Pore-Scale Physics and Large-Scale Flow Simulation

Matthew T. Balhoff
Petroleum and Geosystems Engineering, UT-Austin

Computational Issues in Oil Field Applications Tutorials
March 22, 2017
10^{-9} m

streamline scale

10^{-5} m

pore scale

10^{-1} m

continuum scale

10^2 m

macroscopic scale

Adapted from Karsten Thompson, LSU
Fundamental, but impractical for "engineering-scale" modeling

$$\nu \nabla^2 u - \nabla p = 0 \quad \nabla \cdot u = 0$$

$$u = 0 \big|_{\partial B}$$

$$\frac{\partial c}{\partial t} + \nabla \cdot (-D \nabla c + uc) = 0$$

$$-n \cdot D \nabla c = k(c'' - c_0'')$$

Practical for "engineering-scale" problems. Parameters mostly based on modeling or empiricism

$$\nabla \cdot \left( \frac{K}{\mu} \nabla P \right) = 0$$

$$\frac{\partial C}{\partial t} + \nabla \cdot (-D \nabla C + \bar{u} C) + R(C) = 0$$

Adapted from Karsten Thompson, LSU
Petrophysical Experimental Measurements

Porosity
\[ \phi = \frac{V_{\text{void}}}{V_{\text{bulk}}} \]

Permeability
\[ k = \frac{q\mu L}{A\Delta P} \]

Dispersion
\[ k_{\alpha} = \frac{q\alpha\mu L}{kA\Delta P} \]

Capillary Pressure
\[ P_c(S_w) = P_{nw} - P_w \]
Computer-Generated Materials

- Digitally create porous medium

- Place particles
  - Provide location (spatially correlated)
  - Size distribution
  - Ensure no overlap, gravitationally stable

- Attempt to create synthetic, real rocks
  - Change grain shape
  - Diagenesis, cementation, etc.
3D Imaging and Image Processing

- X-ray micro-CT (XMT) used to image the rock sample (~ mm$^3$) and collect slices
- Voxels used to discretize the medium
- Grey-scale (e.g. 0 to 255) used to distinguish rock from void space/fluids
- Segmentation and filtering often required
Digital Rocks Portal: Preserving, visualization and upscaling based on porous media images

Digital Rocks Portal

Digital Rocks is a data portal for fast storage and retrieval, sharing, organization and analysis of images of varied porous micro-structures. It has the purpose of enhancing research resources for modeling/prediction of porous material properties in the fields of Petroleum, Civil and Environmental Engineering as well as Geology.

This platform allows managing, preserving, visualization and basic analysis of available images of porous materials and experiments performed on them, and any accompanying measurements (porosity, capillary pressure, permeability, electrical, NMR and elastic properties, etc.) required for both validation on modeling approaches and the upscaling and building of larger (hydro)geological models.

Questions:
Maša Prodanović, Ph.D.
Associate Professor
UT-Austin
masha@utexas.edu

- **Upload and document large datasets**
- **Publish and reference data in papers (DOI)**
- **Visualize data remotely** on parallel cluster (Texas Advanced Computing Center)

https://www.digitalrocksportal.org/
Direct Numerical Simulation

- **Computational Fluid Dynamics** (e.g. FEM)

- **Lattice Boltzmann Method**. Fluid described by moving particles. Particles have finite number of discrete velocity values.
  - Collective behavior of particles represented by “particle distribution function” (PDF): $f(X,V,t)$
  - Equation of motion for the PDF is known as the Boltzmann equation:
    \[
    \frac{\partial}{\partial t} f(X,V,t) + V \cdot \nabla f(X,V,t) = \Omega(f(X,V,t))
    \]

- **Smoothed Particle Hydrodynamics (SPH)** divides fluid into a set of discrete element (particles) and trace the movement of each particle. Lagrangian formulation of the Navier-Stokes equation

Flow velocity in pore space (Aaltosalmi, 2005)
Pore-Scale Network Modeling
Network Generation Techniques

- **Statistical methods** create a network of pores and throats that mimic the statistics of properties of the original medium.

- **Grain-based methods** are usually tied to approaches that represent grain positions in porous media.

