Introduction to Reservoir Simulation as Practiced in Industry

Knut–Andreas Lie

SINTEF Digital, Mathematics and Cybernetics / Department of Mathematical Sciences, NTNU, Norway

Computational Issues in Oil Field Applications Tutorials March 21–24, 2017, IPAM, UCLA
Petroleum reservoirs

Naturally occurring flammable liquid/gases found in geological formations

- Originating from organic sediments that have been compressed and 'cooked' to form hydrocarbons that migrated upward in sedimentary rocks until limited by a trapping structure
- Found in shallow reservoirs on land and deep under the seabed
- Only 30% of the reserves are 'conventional'; remaining 70% include shale oil and gas, heavy oil, extra heavy oil, and oil sands.

Uses of (refined) petroleum:

- Fuel (gas, liquid, solid)
- Alkenes manufactured into plastics and compounds
- Lubricants, wax, paraffin wax
- Pesticides and fertilizers for agriculture

Johan Sverdrup, new Norwegian 'elephant' discovery, 2011. Expected to be producing for the next 30+ years
Primary production – puncturing the 'balloon'

When the first well is drilled and opened for production, trapped hydrocarbon starts flowing toward the well because of over-pressure
Secondary production – maintaining reservoir flow

As pressure drops, less hydrocarbon is flowing. To maintain pressure and push more profitable hydrocarbons out, one starts injecting water or gas into the reservoir, possibly in an alternating fashion from the same well.
Enhanced oil recovery

Even more crude oil can be extracted by gas injection (CO$_2$, natural gas, or nitrogen), chemical injection (foam, polymer, surfactants), microbial injection, or thermal recovery (cyclic steam, steam flooding, in-situ combustion), etc.
Why reservoir simulation?

To estimate reserves and support economic and operational decisions.

To this end, reservoir engineers need to:

- understand reservoir and fluid behavior
- quantify uncertainty
- test hypotheses and compare scenarios
- assimilate data
- optimize recovery processes
Reservoir models

Somewhat simplified, consist of three parts:
Reservoir models

Somewhat simplified, consist of three parts:

1. a **geological model** – volumetric grid with cell/face properties describing the porous rock formation

\[\begin{align*}
\partial_t (\phi b w S_w) + \nabla \cdot (b w \vec{u}_w) &= b w q_w \\
\partial_t \left[\phi (b w S_o + b g r v S_g) \right] + \nabla \cdot (b o \vec{u}_o + b g r v \vec{u}_g) &= b o q_o + b g r v q_g
\end{align*}\]
Reservoir models

Somewhat simplified, consist of three parts:

1. **a geological model** – volumetric grid with cell/face properties describing the porous rock formation

2. **a flow model** – describes how fluids flow in a porous medium (conservation laws + appropriate closure relations)

\[
\begin{align*}
\partial_t (\phi b_w S_w) + \nabla \cdot (b_w \vec{u}_w) &= b_w q_w \\
\partial_t [\phi (b_w S_o + b_g r_o S_g)] + \nabla \cdot (b_o \vec{u}_o + b_g r_o \vec{u}_g) &= b_o q_o + b_g r_o q_g \\
\partial_t [\phi (b_g S_g + b_o r_s S_o)] + \nabla \cdot (b_g \vec{u}_g + b_o r_s \vec{u}_o) &= b_g q_g + b_o r_s q_o
\end{align*}
\]
Reservoir models

Somewhat simplified, consist of three parts:

1. **a geological model** – volumetric grid with cell/face properties describing the porous rock formation

2. **a flow model** – describes how fluids flow in a porous medium (conservation laws + appropriate closure relations)

3. **a well model** – describes flow in and out of the reservoir, in the wellbore, flow control devices, surface facilities
Mineral particles broken off by weathering and erosion

Transported by wind or water to a place where they settle and accumulate into a sediment, building up in lakes, rivers, sand deltas, lagoons, choral reefs, etc
Layered structure with different mixtures of rock types with varying grain size, mineral type, and clay content

Thin beds that stretch hundreds or thousands of meters, typically horizontally or at a small angle. Gradually buried deeper and consolidated
Geologic model: sedimentary rocks

Geological activity will later fold, stretch, and fracture the consolidated rock
Geologic model: sedimentary rocks

- **Structural trap: anticline**
 - Gas
 - Oil
 - Impermeable rock
 - Permeable rock with brine

- **Stratigraphic traps**
 - Sandstone encased in mudstone
 - Unconformity
 - Pinch out

- **Fault trap**
 - Fault

- **Salt dome**
 - Impermeable salt
Geologic model: sedimentary rocks

Outcrops of sedimentary rocks from Svalbard, Norway. Length scale: ~ 100 m
Layered geological structures typically occur on both large and small scales.
Porous media flow – a multiscale problem

The scales that impact fluid flow in subsurface rocks range from

- the micrometer scale of pores and pore channels
- via dm-m scale of well bores and laminae sediments
- to sedimentary structures that stretch across entire reservoirs

Porous rocks are heterogeneous at all length scales (no scale separation)
Porous media flow – a multiscale problem
Flow model: representative elementary volume

The assumption of a representative elementary volume (REV) is essential in macro-scale modeling of porous media. Here illustrated for porosity.

