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Practical for “engineering-scale” 

problems. Parameters mostly 

based on modeling or empiricism

Fundamental, but impractical for 

“engineering-scale” modeling
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Petrophysical Experimental Measurements

Porosity Permeability Dispersion

Capillary Pressure Relative Permeability
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Computer-Generated Materials

• Digitally create porous medium

• Place particles
• Provide location (spatially 

correlated)

• Size distribution

• Ensure no overlap, gravitationally 

stable

• Attempt to create synthetic, 

real rocks

• Change grain shape 

• Diagenesis, cementation, 

etc.



3D Imaging and Image Processing

• X-ray micro-CT (XMT) used to image the rock sample (~ mm3) and collect 

slices

• Voxels used to discretize the medium

• Grey-scale (e.g. 0 to 255) used to distinguish rock from void space/fluids

• Segmentation and filtering often required



Digital Rocks Portal:  Preserving, visualization and upscaling 

based on porous media images 

https://www.digitalrocksportal.org/

• Upload and document 

large datasets

• Publish and reference 

data in papers (DOI)

• Visualize data 
remotely  on parallel 

cluster (Texas 

Advanced Computing 

Center)

Questions:

Maša Prodanović, Ph.D.

Associate Professor

UT-Austin

masha@utexas.edu

https://www.digitalrocksportal.org/
mailto:masha@utexas.edu


Direct Numerical Simulation

• Computational Fluid Dynamics (e.g. FEM)

• Lattice Boltzmann Method. Fluid described by moving particles. Particles have finite

number of discrete velocity values.

– Collective behavior of particles represented by “particle distribution function” (PDF): 𝑓 𝑿, 𝑽, 𝑡

– Equation of motion for the PDF is known as the Boltzmann equation:
𝜕

𝜕𝑡
𝑓 𝑿,𝑽, 𝑡 + 𝑉 ∙ 𝛻𝑓 𝑿,𝑽, 𝑡 = Ω(𝑓(𝑿,𝑽, 𝑡))

• Smoothed Particle Hydrodynamics (SPH) divides fluid into a set of discrete element

(particles) and trace the movement of each particle. Lagrangian formulation of the

Navier-Stokes equation

Flow velocity in pore space 

(Aaltosalmi, 2005)



Pore-Scale Network Modeling



Network Generation Techniques

• Statistical methods create  a network of pores and throats that 

mimic the statistics of properties of the original medium

• Grain-based methods are usually tied to approaches that  represent 

grain positions in porous media

• Medial Axis can be used to thin the void space, from which one can 

map out the pores and throats in the network (skeleton is formed)



Segmentation Medial Axis (MA) extraction Throat finding +

pore partitioning

Pore/throat 

characterization 
Semi-upscaled 

simulation

Rock models/grain network.
formation resistivity factor,

direct fluid flow simulation…

From 3DMA-Rock software webpage

B. Lindquist & M. Prodanovic
11



Network Generation Techniques 2



Network Parameters and Statistics

Ao = c sin o

Bo = c cos o

o = constant

  

 

2

3 1

2

4 1 2 1

3 sin tan
1

o oventuri

tube R
eff o R

R

Lg

g
r

 


 





 


 
 

 
,

,

2
;

8

eff ij

ij eff ij

ij

R A
g R

L P


 

Happel and Brenner (1973); 

Thompson and Fogler (1997)

Hydraulic Conductivity



Mass and Momentum Balance Equations
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Matrix Equations and Solution Methods
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• N×N Matrix is square, sparse and diagonally-dominate

• Not banded in general

• System can be solved using indirect solvers (e.g. Conjugate 

Gradients)



Permeability Calculation
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Darcy’s Law

• Calculate both faces to confirm mass balance

• Periodic or no-flow BCs on other four faces

• Measure anisotropy by changing flow direction

• Matches experimental data well in many cases



Non-Darcy Flow in Porous Media
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Comparison with Experimental Data



Shear-Thinning Flows in Porous Media

• Non-Newtonian fluids have a shear-dependent viscosity

• Relationship between flowrate and pressure is nonlinear, so system of 

non-linear equations arises 
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• Performed FEM simulations in throats to correct for irregular geometry

• Modified “Darcy’s Law” plotted as apparent viscosity
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Yield Stress Flow in Porous Media

Threshold gradient 20% above threshold

• Fluids with a yield stress require minimum stress to flow

• Equation for flowrate is nonlinear and complicated 

because of yield stress
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Solute Transport in Porous Media



The Mixed Cell Method (old):

Solute Balance:
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What is the problem?