- **Medial Axis** can be used to thin the void space, from which one can map out the pores and throats in the network (skeleton is formed).
Example Image Analysis Workflow

Segmentation

Medial Axis (MA) extraction

Throat finding + pore partitioning

Rock models/grain network, formation resistivity factor, **direct fluid flow simulation**

Pore/throat characterization

Semi-upscaled simulation

From 3DMA-Rock software webpage
B. Lindquist & M. Prodanovic
### Network Parameters and Statistics

<table>
<thead>
<tr>
<th>Variable Association</th>
<th>Variable Name</th>
<th>Variable Type</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network</td>
<td>Domain dimensions</td>
<td>vector</td>
<td>length</td>
</tr>
<tr>
<td>Pore</td>
<td>Location</td>
<td>vector</td>
<td>length</td>
</tr>
<tr>
<td></td>
<td>Void volume</td>
<td>scalar</td>
<td>length$^3$</td>
</tr>
<tr>
<td></td>
<td>Maximum inscribed radius</td>
<td>scalar</td>
<td>length</td>
</tr>
<tr>
<td>Throat</td>
<td>Interconnectivity:periodicity</td>
<td>scalar:vector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross-sectional area</td>
<td>scalar</td>
<td>length$^2$</td>
</tr>
<tr>
<td></td>
<td>Maximum inscribed radius</td>
<td>scalar</td>
<td>length</td>
</tr>
<tr>
<td></td>
<td>Surface area</td>
<td>scalar</td>
<td>length$^2$</td>
</tr>
<tr>
<td></td>
<td><strong>Hydraulic conductivity</strong></td>
<td>scalar</td>
<td>length$^3$</td>
</tr>
</tbody>
</table>

#### Hydraulic Conductivity

$$g_{ij} = \frac{\pi R_{\text{eff},ij}^2}{8L_{ij}}; \quad R_{\text{eff},ij} = \frac{2A}{P}$$

$$g_{\text{venturi}} = \frac{4L(1 + 2\zeta_o)(1 - \zeta_o)^2}{3r_{\text{eff}}(\sin \eta_o)^3} \left( \frac{\lambda_R}{\lambda_R^2 + 1} + \tan^{-1} \lambda_R \right)$$

Happel and Brenner (1973); Thompson and Fogler (1997)
Mass and Momentum Balance Equations

Mass Balance:

\[ \sum_{j=1}^{n} \dot{m}_{ij} = 0 \]

\[ (\nabla \cdot \mathbf{u} = 0) \]

Momentum Balance:

\[ \dot{m}_{ij} = \frac{\rho \pi R^4}{8 \mu L} (p_j - p_i) = \frac{g_{ij}}{\mu} (p_j - p_i) \]

\[ (\nu \nabla^2 \mathbf{u} - \nabla p = 0) \]
Matrix Equations and Solution Methods

\[
\begin{pmatrix}
g_{1j} & -g_{12} & 0 & \cdots & -g_{1N} \\
-g_{21} & \sum_j g_{2j} & -g_{23} & 0 \\
0 & -g_{32} & \sum_j g_{3j} & \cdots \\
-g_{N1} & 0 & 0 & \sum_j g_{Nj}
\end{pmatrix}
\begin{pmatrix}
P_1 \\
\mu \\
P_2 \\
\mu \\
P_3 \\
\mu \\
\vdots \\
\mu \\
P_N \\
\mu
\end{pmatrix}
= 
\begin{pmatrix}
g_{in} \\
\mu \\
g_{out} \\
\mu
\end{pmatrix}
\begin{pmatrix}
P_{Bin} \\
0 \\
0 \\
0 \\
0 \\
0 \\
\cdots \\
0
\end{pmatrix}
\]

- \( N \times N \) Matrix is square, sparse and diagonally-dominate
- *Not banded* in general
- System can be solved using indirect solvers (e.g. Conjugate Gradients)
Permeability Calculation

\[
q = \frac{kA \Delta P}{\mu L}
\]

Darcy’s Law

\[
k = \frac{\mu L_{\text{network}} \sum_{j=1}^{N_{\text{edges}}} g_{ij} (P_j - P_i)}{A(P_{\text{in}} - P_{\text{out}})}
\]

- Calculate both faces to confirm mass balance
- Periodic or no-flow BCs on other four faces
- Measure anisotropy by changing flow direction
- Matches experimental data well in many cases
Non-Darcy Flow in Porous Media