Porosity:

\[\phi = \frac{V_v}{V_v + V_r} \]
Governing equations for fluid flow

In its simplest form – two main principles

▶ Conservation of mass

\[
\frac{\partial}{\partial t} \int_V m \, dx + \oint_{\partial V} \mathbf{F} \cdot \mathbf{n} \, ds = \int_V r \, dx
\]

\(m = \) mass, \(\mathbf{F} = \) flow rate, \(r = \) fluid sources

▶ Darcy’s law:

\[
\mathbf{u} = -K(\nabla p - \rho g \nabla z)
\]

empirical law for describing processes on an unresolved scale. Similar to Fourier’s law (heat), Ohm’s law (electric current), Fick’s law (concentration), except that we now have two driving forces.
In its simplest form – two main principles

▶ Conservation of mass

\[\frac{\partial}{\partial t} \int_V m \, dx + \oint_{\partial V} \vec{F} \cdot \vec{n} \, ds = \int_V r \, dx \]

\(m = \) mass, \(\vec{F} = \) flow rate, \(r = \) fluid sources

▶ Darcy’s law:

\[\vec{u} = -K(\nabla p - \rho g \nabla z) \]

time.
Darcy’s law and permeability

In reservoir engineering:

\[\vec{u} = -\frac{K}{\mu} (\nabla p - \rho g \nabla z) \]

Intrinsic permeability K measures ability to transmit fluids
Anisotropic and diagonal by nature, full tensor due to averaging. Reported in units Darcy: $1 \text{ d} = 9.869233 \cdot 10^{-13} \text{ m}^2$

Fluid velocity:

Darcy’s law is formulated for volumetric flux, i.e., volume of fluid per total area per time. The fluid velocity is volume per area occupied by fluid per time, i.e., $\vec{v} = \frac{\vec{u}}{\phi}$.

Theoretical basis (M. K. Hubbert, 1956):

Darcy’s law derived from the Navier–Stokes equations by averaging, neglecting inertial and viscous effects
Model equations for single-phase flow:

\[\frac{\partial (\phi \rho)}{\partial t} + \nabla \cdot (\rho \vec{u}) = q, \quad \vec{u} = -\frac{K}{\mu} (\nabla p - \rho g \nabla z) \]
Single-phase, incompressible flow

Model equations for single-phase flow:

\[\frac{\partial (\phi \rho)}{\partial t} + \nabla \cdot (\rho \vec{u}) = q, \quad \vec{u} = -\frac{K}{\mu} (\nabla p - \rho g \nabla z) \]

Assume constant density \(\rho \), unit fluid viscosity \(\mu \), and neglect gravity \(g \) → flow equation on mixed form

\[\nabla \cdot \vec{u} = q, \quad \vec{u} = -K \nabla p \]

or as a Poisson equation with variable coefficients

\[-\nabla (K \nabla p) = q \]
Introduce compressibilities for rock and fluid

\[
\frac{d\phi}{dp} = c_r \phi, \quad \frac{d\rho}{dp} = c_f \rho
\]
Introduce compressibilities for rock and fluid

\[
\frac{d\phi}{dp} = c_r \phi, \quad \frac{d\rho}{dp} = c_f \rho
\]

Insert into conservation equation

\[
\frac{\partial (\phi \rho)}{\partial t} = \nabla \cdot \left(\rho \frac{K}{\mu} \nabla p \right)
\]

\[
[(c_r + c_f) \phi \rho] \frac{\partial p}{\partial t} = \frac{c_f \rho}{\mu} \nabla p \cdot K \nabla p + \frac{\rho}{\mu} \nabla \cdot (K \nabla p)
\]
Introduce compressibilities for rock and fluid

\[
\frac{d\phi}{dp} = c_r \phi, \quad \frac{d\rho}{dp} = c_f \rho
\]

Insert into conservation equation

\[
\frac{\partial(\phi \rho)}{\partial t} = \nabla \cdot \left(\rho \frac{K}{\mu} \nabla p \right)
\]

\[
[(c_r + c_f)\phi\rho] \frac{\partial p}{\partial t} = \frac{c_f \rho}{\mu} \nabla p \cdot K \nabla p + \frac{\rho}{\mu} \nabla \cdot (K \nabla p)
\]

If \(c_f \) is sufficiently small, so that \(c_f \nabla p \cdot K \nabla p \ll \nabla \cdot (K \nabla p) \), we get

\[
\frac{\partial p}{\partial t} = \frac{1}{\mu \phi c} \nabla \cdot (K \nabla p), \quad c = c_r + c_f
\]
Assumption: a grid \(\mathcal{G} \) consisting of a collection of polyhedral cells \(\{ \Omega_i \} \)

![Diagram](image.png)
Assumption: a grid \mathcal{G} consisting of a collection of polyhedral cells $\{\Omega_i\}$

Mass conservation per grid cell:

$$\int_{\Omega_i} \nabla \cdot \vec{u} \, dx = \oint_{\partial \Omega_i} \vec{u} \cdot \vec{n} \, ds = \int_{\Omega_i} q \, dx$$

$$\sum_k u_{i,k} = q_i$$

Pressure is cell-wise constant, flux is continuous across cell interfaces
Numerical discretization

Mass conservation per grid cell:
\[
\int_{\Omega_i} \nabla \cdot \vec{u} \, dx = \int_{\partial \Omega_i} \vec{u} \cdot \vec{n} \, ds = \int_{\Omega_i} q \, dx
\]
\[
\sum_k u_{i,k} = q_i
\]

Pressure is cell-wise constant, flux is continuous across cell interfaces

Assume \(K \) is constant within each cell
\[
u_{i,k} = -\int_{\Gamma_{i,k}} K \nabla p \cdot \vec{n}_{i,k} \, ds
\approx A_k K \left(p_i - \pi_{i,k} \right) \frac{\vec{c}_{i,k}}{|\vec{c}_{i,k}|^2} \cdot \vec{n}_{i,k}
= T_{i,k} \left(p_i - \pi_{i,k} \right)
\]
Assume K is constant within each cell

$$u_{i,k} = - \int_{\Gamma_{ik}} K \nabla p \cdot \vec{n}_{ik} \, ds$$

$$\approx A_k K \frac{(p_i - \pi_{i,k}) \vec{c}_{i,k}}{|\vec{c}_{i,k}|^2} \cdot \vec{n}_{ik}$$

$$= T_{i,k} (p_i - \pi_{i,k})$$

Next, we use continuity of flux and pressure to eliminate the interface pressures

$$u_{i,k} = T_{ik} (p_i - p_k)$$
Assume K is constant within each cell

\[u_{i,k} = - \int_{\Gamma_{ik}} K \nabla p \cdot \vec{n}_{ik} \, ds \]
\[\approx A_k K \frac{(p_i - \pi_{i,k}) \vec{c}_{ik}}{|\vec{c}_{ik}|^2} \cdot \vec{n}_{ik} \]
\[= T_{i,k} (p_i - \pi_{i,k}) \]

