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Petroleum reservoirs

Naturally occurring flammable liquid/gases found in geological formations

I Originating from organic sediments that have been compressed and ’cooked’ to
form hydrocarbons that migrated upward in sedimentary rocks until limited by
a trapping structure

I Found in shallow reservoirs on land and deep under the seabed

I Only 30% of the reserves are ’conventional’; remaining 70% include shale oil
and gas, heavy oil, extra heavy oil, and oil sands.

Uses of (refined) petroleum:

I Fuel (gas, liquid, solid)

I Alkenes manufactured into
plastics and compounds

I Lubricants, wax, paraffin wax

I Pesticides and fertilizers for
agriculture

Johan Sverdrup, new Norwegian ’elephant’ discovery, 2011.
Expected to be producing for the next 30+ years
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Production processes

Gas

Oil

Aquifer
w/brine

Caprock

Primary production – puncturing the ’balloon’

When the first well is drilled and opened for production, trapped hydrocarbon
starts flowing toward the well because of over-pressure
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Production processes

Gas

Oil

Gas
injection

Water
injection

Secondary production – maintaining reservoir flow

As pressure drops, less hydrocarbon is flowing. To maintain pressure and push
more profitable hydrocarbons out, one starts injecting water or gas into the
reservoir, possibly in an alternating fashion from the same well.
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Production processes

Gas

Oil

Gas
injection

Water
injection

Enhanced oil recovery

Even more crude oil can be extracted by gas injection (CO2, natural gas, or
nitrogen), chemical injection (foam, polymer, surfactants), microbial injection,
or thermal recovery (cyclic steam, steam flooding, in-situ combustion), etc.
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Why reservoir simulation?

To estimate reserves and support economic and operational decisions

To this end, reservoir engineers need to:

I understand reservoir and fluid behavior

I quantify uncertainty

I test hypotheses and compare scenarios

I assimilate data

I optimize recovery processes
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Reservoir models

Somewhat simplified, consist of three parts:

1 a geological model – volumetric grid with
cell/face properties describing the porous
rock formation

2 a flow model – describes how fluids flow
in a porous medium (conservation laws +
appropriate closure relations)

3 a well model – describes flow in and out
of the reservoir, in the wellbore, flow
control devices, surface facilities
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Geologic model: sedimentary rocks

Mineral particles broken off by weathering and erosion

Transported by wind or water to a place where they settle and accumulate into

a sediment, building up in lakes, rivers, sand deltas, lagoons, choral reefs, etc
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Geologic model: sedimentary rocks

Gravel

Sand
Mud

Flood plain

Deposition

Erosion

Layered structure with different mixtures of rock types with varying grain size,
mineral type, and clay content

Thin beds that stretch hundreds or thousands of meters, typically horizontally

or at a small angle. Gradually buried deeper and consolidated
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Geologic model: sedimentary rocks

Normal dip-slip fault Reverse dip-slip fault Strike-slip fault

Geological activity will later fold, stretch, and fracture the consolidated rock
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Geologic model: sedimentary rocks

Structural trap: anticline Stratigraphic traps

Gas

Oil

Per
meab

le rock
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le rock

Unconformity

Pinch out

Sandstone encased
in mudstone

Fault trap Salt dome

Fault

Impermeable
salt
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Geologic model: sedimentary rocks

Outcrops of sedimentary rocks from Svalbard, Norway. Length scale: ∼100 m
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Geologic model: sedimentary rocks

Layered geological structures typically occur on both large and small scales
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Porous media flow – a multiscale problem

The scales that impact fluid flow in subsurface rocks range from

I the micrometer scale of pores and pore channels

I via dm-m scale of well bores and laminae sediments

I to sedimentary structures that stretch across entire reservoirs

Porous rocks are heterogeneous at all length scales (no scale separation)

−→
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Porous media flow – a multiscale problem

−→
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Flow model: representative elementary volume

Porosity:

φ =
Vv

Vv + Vr

The assumption of a repre-
sentative elementary volume
(REV) is essential in macro-
scale modeling of porous
media. Here illustrated for
porosity.
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Governing equations for fluid flow

In its simplest form – two main principles
I Conservation of mass

∂

∂t

∫
V

mdx+

∮
∂V

~F · ~n ds =

∫
V

r dx

m=mass, ~F=flow rate, r=fluid sources

I Darcy’s law:

~u = −K(∇p− ρg∇z)

empirical law for describing processes on an unresolved scale.