Navier-Stokes Equations

\[ \rho \nabla \cdot \mathbf{v} = -\nabla P + \mu \nabla^2 \mathbf{v}, \quad \nabla \cdot \mathbf{v} = 0 \]

Forchheimer Equation

\[ \frac{\partial P}{\partial z} = -\frac{\mu}{K} v + \rho \beta v^n; \quad n = 2 \]

FEM simulations in throats to develop pore level equations

\[ q_{i,j} = f(\Delta P) \]

\[ f \text{ Re} = f \text{ Re}_0 + \left( \frac{n-1}{3} \right) \log \left[ 1 + (m \text{ Re})^3 \right] \]
Comparison with Experimental Data

\[ \frac{1}{K_{\text{app}}} (1/\text{cm}^2) \]

- Kim experimental data
- Network Model

- \( \beta = 64.7 \, \text{1/cm} \)
- \( \beta = 57.1 \, \text{1/cm} \)
Shear-Thinning Flows in Porous Media

- Non-Newtonian fluids have a shear-dependent viscosity
- Relationship between flowrate and pressure is nonlinear, so system of non-linear equations arises

\[ \sum_{j=1}^{n} q_{ij} = 0 \]

\[ q_{ij} = \frac{n\pi R^{3+n/1}}{(3n+1)(2\mu_0 l)^{1/n}} \left( P_i - P_j \right)^{1/n} \]

\[ q_{ij} = \frac{\pi R^4 \Delta P}{8\eta_0 l} \left[ 1 + \frac{4}{\alpha + 3} \left( \frac{\Delta P_{ij} R}{2\tau_{1/2} l} \right)^{\alpha-1} \right] \]

- Performed FEM simulations in throats to correct for irregular geometry
- Modified “Darcy’s Law” plotted as apparent viscosity

\[ u = - \frac{k}{\mu_{app}} \frac{\partial p}{\partial x} \]

\[ \mu_{app} = \mu_\infty + \left( \mu_p - \mu_\infty \right) \left[ 1 + \left( \lambda \dot{\gamma}_{eff} \right)^{\alpha} \right]^{(n-1)/\alpha} + \mu_{\max} \left[ 1 - \exp \left( \lambda_2 \tau_r \dot{\gamma}_{eff} \right)^{n_2 - 1} \right] \]
Yield Stress Flow in Porous Media

- Fluids with a yield stress require minimum stress to flow
- Equation for flowrate is nonlinear and complicated because of yield stress

\[ q_{ij} = \begin{cases} \frac{\pi R_{ij}^4}{8 \mu_0 l} \Delta P \left[ 1 - \frac{4}{3} \left( \frac{2 \tau_0 l}{\Delta P R_{ij}} \right) + \frac{1}{3} \left( \frac{2 \tau_0 l}{\Delta P R_{ij}} \right)^4 \right] & \text{if } \Delta P > \Delta P_c \\ 0 & \text{otherwise} \end{cases} \]
Solute Transport in Porous Media

\[ \frac{D_L}{D_m} \]

where

- \( D_L \) is the longitudinal diffusion coefficient
- \( D_m \) is the hydraulic diffusivity

\[ c_t + u c_x = D c_{xx} \]

**Graphs:**

- Experiments
- STM par
- STM plug
- MCM

**Equations:**

- \( D_L(V_{int.} \cdot d) \)
- \( P_{ed} \)

**Flow direction:**

- Right to left
The Mixed Cell Method (old):

Solute Balance:

\[ V_{p^0} \frac{dc_0}{dt} = \] (accumulation)

\[ \sum_{j=1}^{N_{th}} c_{j}^{up} q_{0,j} + \] (convection)

\[ \sum_{j=1}^{N_{th}} D_{m} a_{0,j} \frac{\Delta c_{0,j}}{l_{0,j}} + \] (diffusion)

\[ R(c_0) \] (reaction)

“perfect mixing” implicitly assumed!
What is the problem?