Next, we use continuity of flux and pressure to eliminate the interface pressures

\[u_{i,k} = T_{ik} (p_i - p_k) \]

Mass conservation $q_i = \sum_k u_{i,k}$ gives a linear system

\[A \mathbf{p} = \mathbf{q}, \quad \text{where } A_{ij} = \begin{cases} \sum_j T_{ij}, & k = i, \\ -T_{ik}, & k \neq i. \end{cases} \]
Grids: volumetric representation of the reservoir

The structure of the reservoir (geological surfaces, faults, etc) + well paths

The stratigraphy of the reservoir (sedimentary structures)

Petrophysical parameters (permeability, porosity, net-to-gross, . . .)
Grids: mimicking geological processes

Deposition

Erosion

Petrophysics

Deformation
Grids: mimicking geological processes

Deposition

Erosion

Petrophysics

Deformation
Grids: mimicking geological processes

- Deposition
- Erosion
- Petrophysics
- Deformation
Grids: mimicking geological processes

- Deposition
- Erosion
- Petrophysics
- Deformation
Petrophysical parameters
Research challenge: numerical robustness

Complex, unstructured grids with many obscure challenges

- Grid dictated by geology, not chosen freely to maximize accuracy of numerical discretization
- Topology is generally unstructured, non-neighboring connections
- Cells deviate strongly from box shape, high aspect ratios, many faces/neighbors, small faces, . . .
- Potential inconsistencies: bilinear vs tetrahedral surfaces

Petrophysics:

- Many orders of magnitude variations
- Strong discontinuities
- No clear scale separation (long and short correlations)
Research challenge: efficient solvers

Large coefficient variations, complex sparsity patterns, etc. Call for efficient iterative solvers and preconditioning methods \rightarrow good test problems for multigrid methods
Research challenge: consistent discretizations

Problem: standard finite-volume methods are not consistent unless the grid is K orthogonal
Research challenge: consistent discretizations

Problem: standard finite-volume methods are not consistent unless the grid is K orthogonal

\[u_{ik} = - \int_{\Gamma_{i,k}} \left(K_{xx} \partial_x p + K_{xy} \partial_y p + K_{xz} \partial_z p \right) ds \]

Here, $\partial_y p$ and $\partial_z p$ cannot be estimated from p_i and p_k → transverse flux $K_{xy}p_y$ and $K_{xz}p_z$ neglected → inconsistent scheme
Research challenge: consistent discretizations

Problem: standard finite-volume methods are not consistent unless the grid is \mathbf{K} orthogonal

$$ u_{ik} = - \int_{\Gamma_{ik}} (K_{xx} \partial_x p + K_{xy} \partial_y p + K_{xz} \partial_z p) \, ds $$

Here, $\partial_y p$ and $\partial_z p$ cannot be estimated from p_i and p_k.

\rightarrow transverse flux $K_{xy} p_y$ and $K_{xz} p_z$ neglected \rightarrow inconsistent scheme

Many methods developed to amend this

- (mortar) mixed finite elements
- multipoint flux approximation (MFPA)
- mimetic finite difference
- vertex approximate gradient (VAG)
- nonlinear TPFA
Research challenge: consistent discretizations

Problem: standard finite-volume methods are not consistent unless the grid is K orthogonal

\[u_{ik} = - \int_{\Gamma_{ik}} \left(K_{xx} \partial_x p + K_{xy} \partial_y p + K_{xz} \partial_z p \right) ds \]

Here, $\partial_y p$ and $\partial_z p$ cannot be estimated from p_i and p_k → transverse flux $K_{xy} p_y$ and $K_{xz} p_z$ neglected → inconsistent scheme

Many methods developed to amend this
- (mortar) mixed finite elements
- multipoint flux approximation (MFPA)
- mimetic finite difference
- vertex approximate gradient (VAG)
- nonlinear TPFA
Example: comparison of consistent methods

Example: 3D Voronoi grid adapting to branching well. Anisotropic and spatially varying permeability

<table>
<thead>
<tr>
<th>Method</th>
<th>dof</th>
<th>nnz</th>
<th>ratio</th>
<th>cond</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPFA</td>
<td>9026</td>
<td>126002</td>
<td>13.96</td>
<td>9.64e+02</td>
</tr>
<tr>
<td>NTPFA</td>
<td>11920</td>
<td>280703</td>
<td>23.55</td>
<td>2.92e+07</td>
</tr>
<tr>
<td>MFD</td>
<td>60321</td>
<td>1538305</td>
<td>25.50</td>
<td>9.37e+15</td>
</tr>
<tr>
<td>VEM1</td>
<td>52350</td>
<td>3404977</td>
<td>65.04</td>
<td>4.91e+11</td>
</tr>
<tr>
<td>VEM2</td>
<td>227459</td>
<td>38770593</td>
<td>170.45</td>
<td>—</td>
</tr>
</tbody>
</table>
Inflow and outflow take place on a subgrid scale, with large variations in pressure over short distances.
Wells: flow in and out of the reservoir

Inflow and outflow take place on a subgrid scale, with large variations in pressure over short distances.

