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Petroleum reservoirs

Naturally occurring flammable liquid/gases found in geological formations

» Originating from organic sediments that have been compressed and 'cooked’ to
form hydrocarbons that migrated upward in sedimentary rocks until limited by
a trapping structure

» Found in shallow reservoirs on land and deep under the seabed

» Only 30% of the reserves are 'conventional’; remaining 70% include shale oil
and gas, heavy oil, extra heavy oil, and oil sands.

Uses of (refined) petroleum:
» Fuel (gas, liquid, solid)

» Alkenes manufactured into
plastics and compounds

» Lubricants, wax, paraffin wax

» Pesticides and fertilizers for

- I Johan Sverdrup, new Norwegian ’elephant’ discovery, 2011.
agrlcu ture Expected to be producing for the next 30+ years




Production processes

Primary production — puncturing the ’balloon’

When the first well is drilled and opened for production, trapped hydrocarbon
starts flowing toward the well because of over-pressure




ction processes

Secondary production — maintaining reservoir flow

As pressure drops, less hydrocarbon is flowing. To maintain pressure and push
more profitable hydrocarbons out, one starts injecting water or gas into the
reservoir, possibly in an alternating fashion from the same well.




Production processes

Enhanced oil recovery

Even more crude oil can be extracted by gas injection (COg, natural gas, or
nitrogen), chemical injection (foam, polymer, surfactants), microbial injection,
or thermal recovery (cyclic steam, steam flooding, in-situ combustion), etc.




Why reservoir simulation?

To estimate reserves and support economic and operational decisions

To this end, reservoir engineers need to:
understand reservoir and fluid behavior
quantify uncertainty

test hypotheses and compare scenarios
assimilate data

vV v.v. v .Y

optimize recovery processes
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Reservoir models

Somewhat simplified, consist of three parts:

@ a geological model — volumetric grid with
cell /face properties describing the porous

rock formation

(b Su) + V - (buita) = bugu

o+ bgroSy)]

@ a flow model — describes how fluids flow a6
. . . + V- (botlo + byrvily) = bogo + byTuqy .
in a porous medium (conservation laws + :

Di[@(bgSy + borsS,)] N
+ V- (botly + borsilo) = byqy + borso 0 1=

appropriate closure relations)

© a well model — describes flow in and out
of the reservoir, in the wellbore, flow

control devices, surface facilities



Geologic model: sedimentary rocks

Glacial

Lacustrine

Evaporite Tidal

flat  shallow

marine - Gontinental
/L shelf

Deep
marine

Mineral particles broken off by weathering and erosion

Transported by wind or water to a place where they settle and accumulate into
a sediment, building up in lakes, rivers, sand deltas, lagoons, choral reefs, etc
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Geologic model: sedimentary rocks

Gravel

Layered structure with different mixtures of rock types with varying grain size,
mineral type, and clay content

Thin beds that stretch hundreds or thousands of meters, typically horizontally
or at a small angle. Gradually buried deeper and consolidated

6 /52



Geologic model: sedimentary rocks

Normal dip-slip fault Reverse dip-slip fault Strike-slip fault

=

Geological activity will later fold, stretch, and fracture the consolidated rock
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Geologic model: sedimentary rocks

Structural trap: anticline Stratigraphic traps

Fault trap Salt dome
Fault

6/52



Geologic model: sedimentary rocks

Outcrops of sedimentary rocks from Svalbard, Norway. Length scale: ~100 m




Geologic model: sedimentary rocks




Porous media flow — a multiscale problem

The scales that impact fluid flow in subsurface rocks range from
» the micrometer scale of pores and pore channels
» via dm-m scale of well bores and laminae sediments
» to sedimentary structures that stretch across entire reservoirs

Porous rocks are heterogeneous at all length scales (no scale separation)




Porous media flow — a multiscale problem

Rock models [um] Core models [mm]

Geological models [cm]

Simulation models [m]

Facies models [mm]

Microscopic Mesoscopic Macroscopic



Flow model: representative elementary volume

Porosity:

Vo
Vo + Ve

¢:

Microscopic REV
effects

The assumption of a repre-
sentatl\{e elemer_'ntan_*y volume ~ /\
(REV) is essential in macro-
scale modeling of porous
media. Here illustrated for

S K A SR e Homogeneous media
porosity. Inhomogeneous media




Governing equations for fluid flow

In its simplest form — two main principles
» Conservation of mass

g/mdx—i— ﬁ-ﬁds:/rda;
ot Jy v v

m=mass, F'=flow rate, r=fluid sources P

9/52



Governing equations for fluid flow

In its simplest form — two main principles
» Conservation of mass

g/mdx—i— ﬁ-ﬁds:/rda;
ot Jy v v

m=mass, F'=flow rate, r=fluid sources

» Darcy's law:
i =—K(Vp—pgVz)

empirical law for describing processes on an unresolved scale.