1) How do streamlines split?
2) How much mixing is there?
What we propose:

MCM (old)

SSM (new)

“perfect mixing” implicitly assumed!
The Streamline Splitting Method (new):

Solute Balance:

\[ V_1 \frac{dc_1}{dt} = \] (accumulation)

\[ \sum_{j=1}^{N_{th}} q_j x_{1j}^{up} c_j^{up} + \] (convection)

\[ \sum_{j=1}^{N_{th}} D_{m a_j} x_{1j}^{up} \frac{c_j - c_1}{l_{1j}} + \] (diffusion)

\[ R(c_1) + \] (reaction)

\[ \Psi_{21}(c_2, c_1) \] (intra-pore diffusion)

**X**: Accounts for **splitting streamlines**

**ψ**: Accounts for **Intra-pore diffusion**
Reactive Flow and Transport

Microscopic inputs

Macroscopic Outputs:

\[ Sh = \log(B \, Re + 1) \]

\[ V_{\text{Dissolved}} = \frac{K_{mt}}{2} A \Delta C \Delta t \frac{M}{\rho} \]
Model validation with published data

<table>
<thead>
<tr>
<th>Experiment Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Concentration</td>
<td>50 mg/L</td>
</tr>
<tr>
<td>Particle Zeta Potential</td>
<td>-110 mV</td>
</tr>
<tr>
<td>Particle Diameter</td>
<td>0.1~15 um</td>
</tr>
<tr>
<td>Particle Specific Gravity</td>
<td>1.1</td>
</tr>
<tr>
<td>Glass Beads Zeta Potential</td>
<td>-50 mV</td>
</tr>
<tr>
<td>Glass Beads Diameter</td>
<td>4 mm</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.37</td>
</tr>
</tbody>
</table>

(Yoon et al. 2006)
Model validation---tracer test

- No particle retention (No body force and surface force)
- $U = 0.0462 \text{ cm/s}$
Model validation---effluent concentration

- Well predict filtration coefficients at different flow velocities.

(Yoon et al. 2006)
Multiphase Flow

Key References:

• V. Joekar-Niasar & S. M. Hassanizadeh (2012)
• Al-Gharbi and Blunt (2005)
• Oren et al. (1998)
Terms and Definitions

**Wettability** is the affinity of a fluid to a surface in the presence of another immiscible fluid.

\[
P_c = \gamma \left( \frac{1}{R_1} + \frac{1}{R_2} \right) \Rightarrow \frac{2\gamma \cos \theta}{r} \text{ (capillary tube)}
\]

**Drainage** is the displacement of a wetting fluid by non-wetting fluid; **Imbibition** is the reverse process.
Capillary Number and Mobility

\[ Ca = \frac{\mu u}{\gamma} \]

\[ M = \frac{\mu_{inv}}{\mu_{rec}} \]

Lenormand et al. (1988); Sinha and Wang (2007)
Important to capture irregular cross sections of pores and throats

Wetting fluid “wets” the surface and remains connected through crevices

Use idealized shapes (e.g. triangles) with shape factors \( G = \frac{A}{P^2} \)

Finite Element simulations used to compute phase conductivities

Joekar-Niasar and Hassanizadeh (2012)
Quasi-Static Immiscible Displacement

- Capillary dominated ($Ca \sim 0$) common in real applications
- No flow/dynamics
- Displacement is “rule-based” (invasion percolation). Fluid fills a pore if pressure drop exceeds threshold (capillary entry) pressure
Capillary Pressure Calculation

1. Impose a pressure boundary condition (reservoir of fluid)

2. Use “rule-based” algorithm to compute equilibrium saturation

3. Increase pressure and repeat steps 1 and 2 to develop curve

Fig. 13—Comparison between predicted and measured primary drainage capillary pressure for the water-wet Bentheimer sandstone.

Oren et al. (1998)
Quasi-Static Relative Permeability Calculation

1. At a given equilibrium saturation impose a pressure gradient

2. Solve fluid flow (system of equations)

3. Compute pressure field and steady-state flowrates for each phase

4. Back-calculate relative permeability at $S_w$

5. Repeat steps 1-4 at different saturation

Valvatne and Blunt, 2003
Multiphase Viscous Flows (Dynamic Network Models)

Single pressure

\[ V_i \frac{\partial S_i^w}{\partial t} + \sum_{j=1}^{N} q_{ij} S_{ij}^w = 0 \]

\[ q_{ij} = \frac{g_{ij}}{\mu} \Delta_{ij} \]

\[ S_i^w + S_i^{nw} = 1 \]

\[ P_{ij}^c = f \left( \text{geometry} \right) \]