Similar to Fourier’s law (heat) [1822], Ohm’s law (electric current) [1827], Fick’s law

(concentration) [1855], except that we now have two driving forces
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Darcy’s law and permeability

In reservoir engineering:

~u = −K

µ

(
∇p− ρg∇z

)
Intrinsic permeability K measures ability to transmit fluids

Anisotropic and diagonal by nature, full tensor due to averaging.

Reported in units Darcy: 1 d = 9.869233 · 10−13 m2

Fluid velocity:

Darcy’s law is formulated for volumetric flux, i.e., volume of fluid per total area per
time. The fluid velocity is volume per area occupied by fluid per time, i.e., ~v = ~u

φ
.

Theoretical basis (M. K. Hubbert, 1956):

Darcy’s law derived from the Navier–Stokes equations by averaging, neglecting
intertial and viscous effects
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Single-phase, incompressible flow

Model equations for single-phase flow:

∂(φρ)

∂t
+∇ ·

(
ρ~u
)

= q, ~u = −K

µ

(
∇p− ρg∇z

)

Assume constant density ρ, unit fluid viscosity µ, and neglect gravity g
−→ flow equation on mixed form

∇ · ~u = q, ~u = −K∇p

or as a Poisson equation with variable coefficients

−∇
(
K∇p

)
= q
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Single-phase, slightly compressible flow

Introduce compressibilities for rock and fluid

dφ

dp
= crφ,

dρ

dp
= cfρ

Insert into conservation equation

∂(φρ)

∂t
= ∇ ·

(
ρ

K

µ
∇p
)

[
(cr + cf )φρ

] ∂p
∂t

=
cfρ

µ
∇p ·K∇p+

ρ

µ
∇ · (K∇p)

If cf is sufficiently small, so that cf∇p ·K∇p� ∇ · (K∇p), we get

∂p

∂t
=

1

µφc
∇ ·
(
K∇p

)
, c = cr + cf
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Numerical discretization

Assumption: a grid G consisting of a collection of polyhedral cells {Ωi}

Mass conservation per grid cell:∫
Ωi

∇ · ~u dx =

∮
∂Ωi

~u · ~n ds =

∫
Ωi

q dx

∑
k

ui,k = qi

Pressure is cell-wise constant, flux is continuous
across cell interfaces

~ni,k

Γi,k

Ωi
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∑
k
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Pressure is cell-wise constant, flux is continuous
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Assume K is constant within each cell

ui,k = −
∫
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ui,k = Tik
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Mass conservation qi =
∑
k ui,k gives a linear system

Ap = q, where Aij =

{∑
j Tij , k = i,

−Tik, k 6= i.
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Grids: volumetric representation of the reservoir

The structure of the reservoir (geological surfaces, faults, etc) + well paths

The stratigraphy of the reservoir (sedimentary structures)

Petrophysical parameters (permeability, porosity, net-to-gross, . . . )
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Grids: mimicking geological processes

Deposition

Erosion

Petrophysics

Deformation

x

y

z
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Petrophysical parameters
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Research challenge: numerical robustness

Complex, unstructured grids with many obscure challenges

Grid dictated by geology, not chosen freely to
maximize accuracy of numerical discretization

Topology is generally unstructured, non-neighboring
connections

Cells deviate strongly from box shape, high aspect
ratios, many faces/neighbors, small faces, . . .