Solution: use a linear inflow-performance relation

\[q = J(p_R - p_{bh}) \]

Here, \(p_{bh} \) is flowing pressure in wellbore and \(p_R \) average pressure in cell
Pseudo-steady, radial flow. Mass conservation in cylinder coordinates

\[
\frac{1}{r} \frac{\partial (ru)}{\partial r} = 0 \quad \rightarrow \quad u = \frac{C}{r}.
\]
Pseudo-steady, radial flow. Mass conservation in cylinder coordinates

\[
\frac{1}{r} \frac{\partial (ru)}{\partial r} = 0 \quad \rightarrow \quad u = \frac{C}{r}.
\]

Integrating around a small cylinder surrounding the well,

\[
q = \oint \vec{u} \cdot \vec{n} \, ds = -2\pi hC
\]
Insert into Darcy’s law and integrate from wellbore radius r_w to drainage radius r_d at which $p = p_d$ is constant:

$$u = -\frac{q}{2\pi rh} = -\frac{K}{\mu} \frac{dp}{dr} \quad \rightarrow \quad 2\pi Kh \int_{p_{bh}}^{p_d} \frac{dp}{q\mu} = \int_{r_w}^{r_d} \frac{dr}{r}$$
Insert into Darcy’s law and integrate from wellbore radius \(r_w \) to drainage radius \(r_d \) at which \(p = p_d \) is constant:

\[
 u = -\frac{q}{2\pi r h} = -\frac{K}{\mu} \frac{dp}{dr} \quad \rightarrow \quad 2\pi K h \int_{p_{bh}}^{p_d} \frac{dp}{q\mu} = \int_{r_w}^{r_d} \frac{dr}{r}
\]

Solution

\[
 q = \frac{2\pi K h}{\mu \ln(r_d/r_w)} (p_d - p_{bh})
\]
Insert into Darcy’s law and integrate from wellbore radius \(r_w \) to drainage radius \(r_d \) at which \(p = p_d \) is constant:

\[
 u = -\frac{q}{2\pi rh} = -\frac{K}{\mu} \frac{dp}{dr} \quad \rightarrow \quad 2\pi Kh \int_{p_{bh}}^{p_d} \frac{dp}{q\mu} = \int_{r_w}^{r_d} \frac{dr}{r}
\]

Solution (volumetric average pressure \(p = p_a \) at \(r_a = 0.472r_d \))

\[
 q = \frac{2\pi Kh}{\mu \ln(r_d/r_w)} (p_d - p_{bh}) = \frac{2\pi Kh}{\mu \left(\ln(r_d/r_w) - 0.75\right)} (p_a - p_{bh})
\]
Repeated five-spot \rightarrow symmetric solution. Discretize Poisson’s equation:

$$-\frac{Kh}{\mu} \left[4p - p^W - p^N - p^W - p^S \right] = q \quad \rightarrow \quad p = p^E - \frac{q\mu}{4Kh}$$
Repeated five-spot \rightarrow symmetric solution. Discretize Poisson's equation:

$$-\frac{K h}{\mu} \left[4p - p^W - p^N - p^W - p^S \right] = q \quad \rightarrow \quad p = p^E - \frac{q \mu}{4K h}$$

Analytic model valid in neighboring blocks

$$p = p_{bh} + \frac{q \mu}{2\pi Kh} \ln\left(\frac{\Delta x}{r_w}\right) - \frac{q \mu}{4K h}$$
Repeated five-spot \rightarrow symmetric solution. Discretize Poisson’s equation:

$$-rac{K}{\mu} \left[4p - p^W - p^N - p^W - p^S \right] = q \quad \rightarrow \quad p = p^E - \frac{q \mu}{4K\mu}$$

Analytic model valid in neighboring blocks

$$p = p_{bh} + \frac{q \mu}{2\pi K\mu} \ln(\Delta x/r_w) - \frac{q \mu}{4K\mu} = p_{bh} + \frac{q \mu}{2\pi K\mu} \ln(e^{-\pi/2} \Delta x/r_w)$$
Repeated five-spot \rightarrow symmetric solution. Discretize Poisson’s equation:

$$- \frac{K h}{\mu} [4p - p^W - p^N - p^W - p^S] = q \quad \rightarrow \quad p = p^E - \frac{q \mu}{4K h}$$

Analytic model valid in neighboring blocks

$$p = p_{bh} + \frac{q \mu}{2\pi K h} \ln(\Delta x/r_w) - \frac{q \mu}{4K h} = p_{bh} + \frac{q \mu}{2\pi K h} \ln(e^{-\pi/2} \Delta x/r_w)$$

Peaceman’s formula:

$$q = \frac{2\pi K h}{\mu \ln(r_e/r_w)} (p - p_{bh}) , \quad r_e = e^{\frac{-\pi}{2}} \sqrt{\Delta x \Delta y} \approx 0.20788 \sqrt{\Delta x \Delta y}$$
There are several known extensions to Peaceman’s well model:

- Diagonal permeability tensor $K \rightarrow \sqrt{K_x K_y}$
- Rectangular grid cells (more complex formula for r_e)
- Horizontal wells, off-centered wells, multiple wells, . . .
- Near-well effects (permeability increase/reduction)
- Other grid types and discretization schemes

Despite obvious limiting assumptions, Peaceman’s model is used rather uncritically in industry. Need for more accurate/robust/versatile models. . .

In general: need to describe flow within wellbore and annulus, downhole equipment, surface facilities, control strategies (choking, reinjection) involving complex logic, . . .
What can you do with single-phase flow?

Run basic diagnostics of your model to establish basic timelines, volumetric connections, measures of dynamic heterogeneity, etc.

Forward time of flight

Residence time

Can be computed by tracing streamline or by finite-volume methods solving steady transport equations $\vec{u} \cdot \nabla h = f(x)$
What can you do with single-phase flow?

Run basic diagnostics of your model to establish basic timelines, volumetric connections, measures of dynamic heterogeneity, etc.

Can be computed by tracing streamline or by finite-volume methods solving steady transport equations $\vec{u} \cdot \nabla h = f(x)$
Flow diagnostics
Flow diagnostics

Well: I6

Well allocation factors

Allocation by connection

Well: I4

Well allocation factors

Allocation by connection

Accumulated flux [m3/day]
Flow diagnostics

$q_i \quad V_i \quad F \quad \Phi$

normalize
Flow diagnostics

F-Φ diagram

Fractional recovery

Sweep efficiency
Model reduction: flow-based upscaling

\[-\nabla \cdot (K \nabla p) = f, \quad \text{in } \Omega\]

Subdivide grid into coarse blocks. For each block \(B\), we seek a tensor \(K^*\) such that

\[\int_B K \nabla p \, dx = K^* \int_B \nabla p \, dx,\]

That is, we use Darcy’s law on the coarse scale

\[\bar{u} = -K^* \nabla \bar{p}\]

to relate the net flow rate \(\bar{u}\) through \(B\) to the average pressure gradient \(\nabla \bar{p}\) inside \(B\).