Two-pressure

\[ V_i \frac{\partial S_i^\alpha}{\partial t} + \sum_{j=1}^{N} q_{ij}^\alpha = 0 \]

\[ q_{ij}^\alpha = \frac{g_{ij}^\alpha}{\mu^\alpha} \left( P_i^\alpha - P_j^\alpha \right) \]

\[ S_i^w + S_i^{nw} = 1 \]

\[ P_{ij}^c = f \left( \text{geometry} \right) \]
## Pore-Network Modeling vs. Reservoir Simulation

<table>
<thead>
<tr>
<th></th>
<th>Network Model</th>
<th>Reservoir Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>“pores”</td>
<td>“cells/grids/elements”</td>
</tr>
<tr>
<td>Flow coefficient</td>
<td>conductivity</td>
<td>transmissibility</td>
</tr>
<tr>
<td>Scale</td>
<td>$10^{-5}$ to $10^{-2}$ m</td>
<td>$10^0$ to $10^5$ m</td>
</tr>
<tr>
<td>Gridding</td>
<td>Unstructured</td>
<td>(un)Structured</td>
</tr>
<tr>
<td>Discretization</td>
<td>Fixed</td>
<td>User determined</td>
</tr>
<tr>
<td>Flow Regime</td>
<td>Capillary Dominated</td>
<td>Viscous Dominated</td>
</tr>
<tr>
<td>Compressibility</td>
<td>Negligible</td>
<td>Important</td>
</tr>
</tbody>
</table>
Hybrid Modeling and Upscaling Techniques
Petrophysical Experimental Measurements

**Porosity**
\[ \phi = \frac{V_{\text{void}}}{V_{\text{bulk}}} \]

**Permeability**
\[ k = \frac{q\mu L}{A\Delta P} \]

**Dispersion**
\[ k_{\alpha} = \frac{q_\alpha \mu L}{kA\Delta P} \]

**Capillary Pressure**
\[ P_c (S_w) = P_{nw} - P_w \]

**Relative Permeability**
Pore-Scale Models as Stand-Alone Tools

• Predictive network models can be used to obtain macroscopic properties for substitution into continuum simulators
  – Permeability (Bryant et al., 1993)
  – Relative permeability curves (Baake and Oren, 1997)
  – Capillary pressure curves (Dillard and Blunt, 2000)
  – Effective viscosity for non-Newtonian fluids (Lopez et al., 2003; Balhoff and Thompson, 2004)
  – Dispersion coefficients (Bijeljic et al., 2004; Acharya et al., 2007)

• Models can be used as a complement for experimental tests

• But...
  – Is direct upscaling sufficient?
  – Shouldn’t the boundary conditions depend on flow behavior upstream?
  – How can we include pore-scale models in a multiscale setting?
Representative Elementary Volume

Adapted from Bear (1972)
Related problems:

Pore-scale imaging does not have both range and focus simultaneously

Bigger samples required for ascertaining the REV size

Svec and Grigg (2001)

Sun et al. (2012)
Validity of continuum description:

Scales separable

Scales not necessarily separable

Battiato and Tartakovsky (2011), Battiato et al. (2009)
1) Intrusive methods, Handshake methods, SPH-based methods:

Tartakovsky et al. (2006), Scheibe et al. (2007), Tartakovsky et al. (2008), Battiato et al. (2011), etc.

2) Heterogeneous multiscale based method (HMM), etc.:

Weinan et al. (2003), Weiqing & Weinan (2004), Chu et al. (2011a, 2011b), Sheng and Thompson (2013)
3) Multiblock/Multidomain Mortar Approach:

Balhoff et al. (2007)

Peszynska et al. (2002)

Balhoff et al. (2008)

Mehmani and Balhoff (2014)
Mortars are finite element based function spaces forming the interface conditions between subdomains.

- Subdomains are independent and can be solved in parallel
- Subdomains can be different in: physics, numerical method, discretization, and scale
How Do Mortars Work?

Objective:
Find subdomain solutions such that flux is continuous between them.