Potential inconsistencies: bilinear vs tetrahedral
surfaces

Petrophysics:

Many orders of magnitude variations

Strong discontinuities

No clear scale separation (long and short correlations)
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Research challenge: efficient solvers

Large coefficient variations, complex sparsity patterns, etc. Call for efficient
iterative solvers and preconditioning methods −→ good test problems for
multigrid methods
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Research challenge: consistent discretizations

Problem: standard finite-volume methods are
not consistent unless the grid is K orthogonal

pi

Ωi
Γi,k

pk

Ωk~ni,k~ci,k

πi,k

K

uik = −
∫
Γik

(
Kxx∂xp+Kxy∂yp+Kxz∂zp

)
ds

Here, ∂yp and ∂zp cannot be estimated from pi and pk
−→ transverse flux Kxypy and Kxzpz neglected −→
inconsistent scheme

Many methods developed to amend this

(mortar) mixed finite elements

multipoint flux approximation (MFPA)

mimetic finite difference

vertex approximate gradient (VAG)

nonlinear TPFA
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Example: comparison of consistent methods

Example: 3D Voronoi
grid adapting to
branching well.
Anisotropic and
spatially varying
permeability

Method dof nnz ratio cond

TPFA 9026 126002 13.96 9.64e+02

NTPFA 11920 280703 23.55 2.92e+07

MFD 60321 1538305 25.50 9.37e+15

VEM1 52350 3404977 65.04 4.91e+11

VEM2 227459 38770593 170.45 —
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Wells: flow in and out of the reservoir

2rw

h

20–200 m

5–40 in

Inflow and outflow take place on a subgrid scale, with large variations in
pressure over short distances.

Solution: use a linear inflow-performance relation

q = J
(
pR − pbh

)
Here, pbh is flowing pressure in wellbore and pR average pressure in cell
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Wells: analytic subscale model

−100 −80 −60 −40 −20 0 20 40 60 80 100

p
a

p
bhp

r
a−4 −2 0 2 4

Pseudo-steady, radial flow. Mass conservation in cylinder coordinates

1

r

∂(ru)

∂r
= 0 −→ u = C/r.

Integrating around a small cylinder surrounding the well,

q =

∮
~u · ~n ds = −2πhC
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Wells: analytic subscale model

−100 −80 −60 −40 −20 0 20 40 60 80 100

p
a

p
bhp

r
a−4 −2 0 2 4

Insert into Darcy’s law and integrate from wellbore radius rw to drainage radius
rd at which p = pd is constant:

u = − q

2πrh
= −K

µ

dp

dr
−→ 2πKh

∫ pd

pbh

dp

qµ
=

∫ rd

rw

dr

r

Solution

(volumetric average pressure p = pa at ra = 0.472rd)

q =
2πKh

µ ln(rd/rw)

(
pd − pbh

)

=
2πKh

µ
(
ln(rd/rw)− 0.75

)(pa − pbh)
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Wells: analytic subscale model

Producer

Injector

Quarter five-spot

p pE

pN

pW

pS
∆y

Repeated five-spot −→ symmetric solution. Discretize Poisson’s equation:

−Kh
µ

[
4p− pW − pN − pW − pS

]
= q −→ p = pE − qµ

4Kh

Analytic model valid in neighboring blocks

p = pbh +
qµ

2πKh
ln
(
∆x/rw

)
− qµ

4Kh
= pbh +

qµ

2πKh
ln
(
e−π/2∆x/rw

)
Peaceman’s formula:

q =
2πKh

µ ln
(
re/rw

)(p− pbh), re = e−
π
2
√

∆x∆y ≈ 0.20788
√

∆x∆y
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Repeated five-spot −→ symmetric solution. Discretize Poisson’s equation:

−Kh
µ

[
4p− pW − pN − pW − pS

]
= q −→ p = pE − qµ

4Kh

Analytic model valid in neighboring blocks

p = pbh +
qµ

2πKh
ln
(
∆x/rw

)
− qµ

4Kh
= pbh +

qµ

2πKh
ln
(
e−π/2∆x/rw

)
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Wells: many complications

There are several known extensions to Peaceman’s well model:

Diagonal permeability tensor K →
√
KxKy

Rectangular grid cells (more complex formula for re)

Horizontal wells, off-centered wells, multiple wells, . . .

Near-well effects (permeability increase/reduction)

Other grid types and discretization schemes

Despite obvious limiting assumptions, Peaceman’s model is used rather
uncritically in industry. Need for more accurate/robust/versatile models. . .

