ihu: optimally localized linear nodal basis

Basis functions for P(H1
0 )

Ψ u: global basis functions {L−1ϕi}ni=1



Discrete setting: graph Laplacians

Lu =− d

dx

(
a(x)

du

dx

)
,

u(0) = u(1).

Figure: A 1D circular
graph.

Lu =−∇ · (a(x)∇u),

u|∂D = 0.

Figure: A 2D lattice
graph.

Lu = f

L : a graph Laplacian

Figure: A social network
graph.

Social networks and transportation networks; genetic data and web
pages; spectral clustering of images; electrical resistor circuits;
elliptic partial differential equations discretized by finite elements; etc

Fundamental problems: fast algorithms for Lu = f and eigen
decomposition of L.



Discrete setting: graph Laplacians

Lu = f

Spielman-Teng (STOC-04, SICOMP-13, SIMAX-14): Nearly-Linear
Time Algorithms for Graph Partitioning and Solving Linear Systems

Maximal spanning tree, support-graph preconditioners, graph
sparsification, etc.
Theoretical results, impractical algorithms.
Gödel Prize 2008, 2015.

Livne-Brandt-2012: Lean Algebraic Multigrid. Practical nearly-linear
time algorithm, no theoretical guarantee.

Sparse operator compression for graph Laplacians? The key is an
efficient algorithm to find a partition {τi}mi=1 of the graph vertices
such that

‖u− P(L2)
Φ u‖L2 ≤ Cp

√
λn(L−1)‖u‖H ,

which is the Poincare inequality on graphs.

Implementing the sparse operator compression in a multigrid manner
leads to a nearly-linear time algorithm.



Concluding Remarks

1 We propose an intrinsic sparse mode decomposition method (ISMD)
to decompose a symmetric positive semidefinite matrix into a finite
sum of sparse rank one components. We apply ISMD to the
covariance matrix of a random field and obtain a locally low
dimensional parametrization of the random field.

2 Based on ISMD-like locally low dimensional parametrization
methods, we propose the Stochastic Multiscale Finite Element
Method (StoMsFEM). It can significantly reduce the computational
cost for every single evaluation of the solution sample.

3 Our recent work Sparse Operator Compression shows that many
symmetric positive semidefinite operator can be localized, for
example, the Green’s function of elliptic operators and the Matérn
class kernels.

4 Representing/approximating an operator with localized basis
functions has potential applications in solving deterministic elliptic
equations with rough coefficients and constructing localized orbits
for Hamiltonians in quantum physics.
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