Algorithm 1 (FD):
1) Guess interface unknowns
\[ P|_{\Gamma_{ij}} = \sum_k \alpha_k \psi_k(x, y) \]
2) Solve subdomains
3) Compute “jump in flux” at interfaces
\[ F_k(\vec{\alpha}) = \int_{\Gamma_{ij}} \left[ \hat{n} \cdot \vec{q} \right] \psi_k = 0 \quad \forall \psi_k \in M_{h_j} \]
4) Iterate

Pros:
1) Easy to implement
2) Subdomains are “black boxes”

Con:
Potentially inefficient (esp. when nonlinear)
Model Validation Problem

- Periodic network model coupled to its replica
- Still want to solve as stand-alone tools
- What pressure field $P(x,y)$ at the interface will result in weakly matched fluxes? $P = 2.0$?
Model Validation Problem

\[ P = 3.0 \]

\[ P = 1.0 \]
Actual Versus Mortar Approximation

Actual

8x8 Quadratic Mortars
Upscaling - Single Phase Flow

- Create large (million pore) network models
  - Very heterogeneous
  - Abrupt changes in pore structure

- Solve pressures, flows in the network

- Back-calculate permeability using Darcy’s law ($K_{\text{TRUE}}$)
Straightforward Upscaling Approach

- Split the network into several smaller networks and solve
- Back-calculate each sub-network permeability
- Upscale to get $K_{FD}$ for entire domain using a traditional finite difference upscaling

$$K_{FD} \neq K_{TRUE}$$

$$\nabla \cdot (K \nabla P) = 0$$
Upscaling…a Mortar Approach

- Split networks at natural boundaries
- Couple all networks using FEM mortars
- Calculate upscaled $K_{\text{MORTAR}}$

$$K_{\text{MORTAR}} \approx K_{\text{TRUE}}$$
Upscaling Results

- $K_{\text{MORTAR}}$ better match to $K_{\text{TRUE}} (0.255, 0.234)$ than $K_{\text{FD}} (0.191, 0.175)$ for higher-order mortars and smaller grids
Global Jacobian Schur (GJS) Method

Formulate the problem into one global system

\[ 0 = F_i^f (p_i, \alpha_i) \big|_{\Omega_i}, \quad \forall i = 1, \ldots, n_{\Omega} \]
\[ 0 = G^f (p_i, \alpha_i) \big|_{\Gamma}, \quad \Gamma = \bigcup \Gamma_{ij} \]

Flow

\[ F_i^f := \nabla_i (K \nabla_i) \big|_{h} \]
\[ G_k^f (p, \alpha) = \int_{\Gamma_v} \left[ n \cdot \vec{q} \right] \varphi_k \]
\[ \vec{q} := -K \nabla p \quad K = \frac{k}{\mu} \]

Schur Complement

\[ J_g \delta \vec{x} = \begin{pmatrix} J_{F_{\beta/p}} & J_{F_{\beta/\alpha}} \\ J_{G_{\beta/p}} & J_{G_{\beta/\alpha}} \end{pmatrix} \begin{pmatrix} \delta \vec{p} \\ \delta \vec{\alpha} \end{pmatrix} = -\begin{pmatrix} \vec{F}_{\beta} \\ \vec{G}_{\beta} \end{pmatrix} = -\vec{F}_g \]

\[ S \delta \vec{\alpha} = \vec{R} \]
\[ S = J_{G_{\beta/\alpha}} - J_{G_{\beta/p}} J_{F_{\beta/p}}^{-1} J_{F_{\beta/\alpha}} \]
\[ \vec{R} = -\left( \vec{G}_{\beta} - J_{G_{\beta/p}} J_{F_{\beta/p}}^{-1} \vec{F}_{\beta} \right) \]
Global Jacobian Schur (GJS) with Transport

Formulate both flow and transport into one global system

Flow

\[ 0 = F_i^f (\overline{p}_i, \overline{\alpha}) |_{\Omega_i}, \quad \forall i = 1, \ldots, n_\Omega \]
\[ 0 = G^f (\overline{p}_i, \overline{\alpha}) |_{\Gamma}, \quad \Gamma = \bigcup \Gamma_{ij} \]

\[ F_i^f := \nabla . (K \nabla) |_h \]
\[ G_k^f (\overline{p}, \overline{\alpha}) = \int_{\Gamma_y} \left[ \overline{n} \cdot \overline{q} \right] \varphi_k \]
\[ \overline{q} := -K \nabla p \quad K = \frac{k}{\mu} \]