1) How do streamlines split?

2) How much mixing is there?

Pore



What we propose:

MCM (old) SSM (new)

“perfect mixing” implicitly assumed!



The Streamline Splitting Method (new):

Solute Balance:
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Ψ: Accounts for Intra-pore diffusion



Reactive Flow and Transport

Microscopic inputs

Macroscopic Outputs:

𝑆ℎ = Alog 𝐵 𝑅𝑒 + 1



Model validation with published data

Experiment Parameter

Particle Concentration 50 mg/L

Particle Zeta Potential -110 mV

Particle Diameter 0.1~15 um

Particle Specific Gravity 1.1

Glass Beads Zeta Potential -50 mV

Glass Beads Diameter 4 mm

Porosity 0.37

(Yoon et al. 2006)



Model validation---tracer test

• No particle retention (No body force and surface force)

• U = 0.0462 cm/s



Model validation---effluent concentration

(Yoon et al. 2006)

Well predict filtration coefficients at different flow velocities.



Multiphase Flow

Key References:

• V. Joekar-Niasar & S. M. Hassanizadeh (2012)

• Al-Gharbi and Blunt (2005)

• Oren et al. (1998)



Terms and Definitions

Wettability is the affinity of a fluid to a surface in the presence of another 

immiscible fluid

Drainage is the displacement of a wetting fluid by non-wetting fluid; Imbibition

is the reverse process

http://pubs.rsc.org

web.mst.edu
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Capillary Number and Mobility

Lenormand et al. (1988); Sinha and Wang (2007)
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Pore Geometry and Cross Sections

Joekar-Niasar and Hassanizadeh (2012)

• Important to capture irregular cross sections of pores and throats

• Wetting fluid “wets” the surface and remains connected through 

crevices

• Use idealized shapes (e.g. traingles) with shape factors G=A/P2

• Finite Element simulations used to compute phase conductivities



Quasi-Static Immiscible Discplacement

• Capillary dominated (Ca ~ 0) common in real applications

• No flow/dynamics

• Displacement is “rule-based” (invasion percolation). Fluid 

fills a pore if pressure drop exceeds threshold (capillary 

entry) pressure



Capillary Pressure Calculation

1. Impose a pressure 

boundary condition 

(reservoir of fluid)

2. Use “rule-based” algorithm 

to compute equilibrium 

saturation

3. Increase pressure and 

repeat steps 1 and 2 to 

develop curve

Oren et al. (1998)



Quasi-Static Relative Permeability Calculation

1. At a given equilibrium saturation 

impose a pressure gradient

2. Solve fluid flow (system of 

equations)

3. Compute pressure field and 

steady-state flowrates for each 

phase

4. Back-calculate relative 

permeability at Sw

5. Repeat steps 1-4 at different 

saturation

Valvatne and Blunt, 2003



Multiphase Viscous Flows (Dynamic Network Models)

Single pressure 
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Pore-Network Modeling vs. Reservoir Simulation

Network Model Reservoir Simulation

Nodes “pores” “cells/grids/elements”

Flow coefficient conductivity transmissibility

Scale 10-5 to 10-2 m 100 to 105 m

Gridding Unstructured (un)Structured

Discretization Fixed User determined

Flow Regime Capillary Dominated Viscous Dominated

Compressibility Negligible Important



Hybrid Modeling and Upscaling 

Techniques



Petrophysical Experimental Measurements

Porosity Permeability Dispersion

Capillary Pressure Relative Permeability
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• Predictive network models can be used to obtain macroscopic 
properties for substitution into continuum simulators

– Permeability (Bryant et al., 1993)

– Relative permeability curves (Baake and Oren, 1997)   

– Capillary pressure curves (Dillard and Blunt, 2000)

– Effective viscosity for non-Newtonian fluids (Lopez et al., 2003; Balhoff and 
Thompson, 2004) 

– Dispersion coefficients (Bijeljic et al., 2004; Acharya et al., 2007)

• Models can be used as a complement for experimental tests 

• But…
– Is direct upscaling sufficient?

– Shouldn’t the boundary conditions depend on flow behavior upstream?

– How can we include pore-scale models in a multiscale setting? 