In general: need to describe flow within wellbore and annulus, downhole

equipment, surface facilities, control strategies (choking, reinjection) involving

complex logic, . . .
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What can you do with single-phase flow?

Run basic diagnostics of your model to establish basic timelines, volumetric
connections, measures of dynamic heterogeneity, etc

Forward time of flight Residence time

Can be computed by tracing streamline or by finite-volume methods solving steady

transport equations ~u · ∇h = f(x)
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Flow diagnostics
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Flow diagnostics
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Flow diagnostics
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Model reduction: flow-based upscaling

−∇ · (K∇p) = f, in Ω

Subdivide grid into coarse blocks.
For each block B, we seek a tensor
K∗ such that∫

B

K∇p dx = K∗
∫
B

∇p dx,

That is, we use Darcy’s law on the
coarse scale

ū = −K∗∇p

to relate the net flow rate ū through
B to the average pressure gradient
∇p inside B.

Typical approach: flow-based upscaling

Many alternatives, few are sufficiently
accurate and robust

See talks by Y. Efendiev and H. Tchelepi
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Multiphase flow

Hydrocarbon typically consists of different
chemical species like methane, ethane,
propane, etc. Common modelling practice
to group fluid components into phases, i.e.,
a mixture of components having similar
flow properties.

Most common phases:

aqueous, liquid, and vapor

Grain

Oil

Water

28 / 52



Fundamental physics: wettability

Immiscible phases separated by a infinitely thin surface having associated
surface tension

θ

Water wet

σos σws σos

σow
Oil

Water

Solid

θ

Oil wet

Contact angle θ: determined by balance of adhesive and cohesive forces

Young’s equation (energy balance): σow cos θ = σos − σws

Water generally shows greater affinity than oil to stick to the rock surface −→
reservoirs are predominantly water-wet systems
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Fundamental physics: capillary pressure

Different equilibrium pressure in two phases separated by curved interface:

pc = pn − pw =
2πr σ cos θ

πr2︸ ︷︷ ︸
upward force

=
2σ cos θ

r
=
πr2 gh(ρl − ρa)

πr2︸ ︷︷ ︸
downward force

= ∆ρgh

r

h

θ

θ
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Fundamental physics: drainage (primary migration)

Saturation: fraction of pore volume filled by a given fluid phase

Drainage: non-wetting fluid displacing wetting fluid, controlled by widest
non-invaded pore throat

pcnw

Sw

pe
Swr

primary drainage
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Fundamental physics: imbibition (hydrocarbon recovery)

Imbibition: wetting fluid displaces non-wetting fluid, controlled by the size of
the narrowest non-invaded pore.

Will not follow the same capillary curve −→ hysteresis (cause: trapped oil
droplets, different wetting angle for advancing and receding interfaces)

pcnw

Sw

pe
Swr

primary drainage
primary imbibition

Snr

EOR: inject substances to alter wetting properties to mobilize immobile oil, Sor → 1
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Extensions of model equations to multiphase flow

Three-phase Darcy velocities (Muskat, 1936):

~uα = −Kα(Sα)

µα

(
∇pα − ραg∇z

)
Assuming each phase consists of only one component, the
mass-balance equations for each phase read (Muskat, 1945):

∂(φραSα)

∂t
+∇ ·

(
ρα~uα

)
= qα

Macro-scale capillarity concept (Leverett, 1941):

pc(Sw) = J

√
φ

K
σ cos θ
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Relative permeability

Effective permeability experienced by one
phase is reduced by the presence of other
phases. Relative permeabilities

krα = krα(Sα1 , . . . , Sαm),

are nonlinear functions that attempt to
account for this effect. Notice that∑

α

krα < 1

This gives Darcy’s law on the form

~uα = −Kkrα
µα

(
∇pα − ραg∇z

)
= −Kλα

(
∇pα − ραg∇z

)
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General flow equations for two-phase flow

Gathering the equations, we have

∂(φραSα)