Transport

\[ \frac{\partial \tilde{c}_i}{\partial t} = F_i^{tr} (\tilde{c}_i, \overline{\beta}, t) |_{\Omega_i}, \quad \forall i = 1, \ldots, n_\Omega \]
\[ 0 = G^{tr} (\tilde{c}_i, \overline{\beta}, t) |_{\Gamma}, \quad \Gamma = \bigcup \Gamma_{ij} \]

\[ F_i^{tr} := -v_i \nabla + \nabla . (D \nabla) + R |_h \]
\[ G_k^{tr} (\tilde{c}, \overline{\beta}, t) = \int_{\Gamma_y} \left[ \overline{n} \cdot \overline{q}_c \right] \varphi_k \]
\[ \overline{q}_c := v c - D \nabla c \]

\( F_i^f = \) space discretized flow operator
\( G_k^f = \) flow interface condition
\( \alpha = \) Lagrange – multiplier for pressure
\( k = \) permeability / conductivity
\( \mu = \) viscosity
\( p = \) pressure

\( F_i^{tr} = \) space discretized transport operator
\( G_k^{tr} = \) transport interface condition
\( \beta = \) Lagrange – multiplier for concentration
\( v = \) fluid velocity
\( D = \) diffusion / dispersion coefficient
\( \varphi_k = \) mortar basis functions
Option b: Explicit Coupling of Transport:

\[ G_k^{fl}(\vec{p}, \vec{\alpha}) = \int_{\Gamma \cap \text{bundle}} \left[ n \cdot \vec{v} \right] \varphi_k = \sum_{i=1}^{N_{\text{left}}} q_i^{\text{left}} + \sum_{i=1}^{N_{\text{right}}} q_i^{\text{right}} = 0 \]

\[ G_k^{br}(x, \vec{\beta}, t) = \int_{\Gamma \cap \text{bundle}} \left[ n \cdot \vec{v}_c \right] \varphi_k = \sum_{i=1}^{N_{\text{left}}} q_i^{\text{left}} + \sum_{i=1}^{N_{\text{right}}} q_i^{\text{right}} = 0 \]

\[ q_{c_i} = q_i c \bigg|_{\text{upwinded}} - D a_i \frac{c_i - c_{\text{bundle}}}{l_i} \]

\[ \beta_{\text{bundle}} = \left( \sum_{i=1}^{N_{\text{left}}} D_i a_i c_i \right) - \left( \sum_{i=1}^{N_{\text{right}}} q_i c_i \right) \]
Verification:

<table>
<thead>
<tr>
<th></th>
<th>whole</th>
<th>implicit</th>
<th>explicit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_e=0.001)</td>
<td><img src="image1.png" alt="Image" /></td>
<td><img src="image2.png" alt="Image" /></td>
<td><img src="image3.png" alt="Image" /></td>
</tr>
<tr>
<td>(P_e=1)</td>
<td><img src="image4.png" alt="Image" /></td>
<td><img src="image5.png" alt="Image" /></td>
<td><img src="image6.png" alt="Image" /></td>
</tr>
<tr>
<td>(P_e=1000)</td>
<td><img src="image7.png" alt="Image" /></td>
<td><img src="image8.png" alt="Image" /></td>
<td><img src="image9.png" alt="Image" /></td>
</tr>
</tbody>
</table>
Computational Performance:

Flow

Transport
Hybrid Modeling

Pressure

Concentration
Multiscale, Hybrid Near-Well Reservoir Simulator

- 7500, 3D pore-network models near wellbore in “pore-scale region”
- ~30-75 million total pores
- 10000 grid blocks in outer “Darcy region”
- Models coupled using mortars
- Solve on multiple processors in parallel

Sun et al., Energy and Fuels (2012)
Direct Upscaling Insufficient!

Pressure Field

Flux Field

Hybrid, Multiscale Mortar

A Priori Direct Upscaling
Discussion:

- Pore-scale modeling can be predictive only if:
  1. Topology is honored
  2. Streamline-scale equations reflect fundamental physics

- Even then, direct upscaling may be insufficient

- Mortar methods provide several advantages
  - Modeling larger pore-scale domains
  - Ease of hybrid modeling
  - Good computational scale up
  - Parallel computing