Many alternatives, few are sufficiently accurate and robust

See talks by Y. Efendiev and H. Tchelepi
Hydrocarbon typically consists of different chemical species like methane, ethane, propane, etc. Common modelling practice to group fluid components into *phases*, i.e., a mixture of components having similar flow properties.

Most common phases:

- aqueous
- liquid
- vapor
Fundamental physics: wettability

Immiscible phases separated by a infinitely thin surface having associated surface tension

Contact angle θ: determined by balance of adhesive and cohesive forces

Young’s equation (energy balance): $\sigma_{ow} \cos \theta = \sigma_{os} - \sigma_{ws}$

Water generally shows greater affinity than oil to stick to the rock surface \rightarrow reservoirs are predominantly water-wet systems
Different equilibrium pressure in two phases separated by curved interface:

\[p_c = p_n - p_w = \frac{2\pi r \sigma \cos \theta}{\pi r^2} = \frac{2\sigma \cos \theta}{r} = \frac{\pi r^2 g h (\rho_l - \rho_a)}{\pi r^2} = \Delta \rho gh \]

\text{upward force} \quad \text{downward force}

\begin{align*}
\text{upward force} & = \frac{2\pi r \sigma \cos \theta}{\pi r^2} = \frac{2\sigma \cos \theta}{r} \quad \text{downward force} \\
\text{downward force} & = \frac{\pi r^2 g h (\rho_l - \rho_a)}{\pi r^2} = \Delta \rho gh
\end{align*}
Saturation: fraction of pore volume filled by a given fluid phase

Drainage: non-wetting fluid displacing wetting fluid, controlled by widest non-invaded pore throat

\[p_{cnw} \]

\[S_{wr} \]

\[S_w \]

\[p_e \]
Fundamental physics: drainage (primary migration)

Saturation: fraction of pore volume filled by a given fluid phase

Drainage: non-wetting fluid displacing wetting fluid, controlled by widest non-invaded pore throat
Saturation: fraction of pore volume filled by a given fluid phase

Drainage: non-wetting fluid displacing wetting fluid, controlled by widest non-invaded pore throat
Saturation: fraction of pore volume filled by a given fluid phase

Drainage: non-wetting fluid displacing wetting fluid, controlled by widest non-invaded pore throat
Imbibition: wetting fluid displaces non-wetting fluid, controlled by the size of the *narrowest* non-invaded pore.

Will not follow the same capillary curve \rightarrow **hysteresis** (cause: trapped oil droplets, different wetting angle for advancing and receding interfaces)

EOR: inject substances to alter wetting properties to mobilize immobile oil, $S_{or} \rightarrow 1$
Extensions of model equations to multiphase flow

Three-phase Darcy velocities (Muskat, 1936):

\[
\vec{u}_\alpha = -\frac{K_\alpha(S_\alpha)}{\mu_\alpha}(\nabla p_\alpha - \rho_\alpha g \nabla z)
\]

Assuming each phase consists of only one component, the mass-balance equations for each phase read (Muskat, 1945):

\[
\frac{\partial (\phi \rho_\alpha S_\alpha)}{\partial t} + \nabla \cdot (\rho_\alpha \vec{u}_\alpha) = q_\alpha
\]

Macro-scale capillarity concept (Leverett, 1941):

\[
p_c(S_w) = J\sqrt{\frac{\phi}{K}} \sigma \cos \theta
\]
Relative permeability

Effective permeability experienced by one phase is reduced by the presence of other phases. Relative permeabilities

\[k_{r\alpha} = k_{r\alpha}(S_{\alpha 1}, \ldots, S_{\alpha m}), \]

are nonlinear functions that attempt to account for this effect. Notice that

\[\sum_{\alpha} k_{r\alpha} < 1 \]
Effective permeability experienced by one phase is reduced by the presence of other phases. Relative permeabilities

\[k_{r\alpha} = k_{r\alpha}(S_{\alpha 1}, \ldots, S_{\alpha m}), \]

are nonlinear functions that attempt to account for this effect. Notice that

\[\sum_{\alpha} k_{r\alpha} < 1 \]

This gives Darcy’s law on the form

\[\bar{u}_\alpha = -\frac{Kk_{r\alpha}}{\mu_{\alpha}}(\nabla p_\alpha - \rho_\alpha g\nabla z) \]
\[= -K\lambda_\alpha(\nabla p_\alpha - \rho_\alpha g\nabla z) \]
General flow equations for two-phase flow

Gathering the equations, we have

\[
\frac{\partial (\phi \rho_\alpha S_\alpha)}{\partial t} + \nabla \cdot (\rho_\alpha \vec{u}_\alpha) = q_\alpha, \quad \alpha = \{w, n\}
\]

\[
\vec{u}_\alpha = -\frac{K k_{r\alpha}}{\mu_\alpha} (\nabla p_\alpha - \rho_\alpha g \nabla z)
\]

\[
p_c = p_n - p_w, \quad S_w + S_n = 1
\]
General flow equations for two-phase flow

Gathering the equations, we have

\[
\frac{\partial (\phi \rho_\alpha S_\alpha)}{\partial t} + \nabla \cdot (\rho_\alpha \vec{u}_\alpha) = q_\alpha, \quad \alpha = \{w, n\}
\]

\[
\vec{u}_\alpha = -\frac{K_{kr\alpha}}{\mu_\alpha} (\nabla p_\alpha - \rho_\alpha g \nabla z)
\]

\[
p_c = p_n - p_w, \quad S_w + S_n = 1
\]