Similar to Fourier's law (heat) [1822], Ohm's law (electric current) [1827], Fick's law

(concentration) [1855], except that we now have two driving forces



Darcy’s law and permeability

In reservoir engineering:
. K
U= —ﬁ(Vp - ngz)

Intrinsic permeability K measures ability to transmit fluids
Anisotropic and diagonal by nature, full tensor due to averaging.
Reported in units Darcy: 1 d = 9.869233 - 107!3 m?

Fluid velocity:

Darcy’s law is formulated for volumetric flux, i.e., volume of fluid per total area per
time. The fluid velocity is volume per area occupied by fluid per time, i.e., ¥ =

o=

Theoretical basis (M. K. Hubbert, 1956):

Darcy's law derived from the Navier-Stokes equations by averaging, neglecting
intertial and viscous effects




Single-phase, incompressible flow

Model equations for single-phase flow:

9 . . K
%+V'(p’u):% UZ—;(VP_PQVZ)
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Single-phase, incompressible flow

Model equations for single-phase flow:

9 . . K
%Jrv-(pu):q? UZ—;(VP_PQVZ)

Assume constant density p, unit fluid viscosity p, and neglect gravity g
— flow equation on mixed form

V-id=gq, U= —KVp
or as a Poisson equation with variable coefficients

—V(KVp) =q
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Single-phase, slightly compressible flow

Introduce compressibilities for rock and fluid

w_ ., A
dp—ru dp_fp

Insert into conservation equation

Ip _ cyp p
. 2Py K Fyv. (kK
[(cr 4 c5)pp] 5t . Vp-KVp+ i V- (KVp)
If ¢; is sufficiently small, so that ¢;Vp - KVp < V - (KVp), we get

ap 1
— =—V-(KV =c
ot e ( p), c=crtcy



Numerical discretization

Assumption: a grid G consisting of a collection of polyhedral cells {Q2;}
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Numerical discretization

Assumption: a grid G consisting of a collection of polyhedral cells {Q2;}

Mass conservation per grid cell:

/V~ﬁdx:7{ ﬁ-ﬁds:/ qdx
Q; 29, Q;

i
E Uik = Q4
k

Pressure is cell-wise constant, flux is continuous
across cell interfaces
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Numerical discretization

Mass conservation per grid cell:

/ V‘ﬁd,r:% 17~ﬁ([.s":/ qdx
Ja, Jog; Ja

i
E Uik — (g4 Tk
k

Pressure is cell-wise constant, flux is continuous
across cell interfaces

Assume K is constant within each cell

Ui,k

f/ KVp - 7l ds
Lk

ALK (pi — 74,k ) Cik
x|

~
~

* Nk

= zk(pz - Wi,k)
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Numerical discretization

Assume K is constant within each cell

Uik = — / KVp - 7k ds
Jryp

([)z - 7‘_/.1\,>F/',/~' . ;1‘/1,'

ArK

%

|Cik |2

T; . (pi — mik)

Next, we use continuity of flux and pressure to eliminate the interface pressures

wik = Tix (pi — pr)
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Numerical discretization

Assume K is constant within each cell

Uik = — / KVp - 7k ds
JI j

ik

([)z - 7‘_/.I\>F/ﬁ/~' . ;1‘/1,'

ArK

%

|Cik |2

Tik (pi — k)

Next, we use continuity of flux and pressure to eliminate the interface pressures
wik = Tix (pi — pr)

Mass conservation ¢; = Y, us,x gives a linear system

ZjT’iﬁ k':’L,

Ap =q, where A;; =
p=a g {Tk k£ i,

13 /52



Grids: volumetric representation of the reservoir

The structure of the reservoir (geological surfaces, faults, etc) + well paths

Petrophysical parameters (permeability, porosity, net-to-gross, ... )

14 /52



Grids: mimicking geological processes
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Grids: mimicking geological processes
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Petrophysical parameters
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Research challenge: numerical robustness

Complex, unstructured grids with many obscure challenges

= Grid dictated by geology, not chosen freely to =
maximize accuracy of numerical discretization

= Topology is generally unstructured, non-neighboring
connections

= Cells deviate strongly from box shape, high aspect
ratios, many faces/neighbors, small faces, ...