41

Pore-Scale Models as Stand-Alone Tools



Representative Elementary Volume

Adapted from Bear (1972)



Svec and Grigg (2001)
Sun et al. (2012)

Bigger samples required for 

ascertaining the REV size

Pore-scale imaging does 

not have both range and 

focus simultaneously

Related problems:



Battiato and Tartakovsky (2011), 

Battiato et al. (2009)

Validity of continuum description:

Scales 

separable

Scales not 

necessarily 

separable



1) Intrusive methods, Handshake methods, SPH-based methods:
Tartakovsky et al. (2006), Scheibe et al. (2007), Tartakovsky et al. (2008) , Battiato et al. (2011), etc.

Scheibe et al. (2007)

Pore-scale (Mixing zone)Continuum Continuum

2) Heterogeneous multiscale based method (HMM), etc.:
Weinan et al. (2003), Weiqing & Weinan (2004), Chu et al. (2011a, 2011b), Sheng and Thompson (2013)

Chu et al. (2011) – single phase

Battiato et al. (2011)

Chu et al. (2011) – two phase Sheng and Thompson (2011) – two phase

45



3) Multiblock/Multidomain Mortar Approach:

Peszynska et al. (2002)

Permeability
Oil concentrations

Balhoff et al. (2008)
Mehmani and Balhoff (2014)

Balhoff et al. (2007)
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Actual Coupled

Mortars are finite element based function 

spaces forming the interface conditions 

between subdomains.

Mortar Mesh

• Subdomains are independent and can be 

solved in parallel

• Subdomains can be different in: physics, 

numerical method, discretization, and 

scale

Texas Advanced 

Computing Center



How Do Mortars Work?

Ω

Ω2Ω1

Ω3 Ω4

Objective:

Find subdomain solutions such 

that flux is continuous between 

them

Algorithm 1 (FD):

1) Guess interface unknowns

2) Solve subdomains

3) Compute “jump in flux” at interfaces

4) Iterate

Pros:

1) Easy to implement

2) Subdomains are “black boxes”

Con:

Potentially inefficient (esp. when nonlinear)
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Model Validation Problem

P=3.0

P=1.0

• Periodic network model coupled to its replica

• Still want to solve as stand-alone tools

• What pressure field P(x,y) at the interface will 

result in weakly matched fluxes? P = 2.0?

Mortar Space



Model Validation Problem

P=3.0

P=1.0

P=3.0

P=1.0
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Actual Versus Mortar Approximation

Actual 8x8 Quadratic Mortars



Upscaling - Single Phase Flow

• Create large (million pore) network 

models

– Very heterogeneous

– Abrupt changes in pore structure

• Solve pressures, flows in the 
network

• Back-calculate permeability using 
Darcy’s law (KTRUE)



Straightforward Upscaling Approach

• Split the network into several smaller 

networks and solve

• Back-calculate each sub-network 

permeability

• Upscale to get KFD for entire domain 

using a traditional finite difference 

upscaling

KFD ≠ KTRUE
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Upscaling…a Mortar Approach

• Split networks at natural boundaries

• Couple all networks using FEM 

mortars

• Calculate upscaled KMORTAR
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Upscaling Results

55

• KMORTAR better match to KTRUE (0.255,0.234) than KFD 

(0.191,0.175) for higher-order mortars and smaller grids 



Global Jacobian Schur (GJS) Method

Formulate the problem into one global system
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Global Jacobian Schur (GJS) with Transport

Formulate both flow and transport into one global system
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Option b: Explicit Coupling of Transport:



Verification:

whole implicit explicit



Computational Performance:

Flow Transport



Hybrid Modeling

61

Pressure Concentration



Multiscale, Hybrid Near-Well Reservoir Simulator

• 7500, 3D pore-network models near 

wellbore in “pore-scale region”

• ~30-75 million total pores

• 10000 grid blocks in outer “Darcy 

region”

• Models coupled using mortars

• Solve on multiple processors in parallel 
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Sun et al., Energy and Fuels (2012)



Direct Upscaling Insufficient!
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Pressure Field

Flux Field

Hybrid, Multiscale Mortar A Priori Direct Upscaling



Discussion:

• Pore-scale modeling can be predictive only if:

1. Topology is honored

2. Streamline-scale equations reflect fundamental 

physics 

• Even then, direct upscaling may be insufficient

• Mortar methods provide several advantages

• Modeling larger pore-scale domains

• Ease of hybrid modeling

• Good computational scale up

• Parallel computing