Commercial reservoir simulators: insert functional relationships \(p_c = P_c(S_w) \) and \(\rho_\alpha \) and \(\phi \) as function of \(p_\alpha \), and discretize with backward Euler in time and the two-point scheme in space

In academia: common practice to rewrite the equations to better reveal their mathematical nature
Fractional flow formulation

Choose S_w and p_n as primary unknowns, consider incompressible flow (i.e., ρ is constant and can be divided out)

\[
\phi \frac{\partial S_\alpha}{\partial t} + \nabla \cdot \vec{u}_\alpha = q_\alpha.
\]
Choose S_w and p_n as primary unknowns, consider incompressible flow (i.e., ρ is constant and can be divided out)

$$\phi \frac{\partial S_\alpha}{\partial t} + \nabla \cdot \vec{u}_\alpha = q_\alpha.$$

Sum mass-conservation equations:

$$\phi \frac{\partial}{\partial t} (S_n + S_w) + \nabla \cdot (\vec{u}_n + \vec{u}_w) = q_n + q_w$$
Choose S_w and p_n as primary unknowns, consider incompressible flow (i.e., ρ is constant and can be divided out)

$$\phi \frac{\partial S_\alpha}{\partial t} + \nabla \cdot \vec{u}_\alpha = q_\alpha.$$

Sum mass-conservation equations:

$$\phi \frac{\partial}{\partial t} (S_n + S_w) + \nabla \cdot (\vec{u}_n + \vec{u}_w) = q_n + q_w \quad \rightarrow \quad \nabla \cdot \vec{u} = q$$
Choose S_w and p_n as primary unknowns, consider incompressible flow (i.e., ρ is constant and can be divided out)

$$\phi \frac{\partial S_\alpha}{\partial t} + \nabla \cdot \vec{u}_\alpha = q_\alpha.$$

Sum mass-conservation equations:

$$\phi \frac{\partial}{\partial t} \left(S_n + S_w \right) + \nabla \cdot \left(\vec{u}_n + \vec{u}_w \right) = q_n + q_w$$

$$\equiv 1 \quad = \vec{u} \quad = q \quad \rightarrow \quad \nabla \cdot \vec{u} = q$$

Sum Darcy equations

$$\vec{u} = \vec{u}_n + \vec{u}_w = -(\lambda_n + \lambda_w) \nabla p_n + \lambda_w \nabla p_c + (\lambda_n \rho_n + \lambda_w \rho_w) g \nabla z$$
Choose S_w and p_n as primary unknowns, consider incompressible flow (i.e., ρ is constant and can be divided out)

$$\phi \frac{\partial S_\alpha}{\partial t} + \nabla \cdot \vec{u}_\alpha = q_\alpha.$$

Sum mass-conservation equations:

$$\phi \frac{\partial}{\partial t} (S_n + S_w) + \nabla \cdot (\vec{u}_n + \vec{u}_w) = q_n + q_w \quad \rightarrow \quad \nabla \cdot \vec{u} = q$$

Sum Darcy equations

$$\vec{u} = \vec{u}_n + \vec{u}_w = -(\lambda_n + \lambda_w) \nabla p_n + \lambda_w \nabla p_c + (\lambda_n \rho_n + \lambda_w \rho_w) g \nabla z$$
Choose S_w and p_n as primary unknowns, consider incompressible flow (i.e., ρ is constant and can be divided out)

$$\phi \frac{\partial S_\alpha}{\partial t} + \nabla \cdot \vec{u}_\alpha = q_\alpha.$$

Sum mass-conservation equations:

$$\phi \frac{\partial}{\partial t} \left(S_n + S_w \right) + \nabla \cdot \left(\vec{u}_n + \vec{u}_w \right) = q_n + q_w \quad \rightarrow \quad \nabla \cdot \vec{u} = q$$

Sum Darcy equations

$$\vec{u} = \vec{u}_n + \vec{u}_w = -\left(\lambda_n + \lambda_w \right) \nabla p_n + \lambda_w \nabla p_c + \left(\lambda_n \rho_n + \lambda_w \rho_w \right) \vec{g} \nabla z$$

Inserted into $\nabla \cdot \vec{u} = q$ gives pressure equation

$$-\nabla \cdot (\lambda K \nabla p_n) = q - \nabla \left[\lambda_w \nabla p_c + \left(\lambda_n \rho_n + \lambda_w \rho_w \right) \vec{g} \nabla z \right]$$
Fractional flow formulation

Choose S_w and p_n as primary unknowns, consider incompressible flow (i.e., ρ is constant and can be divided out)

$$\phi \frac{\partial S_\alpha}{\partial t} + \nabla \cdot \vec{u}_\alpha = q_\alpha.$$

Sum mass-conservation equations:

$$\phi \frac{\partial}{\partial t} (S_n + S_w) + \nabla \cdot (\vec{u}_n + \vec{u}_w) = q_n + q_w \quad \rightarrow \quad \nabla \cdot \vec{u} = q$$

Sum Darcy equations

$$\vec{u} = \vec{u}_n + \vec{u}_w = - (\lambda_n + \lambda_w) \nabla p_n + \lambda_w \nabla p_c + (\lambda_n \rho_n + \lambda_w \rho_w) g \nabla z$$

Inserted into $\nabla \cdot \vec{u} = q$ gives pressure equation

$$-\nabla \cdot (\lambda K \nabla p_n) = q - \nabla [\lambda_w \nabla p_c + (\lambda_n \rho_n + \lambda_w \rho_w) g \nabla z]$$

Poisson

only function of S_w
Fractional flow formulation

Multiply phase velocity by mobility of other phase and subtract

$$\lambda_n \tilde{u}_w - \lambda_w \tilde{u}_n = \lambda_w \lambda_n K \left[\nabla p_c + (\rho_w - \rho_n) g \nabla z \right]$$
Multiply phase velocity by mobility of other phase and subtract

\[\lambda_n \tilde{u}_w - \lambda_w \tilde{u}_n = \lambda_w \lambda_n K \left[\nabla p_c + (\rho_w - \rho_n) g \nabla z \right] \]