= Potential inconsistencies: bilinear vs tetrahedral
surfaces

Petrophysics:
= Many orders of magnitude variations
= Strong discontinuities

= No clear scale separation (long and short correlations)

17 /52



Research challenge: efficient solvers

AN
BTSN S LU,
FEL AN IN RSN SR

Large coefficient variations, complex sparsity patterns, etc. Call for efficient
iterative solvers and preconditioning methods — good test problems for
multigrid methods

18 /52



Research challenge: consistent discretizations

1

Problem: standard finite-volume methods are
not consistent unless the grid is K orthogonal
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(mortar) mixed finite elements
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19 /52



Research challenge: consistent discretizations

Problem: standard finite-volume methods are
not consistent unless the grid is K orthogonal

pi i,k gk
\/ Q; Bt ek Qe

Tik

wik = = [p. (KoaOup + KoyOyp + Ko202p) ds
Here, 9,p and O.p cannot be estimated from p; and pj
— transverse flux K;y,p, and K,.p. neglected —
inconsistent scheme
Many methods developed to amend this

= (mortar) mixed finite elements

= multipoint flux approximation (MFPA)

" mimetic finite difference

= vertex approximate gradient (VAG)

= nonlinear TPFA




Example: comparison of consistent methods

S e

—eessntae
Example: 3D Voronoi
grid adapting to
branching well.
Anisotropic and

spatially varying

permeability
Method dof nnz ratio cond
TPFA 9026 126002 13.96 9.64e+02
NTPFA 11920 280703 23.55  2.92e+407
MFD 60321 1538305 25.50 9.37e+15
VEM1 52350 3404977 65.04 4.9le+11

VEM2 227459 38770593 170.45 =

20 /52



Wells: flow in and out of the reservoir

5-40 in

20200 m ——

Inflow and outflow take place on a subgrid scale, with large variations in
pressure over short distances.



Wells: flow in and out of the reservoir

5-40 in

20200 m ——

Inflow and outflow take place on a subgrid scale, with large variations in
pressure over short distances.

Solution: use a linear inflow-performance relation
q=J(pr — pon)

Here, puy is flowing pressure in wellbore and pr average pressure in cell

21/52



Wells: analytic subscale model

Pseudo-steady, radial flow. Mass conservation in cylinder coordinates

10(ru)
or

=0 — u=C/r.

<

N
N
@
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Wells: analytic subscale model

Pseudo-steady, radial flow. Mass conservation in cylinder coordinates

1 9(ru)

r or

Integrating around a small cylinder surrounding the well,

=0 — u=C/r.

q:%ﬁ~ﬁds:—27rh0

N
N
@
o



Wells: analytic subscale model

Insert into Darcy’'s law and integrate from wellbore radius 7, to drainage radius
rq at which p = pg4 is constant:

Pd Td
w9 _Kdp | 271'Kh/ @:/ dr
2nrh wdr pon M rw T

w

N
N
@
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Wells: analytic subscale model

Insert into Darcy’'s law and integrate from wellbore radius 7, to drainage radius
rq at which p = pg4 is constant:

Pd Td
u=——21 :_Ech — 271'Kh/ @:/ dr
2nrh wdr T e T
Solution
2nKh

q= m(?d *pbh)

N
N
@
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Wells: analytic subscale model

Insert into Darcy’'s law and integrate from wellbore radius 7, to drainage radius
rq at which p = pg4 is constant:

Pd Td
p— _ _Kdp — 271'Kh/ @:/ dr
27rh wodr T T

Solution (volumetric average pressure p = p, at 7o = 0.472r4)

_ KR ) = 2mKh (
= pln(rq/rv) bd = Dor) = p(In(ra/rw) —0.75) b

a — th)

N
N
@
o



Wells: analytic subscale model

[ J [ J [ J [ J P

O O O ® Producer - i -
o -9 ° ° O Injector e | O 15

(5 _ O O ! Quarter five-spot S IA,’/
° ) ° ° °

Repeated five-spot — symmetric solution. Discretize Poisson's equation:

Kh w N w s E qu
—— 4p — — — — = — = [ L
1 [p p p p p ] q p=Pp 1Kh
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Wells: analytic subscale model

[ J [ J [ J [ J P

O O O ® Producer - i -
o -9 ° ° O Injector e | O 15

(5 _ O O ! Quarter five-spot S IA,’/
° ) ° ° °

Repeated five-spot — symmetric solution. Discretize Poisson's equation:

Kh w N w s E qu
—— 4p — — — — = — = [ L
1 [p p p p p ] q p=Pp 1Kh

Analytic model valid in neighboring blocks

_ ap _ap
D = Pohr + mKh In(Az/rw)

23 /52



Wells: analytic subscale model

[ J [ J [ J [ J P

O O O ® Producer - i -
o -9 ° ° O Injector e | O 15

(5 _ O O ! Quarter five-spot S IA,’/
° ) ° ° °

Repeated five-spot — symmetric solution. Discretize Poisson's equation:

Kh N w s E qp
—— 4 — — — = — = [ L
P [4p —p" —p" —p"V —p°] =¢ P=r = I

Analytic model valid in neighboring blocks

ln(Aac/rw) - == n(eﬂrmA:ﬂ/rw)

4Kh 2m Kh

B an
p=pent o,

23 /52



Wells: analytic subscale model

[ J [ J [ J [ J P

O O O ® Producer - i -
o -9 ° ° O Injector e | O 15

(5 _ O O ! Quarter five-spot S IA,’/
° ) ° ° °

Repeated five-spot — symmetric solution. Discretize Poisson's equation:

Kh N w s E qp
—— 4 — — — = — = [ L
P [4p —p" —p" —p"V —p°] =¢ P=r = I

Analytic model valid in neighboring blocks

ln(Aac/rw) - == n(eﬂrmA:ﬂ/rw)

4Kh 2m Kh

p= pb’”Lz Kh

Peaceman’s formula:

2w Kh

= 20 (p—pe),  re = e 2+/AuAy~0.20788/Acly
pin(re/rw)
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Wells: many complications

There are several known extensions to Peaceman’s well model:
Diagonal permeability tensor K — /K, K,
Rectangular grid cells (more complex formula for r.)
Horizontal wells, off-centered wells, multiple wells, ...
Near-well effects (permeability increase/reduction)
Other grid types and discretization schemes
Despite obvious limiting assumptions, Peaceman’s model is used rather

uncritically in industry. Need for more accurate/robust/versatile models. . .

In general: need to describe flow within wellbore and annulus, downhole
equipment, surface facilities, control strategies (choking, reinjection) involving
complex logic, ...



What can you do with single-phase flow?

Run basic diagnostics of your model to establish basic timelines, volumetric
connections, measures of dynamic heterogeneity, etc

Forward time of flight Residence time

Can be computed by tracing streamline or by finite-volume methods solving steady
transport equations @ - Vh = f(x)
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What can you do with single-phase flow?

Run basic diagnostics of your model to establish basic timelines, volumetric
connections, measures of dynamic heterogeneity, etc

Influence regions Well-pair regions

Can be computed by tracing streamline or by finite-volume methods solving steady

transport equations @ - Vh = f(z)
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Flow diagnostics

Well alloation factors Allocation by connection

P&

Well allocation factors
P4

Allocation by connection
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3 8
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Flow diagnostics

qi F

normalize
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Flow diagnostics

\

P tq

F-® diagram Fractional recovery

tq

Sweep efficiency
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Model reduction: flow-based upscaling

~V - (KVp)=f, inQ

Subdivide grid into coarse blocks.
For each block B, we seek a tensor
K* such that

/ KVpdx = K*/ Vpdz, i .
B B Typical approach: flow-baser‘iT up;callTng R

That is, we use Darcy’s law on the - -
coarse scale

!
1

i =—K*Vp

T
to relate the net flow rate @ through Many alternatives, few are sufficiently
. accurate and robust
B to the average pressure gradient
Vp inside B. See talks by Y. Efendiev and H. Tchelepi

27 /52



Multiphase flow

Hydrocarbon typically consists of different )
chemical species like methane, ethane, N _\/‘ D Water
propane, etc. Common modelling practice — b -
to group fluid components into phases, i.e., \
a mixture of components having similar / D ot
flow properties. ™\ Y \

Grain
Most common phases: \ ] D

aqueous, liquid, and vapor



Fundamental physics: wettability

Immiscible phases separated by a infinitely thin surface having associated
surface tension

Water wet Oil wet

Contact angle 0: determined by balance of adhesive and cohesive forces

Young's equation (energy balance): 04w €080 = 005 — Ows

Water generally shows greater affinity than oil to stick to the rock surface —
reservoirs are predominantly water-wet systems

29 /52



Fundamental physics: capillary pressure

Different equilibrium pressure in two phases separated by curved interface:

__ 2mrocosf _ 20 cos _ r? gh(pi — pa)

Pe = Pn — Pw = = Apgh
wr? r wr? P
——— —_————
upward force downward force
I(L).

— > —




Fundamental physics: drainage (primary migration)

Saturation: fraction of pore volume filled by a given fluid phase

Drainage: non-wetting fluid displacing wetting fluid, controlled by widest
non-invaded pore throat

pcnw

Sur T1 T1

Sw
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Fundamental physics: drainage (primary migration)

Saturation: fraction of pore volume filled by a given fluid phase
Drainage: non-wetting fluid displacing wetting fluid, controlled by widest

non-invaded pore throat

pcnw

Sw
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Fundamental physics: imbibition (hydrocarbon recovery)

Imbibition: wetting fluid displaces non-wetting fluid, controlled by the size of
the narrowest non-invaded pore.