∂t
+∇ ·

(
ρα~uα

)
= qα, α = {w, n}

~uα = −Kkrα
µα

(
∇pα − ραg∇z

)
pc = pn − pw, Sw + Sn = 1

Commercial reservoir simulators: insert functional relationships pc = Pc(Sw)
and ρα and φ as function of pα, and discretize with backward Euler in time and
the two-point scheme in space

In academia: common practice to rewrite the equations to better reveal their
mathematical nature
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Fractional flow formulation

Choose Sw and pn as primary unknowns, consider incompressible flow (i.e., ρ is
constant and can be divided out)

φ
∂Sα
∂t

+∇ · ~uα = qα.
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∂t

+∇ · ~uα = qα.

Sum mass-conservation equations:

φ
∂
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=λ

)∇pn + λw∇pc + (λnρn + λwρw)g∇z

Inserted into ∇ · ~u = q gives pressure equation

−∇ · (λK∇pn) = q︸ ︷︷ ︸
Poisson

−∇
[
λw∇pc + (λnρn + λwρw)g∇z

]︸ ︷︷ ︸
only function of Sw
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Fractional flow formulation

Multiply phase velocity by mobility of other phase and subtract

λn~uw − λw~un = λwλnK
[
∇pc + (ρw − ρn)g∇z]

Solve for ~uw and insert into conservation equation

φ
∂Sw
∂t

+∇ ·
[
fw
(
~u+ λn∆ρg∇z

)]
= qw −∇ ·

(
fwλnP

′
c∇Sw

)
Setting Pc ≡ 0 and g ≡ 0 for simplicity

−∇
(
Kλ(S)∇p) = q, ~u = −Kλ(S)∇p,

φ∂tS +∇ · (~uf(S)) = 0

System of one elliptic pressure equation and one hyperbolic saturation

equation. Typically: solved sequentially with specialized methods
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Buckley–Leverett solution for 1D displacement

M = 1

M = 5

M = .2

St + f(S)x = q, f(S) =
S2

S2 +M(1− S)2
, M = µw/µn

Here, M = .2 gives poor local displacement efficiency, M = 5 gives very good
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Simulation examples: quarter-five spot
t=0.20 PVI t=0.40 PVI t=0.60 PVI t=0.80 PVI Sw
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Simulation examples: quarter-five spot
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Simulation examples: quarter-five spot
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Multicomponent flows

System with N phases and M components

Notation: c`α mass fraction of component ` in phase α

Equations: conservation for phases or components?

Choose components to avoid source terms for mass transfer

∂

∂t

(
φ
∑
α

c`αραSα

)
+∇ ·

(∑
α

c`αρα~uα + ~J`α

)
=
∑
α

c`αραqα,

Here, J is diffusion, e.g., Fickian

~J`α = −ραSαD`
α∇c`α,

More in talk by K. Jessen
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Black-oil equations

Hydrocarbon components lumped together
to a light ’gas’ and a heavier ’oil’
pseudocomponent at surface conditions

W O G

A X

L X X

V X X

Simple PVT: formation-volume factors,
Bα = Vα/V

s
α = ρsα/ρα or bα = 1/Bα

reservoir

surface

Conservation equations:

∂t
(
φboSo

)
+∇ ·

(
bo~uo

)
= boqo

∂t
(
φbwSw

)
+∇ ·

(
bw~uw

)
= bwqw

∂t
[
φ
(
bgSg + borsoSo

)]
+∇ ·

(
bg~ug + borso~uo

)
= bgqg + borsoqo

Dissolved gas in oil: rso = V sg /V
s
o . Similarly: oil vaporized in gas rsg
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Example: fluid model from SPE9

Relative permeability for oil
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Example: fluid model from SPE9

Formation-volume factors (inverse densities):
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Example: fluid model from SPE9

Viscosities:
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Black-oil: discretization and linearization

Discretization: backward Euler in time, two-point flux-approximation
with upstream mobility in space.