Solve for \(\tilde{u}_w \) and insert into conservation equation

\[\phi \frac{\partial S_w}{\partial t} + \nabla \cdot \left[f_w (\tilde{u} + \lambda_n \Delta \rho g \nabla z) \right] = q_w - \nabla \cdot (f_w \lambda_n P'_c \nabla S_w) \]
Fractional flow formulation

Multiply phase velocity by mobility of other phase and subtract

\[\lambda_n \vec{u}_w - \lambda_w \vec{u}_n = \lambda_w \lambda_n K [\nabla p_c + (\rho_w - \rho_n)g \nabla z] \]

Solve for \(\vec{u}_w \) and insert into conservation equation

\[\phi \frac{\partial S_w}{\partial t} + \nabla \cdot \left[f_w (\vec{u} + \lambda_n \Delta \rho g \nabla z) \right] = q_w - \nabla \cdot (f_w \lambda_n P'_c \nabla S_w) \]

Setting \(P_c \equiv 0 \) and \(g \equiv 0 \) for simplicity

\[-\nabla (K \lambda(S) \nabla p) = q, \quad \vec{u} = -K \lambda(S) \nabla p, \]
\[\phi \partial_t S + \nabla \cdot (\vec{u} f(S)) = 0 \]

System of one elliptic pressure equation and one hyperbolic saturation equation. Typically: solved sequentially with specialized methods
Buckley–Leverett solution for 1D displacement

\[S_t + f(S)x = q, \quad f(S) = \frac{S^2}{S^2 + M(1 - S)^2}, \quad M = \frac{\mu_w}{\mu_n} \]

Here, \(M = .2 \) gives poor local displacement efficiency, \(M = 5 \) gives very good...
Simulation examples: quarter-five spot

- Initial oil in place
- Water breakthrough
- Initial oil rate

Graphs show:
- Sw in completion
- Water cut

M3/day
Simulation examples: quarter-five spot

- 4 years
 - Ratio 1:10
 - Ratio 1:1
 - Ratio 10:1

- 8 years
- 12 years
- 16 years
- 20 years

- Ratio 1:1
- Ratio 10:1
Simulation examples: quarter-five spot

cumulative oil production

initial oil in place

wcut: Water fraction at reservoir conditions

Oil surface rate [m3/s]

x 10^{-5}

P (Ratio 1:10)
P (Ratio 1:1)
P (Ratio 10:1)
High permeability on top

Low permeability on top

120 days

360 days

1500 days

120 days

360 days

1500 days
System with N phases and M components
Notation: c_{ℓ}^α mass fraction of component ℓ in phase α
Multicomponent flows

System with \(N \) phases and \(M \) components

Notation: \(c_\alpha^\ell \) mass fraction of component \(\ell \) in phase \(\alpha \)

Equations: conservation for phases or components?
Multicomponent flows

System with N phases and M components

Notation: c_{α}^ℓ mass fraction of component ℓ in phase α

Equations: conservation for phases or components?

Choose components to avoid source terms for mass transfer

$$\frac{\partial}{\partial t} \left(\phi \sum_{\alpha} c_{\alpha}^\ell \rho_{\alpha} S_{\alpha} \right) + \nabla \cdot \left(\sum_{\alpha} c_{\alpha}^\ell \rho_{\alpha} \vec{u}_{\alpha} + \vec{J}_{\alpha}^\ell \right) = \sum_{\alpha} c_{\alpha}^\ell \rho_{\alpha} q_{\alpha},$$

Here, J is diffusion, e.g., Fickian

$$\vec{J}_{\alpha}^\ell = -\rho_{\alpha} S_{\alpha} D_{\alpha}^\ell \nabla c_{\alpha}^\ell,$$

More in talk by K. Jessen
Hydrocarbon components lumped together to a light 'gas' and a heavier 'oil' pseudocomponent at surface conditions

\[
\begin{array}{ccc}
W & O & G \\
A & X & \\
L & X & X \\
V & X & X \\
\end{array}
\]

Simple PVT: formation-volume factors,
\[
B_\alpha = V_\alpha / V_\alpha^s = \rho_\alpha^s / \rho_\alpha \quad \text{or} \quad b_\alpha = 1 / B_\alpha
\]
Black-oil equations

Hydrocarbon components lumped together to a light 'gas' and a heavier 'oil' pseudocomponent at surface conditions

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>O</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Simple PVT: formation-volume factors, $B_\alpha = V_\alpha/V_\alpha^s = \rho_\alpha^s/\rho_\alpha$ or $b_\alpha = 1/B_\alpha$

Conservation equations:

$$\partial_t (\phi b_o S_o) + \nabla \cdot (b_o \vec{u}_o) = b_o q_o$$
$$\partial_t (\phi b_w S_w) + \nabla \cdot (b_w \vec{u}_w) = b_w q_w$$
$$\partial_t [\phi (b_g S_g + b_o r_{so} S_o)] + \nabla \cdot (b_g \vec{u}_g + b_o r_{so} \vec{u}_o) = b_g q_g + b_o r_{so} q_o$$

Dissolved gas in oil: $r_{so} = V_g^s/V_o^s$. Similarly: oil vaporized in gas r_{sg}
Relative permeability for oil

Formation-volume factors (inverse densities):
Example: fluid model from SPE9

Viscosities:

- **Oil viscosity**
 - Pressure: 50 to 500
 - Viscosity: \(0.95 \times 10^{-3}\) to \(1.15 \times 10^{-3}\)

- **Water viscosity**
 - Pressure: 0 to 500
 - Viscosity: \(0.5 \times 10^{-3}\) to \(1.5 \times 10^{-3}\)

- **Gas viscosity**
 - Pressure: 0 to 500
 - Viscosity: \(1.3\) to \(2.2 \times 10^{-5}\)

Black-oil: discretization and linearization

Discretization: backward Euler in time, two-point flux-approximation with upstream mobility in space.

