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Well Data 

3D view of well paths 
• Inspired by   

an offshore 
development 
 

• 4 platforms 
 

• 2 vertical 
wells 
 

• 2 deviated 
wells 
 

• 8 horizontal 
wells 
 



Sample well log 
• Well data include: 

– horizontal location 
– true vertical depth 
– porosity 
– permeability 
– density 
– sonic log 
– lithology 
– layer indicator 

• Well markers:    
true vertical depth 
when well intercepts 
a layer surface 



Seismic impedance 

Impedance 



Case Study Summary 
• Reference reservoir is a fluvial reservoir 
• Porosity and permeability histogram show 
 distinct bi-modality 

Compartmentalization of reservoir into  
pay / non-pay – decision of stationarity 
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Facies classification basis 

• Seismic impedance in channels, mudstone 
and border sands : 
 
 
 
 
 

 Pay Facies:  channel sands 
 Non-pay facies:  mudstone + splays + levies 

Fr
eq

ue
nc

y

Impedance

2500. 4500. 6500. 8500. 10500. 12500.
0.000

0.100

0.200

0.300

Impedance in mudstone

Number of Data 59311
mean 8527.0

std. dev. 597.9
coef. of var 0.07

Fr
eq

ue
nc

y

Impedance

2500. 4500. 6500. 8500. 10500. 12500.
0.000

0.100

0.200

0.300

Impedance in channel sand

Number of Data 51003
mean 7927.7

std. dev. 532.3
coef. of var 0.07

Fr
eq

ue
nc

y

Impedance

2500. 4500. 6500. 8500. 10500. 12500.
0.000

0.100

0.200

0.300

Impedance in border sand          

Number of Data 9686
mean 8251.9

std. dev. 560.6
coef. of var 0.07

Impedance in mudstone 

Number 
mean 

59311 
8527 

Impedance in channel 

Number 
mean 

51003 
7928 

Impedance in border sand 

Number 
mean 

9286 
8252 

Impedance 
12500 8500 4500 

Impedance Impedance 
12500 8500 4500 12500 8500 4500 



Work flow 
• simulate multiple pay / non-pay facies models 
• within non-pay, simulate border facies 
 

• simulate porosity models separately in pay and 
non-pay 

• same for permeability 
• merge pay / nonpay, porosity / permeability 

models using matching facies template 
 multiple equi-probable reservoir models 
 

multiple facies templates 



Pay / Non-pay facies modeling 
Available Data 
 1) Vertical proportion curve 

uncertainty in 
modeled surfaces 

uncertain vertical 
proportion curve 

Reference reservoir / surfaces 

Well data / reference surfaces 

Well data / model surfaces 
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Semi-Variogram 

Defined as: 
 
In the spatial context, 
 
Under intrinsic stationarity – the RF Z(u) itself might not 
be stationary, but increments of the RF {Z(u)-Z(u+h)} 
are presumed stationary. Thus: 
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Variogram Inference 
• Inference of the experimental 

variogram requires: 
– Plotting h-scatterplot by 

systematically varying h in 
particular spatial directions. 

– For each scatterplot compute the 
corresponding moment of inertia 
of the scatterplot. 

– Plot the moment of interia  versus 
the lag h in specific directions 

Some remarks 
•There must be sufficient number of pairs in each scatterplot 
(statistical mass) 
•Outliers (abnormal high or low values) can cause the 
moment of inertia to fluctuate wildly 

γ(h) 

h 0 

Curve shape 
depends on nature 

of phenomena 



Facies modeling - Data 
• Indicator variogram - “hard” data 
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Facies modeling - variograms 
Horizontal borrowed from seismic 
 
 
 
 
Vertical from “hard” data 
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Spatial Estimation 
Simple kriging (SK) 
of the depth         at unsampled locations      
from marker data 
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Indicator Paradigm 

• Consider the indicator RV: 
 
 

• Important property: 
 

 or better still, given n data: 
 



Indicator basis function 
• Consider the expansion          defined on the 

basis of n indicator random variables                     
: 
 
 
- Given the n indicator random variables, this 

expansion is the most complete possible.  
- There are a total of                                          terms in 

the above expansion 
- There are 2 outcomes for each RV       there are                       

     outcomes possible for the function          . 
- These outcomes define the space  



Indicator Expansion 

• The conditional expectation                   is 
precisely the projection of the unknown 
indicator event        on to        .  
 