Will not follow the same capillary curve — hysteresis (cause: trapped oil
droplets, different wetting angle for advancing and receding interfaces)

Penw

EOR: inject substances to alter wetting properties to mobilize immobile oil, Sorr — 1



Extensions of model equations to multiphase flow

Three-phase Darcy velocities (Muskat, 1936):

Ko (Sa)
Ha

U = —

(VPa — pagVz)

Assuming each phase consists of only one component, the
mass-balance equations for each phase read (Muskat, 1945):

NPpaSa) | o () =\ _
ot +V (paua>*Qa

Macro-scale capillarity concept (Leverett, 1941):

Pe(Sw) = J4y/ %ocosa




Relative permeability

Effective permeability experienced by one 1

phase is reduced by the presence of other sl |
phases. Relative permeabilities '
0.6 - —
kra - kra(Sozl, (RN} Sam)a
0.4 —
are nonlinear functions that attempt to o2l |
account for this effect. Notice that
00 0.2 04‘/1 Oiﬁ 0.8
D kra <1
«@
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Relative permeability

Effective permeability experienced by one 1
phase is reduced by the presence of other
phases. Relative permeabilities

kra = kra(5a1,~ . ~750é7n)7

are nonlinear functions that attempt to
account for this effect. Notice that

ka <1

0.8
This gives Darcy's law on the form

U = — Klfm (Vpa — pagVz) 0.4
= —Kl\. (Vpa — pagVZ) 02|
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General flow equations for two-phase flow

Gathering the equations, we have

M+V. (po/&:a) = Qa, o = {w,n}

ot
_Khra

Ha
Pec = Pn — Pw> Sw+ S, =1

(vPa - pagvz)

Uy —
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General flow equations for two-phase flow

Gathering the equations, we have

% + V- (patla) = Gar @ ={w,n}
Kkra
'L_]:a = —T(Vpa - pagvz)

Pec = Pn — Pw> Sw+ S, =1

Commercial reservoir simulators: insert functional relationships p. = Pc(Sw)
and p. and ¢ as function of p,, and discretize with backward Euler in time and
the two-point scheme in space

In academia: common practice to rewrite the equations to better reveal their
mathematical nature

35/52



Fractional flow formulation

Choose Sy, and p,, as primary unknowns, consider incompressible flow (i.e., p is
constant and can be divided out)

0Sa

¢6t

+V'ﬁa:LIQ-
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Fractional flow formulation

Choose Sy, and p,, as primary unknowns, consider incompressible flow (i.e., p is
constant and can be divided out)

0Sa

¢6t

+V'ﬁa:LIQ-

Sum mass-conservation equations:
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Fractional flow formulation

Choose Sy, and p,, as primary unknowns, consider incompressible flow (i.e., p is
constant and can be divided out)

0Sa
ot

¢ +V'ﬁa:LIQ-

Sum mass-conservation equations:

AN U ) = g0 T
1 = =q

¢

+
e
Il

<
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Fractional flow formulation

Choose Sy, and p,, as primary unknowns, consider incompressible flow (i.e., p is
constant and can be divided out)

0Sa
ot

¢ +V'ﬁa:LIQ-

Sum mass-conservation equations:

0

= (Sn + Sw) + V- (tn + Uw) = gn + Gu — V-d=gq
Ot N — —_—— ’
=1 = —q

Sum Darcy equations
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Fractional flow formulation
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Fractional flow formulation

Choose Sy, and p,, as primary unknowns, consider incompressible flow (i.e., p is
constant and can be divided out)

0Sa
ot

¢ +V'ﬁa:LIQ-

Sum mass-conservation equations:

0

= (Sn + Sw) + V- (tn + Uw) = gn + Gu — V-d=gq
Ot N — —_—— ’
=1 = —q

Sum Darcy equations

—_——

=A

Inserted into V - ¢ = ¢ gives pressure equation

-V - (AKVp,) =q— V[)\wVpc + (Anpn + )\wpw)sz]
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Fractional flow formulation

Choose Sy, and p,, as primary unknowns, consider incompressible flow (i.e., p is
constant and can be divided out)

S, .
1) 6; + V- iy = ¢a-
Sum mass-conservation equations:
0 R R ~
= (Sn + Sw) + V- (tn + Uw) = gn + Gu — V-d=gq
ot ——— N ,
=1 =1 =q

Sum Darcy equations

N——
=x
Inserted into V - ¢ = ¢ gives pressure equation
—V - (AKVpn) = ¢ — V[ A0 Ve + (Anpn + Awpu)gV72]

Poisson only function of Sy,
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Fractional flow formulation

Multiply phase velocity by mobility of other phase and subtract

At — Awlin = AwAnK[VDe + (pw — pn)gV2]
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Fractional flow formulation

Multiply phase velocity by mobility of other phase and subtract
At — Awlin = AwAnK[VDe + (pw — pn)gV2]
Solve for i, and insert into conservation equation

O9Sw

¢8t

+V- [fw(ﬁ—i-)\nAngz)} =quw—V- (fwAnPc/ sz)
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Fractional flow formulation

Multiply phase velocity by mobility of other phase and subtract
At — Awlin = AwAnK[VDe + (pw — pn)gV2]
Solve for i, and insert into conservation equation

O9Sw

o

Setting P. = 0 and g = 0 for simplicity

~V(KA(S)Vp) =q, @ =—KX(S)Vp,
$0eS + V- (@f(9)) =0

System of one elliptic pressure equation and one hyperbolic saturation
equation. Typically: solved sequentially with specialized methods
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Buckley—Leverett solution for 1D displacement