Newton’s method for nonlinear equation:
∂E

∂xi
δxi = E(xi)

∂
∂po

∂
∂sw

∂
∂sg

∂
∂sg

∂
∂qsw

∂
∂qso

∂
∂qsg

∂
∂pbh

Eo

Ew

Eg

Eg

Eqsw

Eqso

Eqsg

Ectrl
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Black-oil: solution strategies

Solution procedure

1. Eliminate well variables qso, qsw, qsg,
and pbh

2. Set first block-row equal to sum of
block-rows, leave out rows that may
harm diagonal dominance in block
(1,1)

3. Set up two-stage preconditioner:

– M−1
1 : solves pressure subsystem

– M−1
2 : ILU0 decomposition of the

full system

4. Solve full system with GMRES using
preconditioner M−1

2 M−1
1

5. Recover remaining variables

For larger models, pressure subsystem
should be solved with algebraic
multigrid

Time-step control

chop if too large changes in
variables

chop if convergence failure

more advanced logic to maintain
targeted iteration count

Elaborate logic for well control and
surface facilities
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Example: SPE 9 benchmark

Grid with 9000 cells

1 water injector, rate controlled, switches to bhp

25 producers, oil-rate controlled, most switch to bhp

Appearance of free gas due to pressure drop

Production rates lowered to 1/15 between days 300
and 360
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Example: the Voador field

South wing of the reservoir (Petrobras)

Gradients obtained through adjoint simulations

Validate: open-source / commercial simulator:

– 20 years of historic data
– virtually identical results
– main challenge: needed to reverse-engineer

description of wells. . .
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Multisegment wells

More accurate modelling:

– Network models

– Represent annulus

– Flow inside wellbore

– (Autonomous) inflow control devices

– Artificial lift, etc

In nodes:

– pressure p

– mass fractions xmw ,
xmo , xmg

In segments:

– mass rates vm
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Multisegment wells

More accurate modelling:

– Network models

– Represent annulus

– Flow inside wellbore

– (Autonomous) inflow control devices

– Artificial lift, etc

In nodes:

– pressure p

– mass fractions xmw ,
xmo , xmg

In segments:

– mass rates vm

Discrete mass conservation in nodes:

V

∆t

(
xcρ− x0

cρ
)

︸ ︷︷ ︸
accumulation

+ div
(
vmc
)︸ ︷︷ ︸

in- and outflux to
neighboring nodes

− qmc︸︷︷︸
source term (well
control, connections)

= 0

Discrete pressure drop equations in segments:

grad(p) − g avg(ρ) grad(z)︸ ︷︷ ︸
gravity term

− h
(
vm, uw(ρ), uw(µ)

)︸ ︷︷ ︸
heuristic pressure
drop term

= 0
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Example: effect of modeling annulus
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Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

~uw = − krw(S)

µw,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)

~up = − krw(S)

µp,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)
Conservation of polymer component:

∂t
[
φ(1− Sipv)cbwS + ρr C

a(1− φ)
]

+∇ ·
(
cbw~up

)
= qp

50 / 52



Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

~uw = − krw(S)

µw,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)

~up = − krw(S)

µp,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)
Conservation of polymer component:

∂t
[
φ(1− Sipv)cbwS + ρr C

a(1− φ)
]

+∇ ·
(
cbw~up

)
= qp

viscosity enhancement

Todd–Longstaff mixing:

1
µw,eff

=
1−c/cm

µm(c)ωµ
1−ω
w

+
c/cm

µm(c)ωµ
1−ω
p

50 / 52



Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

~uw = − krw(S)

µw,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)

~up = − krw(S)

µp,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)
Conservation of polymer component:

∂t
[
φ(1− Sipv)cbwS + ρr C

a(1− φ)
]

+∇ ·
(
cbw~up

)
= qp

viscosity enhancement permeability reduction

Todd–Longstaff mixing:

1
µw,eff

=
1−c/cm

µm(c)ωµ
1−ω
w

+
c/cm

µm(c)ωµ
1−ω
p

50 / 52



Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

~uw = − krw(S)

µw,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)

~up = − krw(S)

µp,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)
Conservation of polymer component:

∂t
[
φ(1− Sipv)cbwS + ρr C

a(1− φ)
]