• If instead the projection function is defined on a 
reduced basis Lk:                                    



Indicator Expansion 

• Another way to write the expansion: 
      
  
basis function 



Normal Equations 

• The implication of the projection theorem is that: 
 

 or in terms of projections:  
 
 
 which is a system of      normal equations  
  
 



Examples 

        - unbiasedness 
 
    
            - reproduction of indicator          

     covariances 
 

- reproduction of the 3rd 
order covariances 

In general:       
 
requires knowledge of up to  order           indicator 

covariances  



Facies modeling - indicator approach 
 
Indicator kriging (Simple IK) 
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Facies modeling - indicator approach 
Indicator kriging local conditional probability 

 { }datapay nuProb |∈

• Draw ]1,0[Uniform∈r
Simulation 

If                                                
then                              else   

{ }data|pay nuProbr ∈≤
pay:1)( ∈= uuI nonpay:0)( ∈= uuI

• Add simulated           into data set : (n)    (n+1)  
• Visit next node  
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Locally varying mean 
 
 
Requisites 

• vertical proportion of pay facies in 
stratigraphic layer    : 
 

• Indicator variogram model,    
 
 

Facies modeling - indicator approach 
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Indicator Simulation - Results 
• Slices through the facies model 
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Indicator Simulation - Results 
• Vertical proportion  
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Indicator Simulation - Results 
• Perform a histogram transformation 
• Simulation after trans  
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Facies modeling - using seismic info. 
• Likelihood of seismic impedance |  
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• If:                                then impedance 
discriminates pay / nonpay   
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Facies modeling - using seismic info. 
• Want 

 
• Apply Bayes’ inversion:   

 
 
  

[ ]{ }1,)(|1)( +∈= ll sssIProb uu

{ } { }
{ }

{ }AProb
BProb

ABProbBAProb ⋅=
||

[ ]{ }1,)(|1)( +∈= ll sssIProb uu

[ ]{ }
[ ]{ }

{ }1)(
,)(

1)(|,)(
1

1 =⋅
∈

=∈
=

+

+ u
u

uu IProb
sssProb

IsssProb
ll

ll

[ ]{ }
)(

,)(
)1|()1|(
1

1 u
u

p
sssProb

sFsF
ll

ll ⋅
∈
−

=
+

+



Facies modeling - Bayes’ inversion 

Requisites 
–  Prior vertical proportion, 
–  Likelihood,      
–  Seismic impedance distribution, 
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Bayes’ inversion - Results 
• Slices through facies model 
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Facies modeling- object based 
fluvsim (Deutsch and Wang (1996)) 
Modeling using reversible coord. transforms 

channel complex 

channel 

Stratigraphic coord. transformation 

channel complex areal  transformation 

areal  transformation 

channel 



Simulation procedure in transformed space  
– annealing simulation of channel complex  

Facies modeling - object based 

∑∑ −+−+−=
n

CC
n

VVGGcc IIdpdpppO
z

)()(||*)()(||*| αα uu

global proportion vertical proportion well data 

where                if simulated    1)( =uI channel∈u

– annealing simulation of channel  
– perturb channel until convergence 
– back coord. transform to obtain reservoir model  

– perturb channel complex until convergence   



Fluvsim - results 
Facies model ( well mismatch: 11.2 % ) 
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Fluvsim model - using seismic info. 
• Average impedance vs. areal pay proportion 

 
 
 

  
  
 Cokrige areal proportion map using: 

– vertically averaged proportion data 
– exhaustive 2-D seismic impedance 
– variogram of facies proportion 
– co-located cokriging under MMI   
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Fluvsim - using seismic info. 
• Cokriged areal proportion map 
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Fluvsim - using seismic info. 
• fluvsim vertical proportion 

Areal prop. on reference reservoir

East

N
or

th

0.0 100.000
0.0

120.000
Areal prop. in sim. with no areal

East

N
or

th

0.0 100.000
0.0

120.000

0.3000

0.3500

0.4000

0.4500

0.5000

0.5500

0.6000

0.6500

0.7000

0.7500

0.8000

• impact of areal proportion 
Areal proportion - reference Areal prop. - unconditional  

0.30 

0.55 

0.80 

Sand proportion 
0.0 0.2 0.4 

S
tra

tig
ra

ph
ic

 d
ep

th
 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.6 

target 

simulated 

0.8 1.0 

1.0 

Areal prop. in sim. with no areal

East

N
or

th

0.0 100.000
0.0

120.000

Areal proportion - reproduction 



Facies modeling - Some remarks 
• Object based models geologically realistic but 

require numerous shape parameters 
 

• trans post-processing of indicator simulations 
essential 
 

• Integration of seismic has significant impact 
 



Indicator basis function 
• Consider the expansion          defined on the 

basis of n indicator random variables                     
: 
 
 
- Given the n indicator random variables, this 

expansion is the most complete possible.  
- There are a total of                                          terms in 

the above expansion 
- There are 2 outcomes for each RV       there are                       

     outcomes possible for the function          . 
- These outcomes define the space  



Indicator Expansion – Another Interpretation 
In general the extended equations are for all 2n 
realizations of the n data. 
If instead, the estimate      corresponding to a 
specific realization of the indicator RVs, say         
                             , then: 
 
 
Unbiasedness: 
 

Orthogonality:   
 

Two bases 1,D – two equations to obtain two 
unknowns 

Single Normal Equation 



Calibration of geologic information 
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GrowthSim 
 components 

Matching Configuration 

Data Configuration 

Presenter
Presentation Notes
components



Pattern Statistics  
 pattern observation 

Presenter
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To condition realization to hard (static) data 
  
                   Sample from distribution P(A | B ) 

 where  A = Simulation pattern 
             B = Information from conditioning data & geology 
              