—M=1
- M=
— M =2

52

St + f(9)= = q, f(S):m, M = pw/pin

Here, M = .2 gives poor local displacement efficiency, M = 5 gives very good
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Simulation examples: quarter-five spot

120.20 PVI 120.40 PVI 1=0.60 PVI sw
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|
| 250)
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| 200/
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3
B! 100]
2
I
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Simulation examples: quarter-five spot

4 years 8 years 12 years 16 years 20 years
—— 7
2 §
E \
<
10.6
o 105
B
10.4
10.3
g
) 102
<
10.1
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Simulation examples: quarter-five spot

cumulative oil production

18000
,,,,,, initial oilinplace _ _ _ _ _ _ _ _ ________________
16000
14000} PR
P
e -
12000 o7 ==
R
L
100001 _e*
~
8000 ///
,/
6000~ -
= ——P (Ratio 1:10
4000 - = =P (Ratio 1:1)
2000k - =P (Ratio 10:1
1000 2000 3000 4000 5000 6000 7000
Time (days)

0.

@

06 "~

0.4

0.2

weut: Water fraction at reservoir conditions

—P (Ratio 1:10)
---P (Ratio 1:1)
P (Ratio 10:1)

1000 2000 3000 4000 5000 BDDO 7000
Time (davs)

5 Oil surface rate [m°/s]

—FP (Ratio 1:10)
- -P (Ratio 1:1)
- - P (Ratio 10:1)

1000 2000 3000 4000 5000 6000 700
Time (davs)
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150 days

810 days

1020 days

1500 days 4500 days
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High permeability on top

Low permeability on top

120 days

S ‘
_ | 360 days

1500 days

40 /52



Multicomponent flows

System with N phases and M components
¢

Notation: ¢,

mass fraction of component ¢ in phase «
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Multicomponent flows

System with N phases and M components

0

Notation: ¢, mass fraction of component £ in phase o

Equations: conservation for phases or components?

Choose components to avoid source terms for mass transfer

(6 chpuss) + ¥ (S hputia + 71) = 3 chpuse

Here, J is diffusion, e.g., Fickian
JZ = —paSaDiVCf!,

More in talk by K. Jessen
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Black-oil equations

Hydrocarbon components lumped together 1
to a light 'gas’ and a heavier 'oil’ /
pseudocomponent at surface conditions

A

reservoir  /

/ surface
\Y

Simple PVT: formation-volume factors,
Ba = Va/Vs = p4/pa of ba = 1/Ba




Black-oil equations

Hydrocarbon components lumped together ,
to a light 'gas’ and a heavier 'oil’ ,
pseudocomponent at surface conditions

A

reservoir  /

/ surface
\Y

Simple PVT: formation-volume factors, ’
Ba = Va/Vs = p4/pa of ba = 1/Ba

Conservation equations:

at (¢boSo) + A (boﬁo) - onO
6t (¢bwsw) + V- (bwﬁw) = bwqw
(’9,5 [(ﬁ(qug + borsoSo)} + V- (bgﬁg + borsoﬁo) = ngg + borso(Io

Dissolved gas in oil: 750 = V;;/V;. Similarly: oil vaporized in gas rs4



Example: fluid model from SPE9

Relative permeability for oil

i relative permeability curve
Oi s‘a' /e pel ‘eab 'yC:J /s Oil relative permeability

Water system
Gas system

09

Oil saturation

J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-oil simulation. SPE Reservoir Simulation Symposium



Example: fluid model from SPE9

Water formation volume factor

1.008]

1.005]

Formation-volume factors (inverse densities):

1.004

1.003]
Qil formation volume factor
T T T

1.002

1.001

Gas formation volume factor

0.016|

0.014f

0.012|

0.008|

0.006|

0.004f

0.002]

100 200 300 400 500

1.004

1.003

1.002

0.98 . . . . . . . 100
50 100 150 200 250 300 350 400 450 500
Pressure [bar] !

0.999|

0988
J. E. Killough (1995). Ninth SPE comparative solution project: A reexamination of black-ojlesi
o

n [Symposium
o
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Example: fluid model from

Viscosities:

<10° Water viscosity

as viscosity

L . L . L - - . % 100 200 300 400 500
50 100 150 200 250 300 350 400 450 500
Pressure

43 /52



Black-oil: discretization and linearization

Discretization: backward Euler in time, two-point flux-approximation

with upstream mobility in space.
' . . E 7 7
Newton's method for nonlinear equation: 3 S0x' = E(z")
T
i) 8 0 9 i) a0 9
9po Dsw 0sg Osg ag;, Bay 945 Opy,
T
E, \ / N
. \ l’ E )
1
" 9 e o
! o o °
1
! °
! s
Ew ! Eq, . °
! °
1 E s
J o . . °
" B . .
E, \ B 7 . . .
B ° ° .
i Ectnt N
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Black-oil: solution strategies