+∇ ·
(
cbw~up

)
= qp

viscosity enhancement permeability reduction
inaccessible pore space

Todd–Longstaff mixing:

1
µw,eff

=
1−c/cm

µm(c)ωµ
1−ω
w

+
c/cm

µm(c)ωµ
1−ω
p

50 / 52



Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

~uw = − krw(S)

µw,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)

~up = − krw(S)

µp,eff(c)Rk(c)
K
(
∇pw − ρwg∇z

)
Conservation of polymer component:

∂t
[
φ(1− Sipv)cbwS + ρr C

a(1− φ)
]

+∇ ·
(
cbw~up

)
= qp

viscosity enhancement permeability reduction
inaccessible pore space adsorption

Todd–Longstaff mixing:

1
µw,eff

=
1−c/cm

µm(c)ωµ
1−ω
w

+
c/cm

µm(c)ωµ
1−ω
p

50 / 52



Summary

Geological models: complex unstructured grids
having many obscure challenges

Flow models: system of highly nonlinear parabolic
PDEs with elliptic and hyperbolic sub-character

Well models: subscale models, complex logic,
strong impact on flow

Validation and availability in software

Challenges:

Main point of grid: describe stratigraphy and structural
architecture, i.e., not chosen freely to maximize accu-
racy of numerical discretization

Industry standard: corner-point / stratigraphic grids

Grid topology is generally unstructured, with non-
neighboring connections

Geometry: deviates (strongly) from box shape, high
aspect ratios, many faces/neighbors, small faces, . . .

Potential inconsistencies since faces are bilinear or
tetrahedral surfaces
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Geological models: complex unstructured grids
having many obscure challenges

Flow models: system of highly nonlinear parabolic
PDEs with elliptic and hyperbolic sub-character

Well models: subscale models, complex logic,
strong impact on flow

Validation and availability in software

Challenges:

Delicate balances: viscous forces, gravity, capillary, . . .

Strong coupling between ’elliptic’ and ’hyperbolic’ vari-
ables (small scale: capillary, large scale: gravity)

Large variation in time constants and coupling

Orders-of-magnitude variations in permeability

Parameters with discontinuous derivatives

Path-dependence: hysteretic parameters

Sensitive to subtle changes in interpolation of tabulated
physical data

Monotonicity and mass conservation
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Geological models: complex unstructured grids
having many obscure challenges

Flow models: system of highly nonlinear parabolic
PDEs with elliptic and hyperbolic sub-character

Well models: subscale models, complex logic,
strong impact on flow

Validation and availability in software

Challenges:

Near singular radial flow in near-well zone (much larger
flow than inside reservoir)

Induce nonlocal connections

Completely different multiphase flow inside wellbore

Coupling to surface facilities

Abrupt changes in driving forces

Control strategies with intricate logic which is highly
sensitive to state values

.

.

.
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Geological models: complex unstructured grids
having many obscure challenges

Flow models: system of highly nonlinear parabolic
PDEs with elliptic and hyperbolic sub-character

Well models: subscale models, complex logic,
strong impact on flow

Validation and availability in software

Challenges:

New methods tend to be immature and too simplified

Researchers: incompressible flow and explicit methods.
Industry: implicit methods for compressible flow

Industry relies on a few software providers and has
strong faith in software with (undocumented) safe-
guards and algorithmic choices

Oil companies seldom give away data

Realistic models involve a large number of intricate de-
tails (Eclipse has 2–3000 keywords. . . )
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http://www.sintef.no/MRST
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http://www.sintef.no/MRST

Originally:

developed to support research on multiscale methods and mimetic discretizations

first public release as open source, April 2009

Today:

general toolbox for rapid prototyping and verification of new computational methods

wide range of applications

two releases per year

each release has from 900 (R2013a) to 2100 (R2015a) unique downloads

Users:

academic institutions, oil and service companies

large user base in USA, Norway, China, Brazil, United Kingdom, Iran, Germany,
Netherlands, France, Canada, . . .

Publications:

used in 24 PhD theses and 59 master theses

used in more than 100 scientific papers by people outside of SINTEF
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