Geological / Hard information 
Well data 
 

Multipoint Statistics 
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MP Histogram 
 

A – single point simulation event 
 

Strebelle (2000), Caers (1999) 

A – multiple point simulation event 
 

GROWTHSIM,  Arpat (2005) 



Pattern Statistics 
 optimized template 
◦ goal 
 reduce noises 
 reduce spurious pattern configurations 
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Training Image 

(100 x 100) 

Template Domain 

(7 x 7) 

Spatial Correlation 



Pattern Statistics 
 effects of optimized template 



GrowthSim 
 algorithm 

1. gather conditioning data around some node in the 
simulation grid  

2. look for matching pattern configurations to the 
conditioning data in the statistics 

3. apply one of the matching pattern configuration 
to the simulation grid 

4. repeat 1-3 around the newly simulated node, until 
the simulation grid is filled 



GrowthSim 
 100x100, 2-category data TI 



Multiple Grid Simulation 

 effects of multiple-level simulation 



Calibration of geologic information 
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γ 
h 

traditional 
An exhaustive training image required for inference of statistics 



Noisy spatial covariance (variogram) inferred using sparse data, 
modeled using smooth functions             restrictive, unrealistic 



• Develop a geostatistical simulation method that does not rely on an 
exhaustive training model 
 

• Perform inference and modeling of spatial connectivity functions in 
the spectral domain using sparse data. 
 



Moment Generating Function 
 
 
 
 
 
 

Expanding the function eωz as a Taylor series about the origin: 

Cumulant generating function of Z is the Neperian logarithm of the moments 
generating function M: 

Moments and Cumulants 



Relation between the first few moments and cumulants  

Moments can be calculated from the cumulants by 

Three-point moment is a measure of similarity between three spatial locations. High value implies 

three locations jointly have high values of the spatial attribute Z     Spatial cumulant is also a 

measure of spatial connectivity. 

Moments and Cumulants 



Polyspectra 



For a stochastic process Z(t), energy is defined as  

Power Spectrum 



Property of Fourier transform - if an image is rotated, its Fourier transform also rotates  

changes in direction of spatial continuity      rotation in Fourier transform space 
 
   
  orientation of objects can be detected from power spectrum 

Power Spectrum – Detecting orientations 



Orientation calculated 
using eigenvectors of the 
inertia matrix computed by 
thresholding the Fourier 
transform 

Power Spectrum – Detecting orientations 



Bispectrum 

Bispectrum 

Bispectrum 



Phase of Fourier transform is a nonlinear function of frequency, extracted by biphase 

Biphase Phase of Fourier spectrum 

Need to find a feature identifier from bispectrum that can distinguish object shapes 
within the images  - invariant under translation, scaling, rotation, and amplification 
 
Define the integrated bi-spectrum: 
 
 
Define phase of integrated bi-spectrum 

Identifier 𝑃(𝑎) is invariant to translation, scaling, rotation and amplification  
    (Nikias and Raghuveer, 1987 and others) 

Integrated Bispectrum 



Detecting Shapes 



So far:  Higher-order spectra can provide some interesting insights into spatial 
characteristics of reservoir models 
 
However, FFT requires an exhaustive dataset or image (such as a training image)  
 
What about when only scattered data is available?  
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Image reconstructed using 
only highest 15% of Fourier 
coefficients 

Bispectrum from sparse data 

Consider the inverse transform: 



used for geostatistical simulation (Jafarpour, Goyal, McLaughlin, & Freeman, 2009)  
assuming a DCT 
   unique solution – no uncertainty quantification 

Compressed Sensing 



Estimate Fourier transform coefficients from scattered data 
solving a regularization problem 
 
 
 
Optimum lambda established using jack-knife 

least mixed norm (LMN) [p=2, q=1] 

Band-
limited 
coefficie
nts 

Sparse reconstruction 



Log(Amplitude) Reconstruction 

Conditioning 
data 

Sparse reconstruction – some results 



One idea to improve quality of reconstruction - limit the search space to low 
frequency coefficients 

How to automatically select the search space? Apply a jackknife method. 

Randomly select 10% of the conditioning data (validation data) and use 

the remaining data for reconstruction 

An improvement 



Reference Models Sparse Conditioning Data 

Can we detect shapes using sparse data? 



Our goal is to use the integrated bi-spectrum computed using the Fourier 
transform from sparse data to classify the models reflecting different 
features 

Can we detect shapes using sparse data? 



Conclusions 
 
 
• Performing inference and modeling of connectivity statistics in the Fourier space 

provides an avenue for modeling geological realism in a computationally efficient 
manner 
 

• Computation of higher order moments, cumulant and polyspectra using sparse 
data appears feasible 
 

• Detection of size, orientation and shapes of features  consistent with available 
conditioning data is an interesting aspect of this research  training image 
selection 
 

• While a broad idea about reservoir structures is possible using the power 
spectrum, the location of objects and details of the shapes are only possible by 
identifying phase  bispectrum, higher-order spectra 
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