Solution procedure
1. Eliminate well variables g5, gz ¢,
and Pbh

2. Set first block-row equal to sum of
block-rows, leave out rows that may
harm diagonal dominance in block

(L.1)
3. Set up two-stage preconditioner:

- Mfl: solves pressure subsystem
- M2—1: ILUO decomposition of the
full system

4. Solve full system with GMRES using
preconditioner My *M7*

5. Recover remaining variables
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Black-oil: solution strategies

Solution procedure For larger models, pressure subsystem
1. Eliminate well variables ¢, ¢5, ¢, should be solved with algebraic
and pun g multigrid
2. Set first block-row equal to sum of Time-step control
block-rows, leave out rows that may chop if too large changes in
harm diagonal dominance in block variables
(1.1)

chop if convergence failure

3. Set up two-stage preconditioner: ) L
P Ee P more advanced logic to maintain

-1
— MJ ": solves pressure subsystem targeted iteration count
- M2—1: ILUO decomposition of the
full system Elaborate logic for well control and

4. Solve full system with GMRES using surface facilities
preconditioner My *M7*

5. Recover remaining variables
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Example: SPE 9 benchmark

Grid with 9000 cells

1 water injector, rate controlled, switches to bhp
25 producers, oil-rate controlled, most switch to bhp
Appearance of free gas due to pressure drop

Production rates lowered to 1/15 between days 300

and 360
10 PROD13 PROD13
2.5 A
B P9
s 2 @ 2 / l \
< % /
® £, # | \\
£ o
215 Kl / l
4 g ' | e
10
1 0.
0 05 1 15 2 0.5 1 15 2
Time (years) Time (years)
X '07 PROD18 PROD18
2.
25 p—r /"
o ECLIPSE _ 2
- @
g e d /7 .
> Eq
e 2
e /|
4 a
& 8 .f \ ——MRST
1 0 o ECLIPSE
0 05 2 05 2

1 15 1 1.
Time (yvears) Time (years)
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Example: the Voador field

= South wing of the reservoir (Petrobras)

® Gradients obtained through adjoint simulations

Validate: open-source / commercial simulator:

— 20 years of historic data
— virtually identical results

— main challenge: needed to reverse-engineer

description of wells. . .

v

producer 1 injector producer 1 injector

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 o 2000 4000 6000 8000
producer 2 producer 3 producer 2 producer 3

h _J\m

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
producer 4 producer 5 producer 4 producer 5

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 o 2000 4000 6000 8000
producer 6 producer 7 producer 6 producer 7

0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000

bottom-hole pressure water rate
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Multisegment wells

More accurate modelling:

Network models
Represent annulus
Flow inside wellbore
(Autonomous) inflow control devices

Artificial lift, etc

In nodes:
— pressure p
— mass fractions zi,,
o', Ty
In segments:

— mass rates v
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Multisegment wells

More accurate modelling: In nodes:

— Network models — pressure p

— mass fractions zi,,
o', Ty

— Represent annulus

Flow inside wellbore
In segments:

(Autonomous) inflow control devices
— mass rates v

Artificial lift, etc

Discrete mass conservation in nodes:

14 0 .
At (xep —zep) +  div(vd") - qar =0
N—— — v
in- and outflux to source term (well

accumulation A
neighboring nodes control, connections)

Discrete pressure drop equations in segments:

grad(p) — gava(p)grad(z) — h(v",uw(p),uw () =0
——— —
gravity term heuristic pressure

drop term



Example: effect of modeling annulus

connection —_
annulus —

ICD ———

tubing

—Uniform, no annulus

- = Uniform, annulus

—Thief zones, no annulus

- = Thief zones, annulus
SPE10, no annulus
SPE10, annulus

| | | | | | | |

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [days]
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Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

T = _k’"w—(S)K(va — pugV2)
Muw,efi(c) Ri(c)
) o (S)
=) (g, - pugV
T = (O Re(0) < (VPw ~ PugV2)

Conservation of polymer component:

O [d(1 = Sipy)cbwS + pr C*(1 — ¢)] + V - (cbwily) = gp



Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

T = _k’"w—(S)K(va — pugV2)
Muw,efi(c) Ri(c)
) o (S)
=) (g, - pugV
T = (O Re(0) < (VPw ~ PugV2)

. viscosity enhancement
Conservation of p :

O [d(1 = Sipy)cbwS + pr C*(1 — ¢)] + V - (cbwily) = gp



Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

T = _k’"w—(S)K(va — pugV2)
Muw,efi(c) Ri(c)
) o (S)
=) (g, - pugV
T = (O Re(0) < (VPw ~ PugV2)

Conservation of polymer component:
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Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:
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Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

T = _k’"w—(S)K(va — pugV2)
Muw,efi(c) Ri(c)
) o (S)
=) (g, - pugV
T = (O Re(0) < (VPw ~ PugV2)

Conservation of polymer component:

O [Qﬁ(l _ Sipv)waS + pr Todd-Longstaff mixing: )

1 1-c/em
Buef g ()9 g, @

9p

c/em

.y . + - ., 1—-w
reduction pom, () g~
ce adsorption

adl




Summary

Geological models: complex unstructured grids
having many obscure challenges

Flow models: system of highly nonlinear parabolic
PDEs with elliptic and hyperbolic sub-character

Well models: subscale models, complex logic,
strong impact on flow

Validation and availability in software

Challenges:

Main point of grid: describe stratigraphy and structural
architecture, i.e., not chosen freely to maximize accu-
racy of numerical discretization

Industry standard: corner-point / stratigraphic grids

Grid topology is generally unstructured, with non-
neighboring connections

Geometry: deviates (strongly) from box shape, high
aspect ratios, many faces/neighbors, small faces, ...

Potential inconsistencies since faces are bilinear or
tetrahedral surfaces
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Summary

Geological models: complex unstructured grids
having many obscure challenges

Flow models: system of highly nonlinear parabolic
PDEs with elliptic and hyperbolic sub-character

Well models: subscale models, complex logic,
strong impact on flow

Validation and availability in software

Challenges:

Delicate balances: viscous forces, gravity, capillary, ...

Strong coupling between 'elliptic’ and 'hyperbolic’ vari-
ables (small scale: capillary, large scale: gravity)

Large variation in time constants and coupling
Orders-of-magnitude variations in permeability
Parameters with discontinuous derivatives
Path-dependence: hysteretic parameters

Sensitive to subtle changes in interpolation of tabulated
physical data

) 0 100 1000 10000 Monotonicity and mass conservation
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Summary

ordca 1 it
Geological models: complex unstructured grids
having many obscure challenges

0 2000 4000 6000 8000 0 2000 4000 6000 8000
producer 2 producer 3

Flow models: system of highly nonlinear parabolic
N PDEs with elliptic and hyperbolic sub-character
T Ew mw e w0 e e am .
producer s producer 5 Well models: subscale models, complex logic,
L { l strong impact on flow
o Ee ow Twn me o ma Ao e ww Validation and availability in software
L { l
o mm  aw0 e w0 T 5£J a000 Challenges:

Near singular radial flow in near-well zone (much larger
flow than inside reservoir)

Induce nonlocal connections

Completely different multiphase flow inside wellbore
Coupling to surface facilities

Abrupt changes in driving forces

Control strategies with intricate logic which is highly
sensitive to state values
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Summary

ordca 1 it
Geological models: complex unstructured grids
having many obscure challenges

0 2000 4000 6000 8000 0 2000 4000 6000 8000
producer 2 producer 3

Flow models: system of highly nonlinear parabolic
N PDEs with elliptic and hyperbolic sub-character
producer s producer 5 Well models: subscale models, complex logic,
L { l strong impact on flow
oo e e w0 oo e oo e e Validation and availability in software
L { l
o mm  aw0 e w0 T 5£J a000 Challenges:

New methods tend to be immature and too simplified

Researchers: incompressible flow and explicit methods.
Industry: implicit methods for compressible flow

Industry relies on a few software providers and has
strong faith in software with (undocumented) safe-
guards and algorithmic choices

Oil companies seldom give away data

Realistic models involve a large number of intricate de-
tails (Eclipse has 2-3000 keywords. . .)

51/52



MRST - MATLAB Reservoir Simulation Toolbox

=1 Gallery Download Publications Developers ‘Contact

Forum

The Matlab Reservoir Simulation Toolbox

Basic functionality Discretizations and solvers Workflow tools

ATPEA AMsMFE Flow diagnosties j—y

Mimetic/MPFA Black-oil simulators =

X

MRST-cozlab

DFM

Public data sots

‘Adjoint methods

—
The MATLAB Reservoir Simulation Toolbox (MRST) by the in the
Department of Appiied Mathematics at SINTEF ICT. D
ownload
Version 2016b was released on the 14th of December 2016, and can be downloaded under the terms of the GNU MRST

General Public License (GPL).

http://www.sintef .no/MRST
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Originally:
developed to support research on multiscale methods and mimetic discretizations
first public release as open source, April 2009
Today:
general toolbox for rapid prototyping and verification of new computational methods
wide range of applications
two releases per year
each release has from 900 (R2013a) to 2100 (R2015a) unique downloads
Users:
academic institutions, oil and service companies

large user base in USA, Norway, China, Brazil, United Kingdom, Iran, Germany,
Netherlands, France, Canada, ...

Publications:
used in 24 PhD theses and 59 master theses
used in more than 100 scientific papers by people outside of SINTEF

http://www.sintef.no/MRST