Newton’s method for nonlinear equation:
\[
\frac{\partial E}{\partial x^i} \delta x^i = E(x^i)
\]
Black-oil: solution strategies

Solution procedure

1. Eliminate well variables q^s_o, q^s_w, q^s_g, and p_{bh}

2. Set first block-row equal to sum of block-rows, leave out rows that may harm diagonal dominance in block (1,1)

3. Set up two-stage preconditioner:
 - M_1^{-1}: solves pressure subsystem
 - M_2^{-1}: ILU0 decomposition of the full system

4. Solve full system with GMRES using preconditioner $M_2^{-1}M_1^{-1}$

5. Recover remaining variables

For larger models, pressure subsystem should be solved with algebraic multigrid

Time-step control

chop if too large changes in variables
chop if convergence failure
more advanced logic to maintain targeted iteration count

Elaborate logic for well control and surface facilities
Black-oil: solution strategies

Solution procedure

1. Eliminate well variables \(q_o^s, q_w^s, q_g^s, \) and \(p_{bh} \)

2. Set first block-row equal to sum of block-rows, leave out rows that may harm diagonal dominance in block \((1,1)\)

3. Set up two-stage preconditioner:
 - \(M_1^{-1} \): solves pressure subsystem
 - \(M_2^{-1} \): ILU0 decomposition of the full system

4. Solve full system with GMRES using preconditioner \(M_2^{-1} M_1^{-1} \)

5. Recover remaining variables

For larger models, pressure subsystem should be solved with algebraic multigrid

Time-step control

- chop if too large changes in variables
- chop if convergence failure
- more advanced logic to maintain targeted iteration count

Elaborate logic for well control and surface facilities
Example: SPE 9 benchmark

- Grid with 9000 cells
- 1 water injector, rate controlled, switches to bhp
- 25 producers, oil-rate controlled, most switch to bhp
- Appearance of free gas due to pressure drop
- Production rates lowered to 1/15 between days 300 and 360
Example: the Voador field

- South wing of the reservoir (Petrobras)
- Gradients obtained through adjoint simulations
- Validate: open-source / commercial simulator:
 - 20 years of historic data
 - virtually identical results
 - main challenge: needed to reverse-engineer description of wells...
Multisegment wells

More accurate modelling:
- Network models
- Represent annulus
- Flow inside wellbore
- (Autonomous) inflow control devices
- Artificial lift, etc

In nodes:
- pressure p
- mass fractions x_w^m, x_o^m, x_g^m

In segments:
- mass rates v^m
Multisegment wells

More accurate modelling:
- Network models
- Represent annulus
- Flow inside wellbore
- (Autonomous) inflow control devices
- Artificial lift, etc

In nodes:
- pressure \(p \)
- mass fractions \(x_m^w, x_m^o, x_m^g \)

In segments:
- mass rates \(v_m \)

Discrete mass conservation in nodes:

\[
\frac{V}{\Delta t} \left(x_c \rho - x_c^0 \rho \right) + \text{div} \left(v_m^c \right) - \underbrace{q_m^c}_{\text{source term (well control, connections)}} = 0
\]

Discrete pressure drop equations in segments:

\[
\text{grad}(p) - \underbrace{g \text{avg}(\rho) \text{grad}(z)}_{\text{gravity term}} - \underbrace{h(v_m, uw(\rho), uw(\mu))}_{\text{heuristic pressure drop term}} = 0
\]
Example: effect of modeling annulus

- Uniform, no annulus
- Uniform, annulus
- Thief zones, no annulus
- Thief zones, annulus
- SPE10, no annulus
- SPE10, annulus

Gas production [Mscf/day]

Time [days]

Connection
Annulus
ICD
Tubing
Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

\[
\vec{u}_w = -\frac{k_{rw}(S)}{\mu_{w,\text{eff}}(c) R_k(c)} K(\nabla p_w - \rho_w g \nabla z)
\]

Polymer transported in polymer:

\[
\vec{u}_p = -\frac{k_{rw}(S)}{\mu_{p,\text{eff}}(c) R_k(c)} K(\nabla p_w - \rho_w g \nabla z)
\]

Conservation of polymer component:

\[
\partial_t [\phi (1 - S_{ipv}) c_b w S + \rho_r C^a (1 - \phi)] + \nabla \cdot (c_b w \vec{u}_p) = q_p
\]
Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

$$\tilde{u}_w = -\frac{k_{rw}(S)}{\mu_{w,\text{eff}}(c) R_k(c)} \mathbf{K} (\nabla p_w - \rho_w g \nabla z)$$

$$\tilde{u}_p = -\frac{k_{rw}(S)}{\mu_{p,\text{eff}}(c) R_k(c)} \mathbf{K} (\nabla p_w - \rho_w g \nabla z)$$

Conservation of polymer component:

$$\partial_t \left[\phi (1 - S_{ipv}) c_b w S + \rho_r C^a (1 - \phi) \right] + \nabla \cdot (c_b w \tilde{u}_p) = q_p$$

viscosity enhancement
Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

\[
\vec{u}_w = -\frac{k_{rw}(S)}{\mu_{w,\text{eff}}(c) R_k(c)} K \left(\nabla p_w - \rho_w g \nabla z \right)
\]

Polymer transported in polymer:

\[
\vec{u}_p = -\frac{k_{rw}(S)}{\mu_{p,\text{eff}}(c) R_k(c)} K \left(\nabla p_w - \rho_w g \nabla z \right)
\]

Conservation of polymer component:

\[
\partial_t \left[\phi (1 - S_{ipv}) c_{bw} S + \rho_r c_{bw} \right] + \nabla \cdot \left(c_{bw} \vec{u}_p \right) = q_p
\]

Todd–Longstaff mixing:

\[
\frac{1}{\mu_{w,\text{eff}}} = \frac{1-c/c_m}{\mu_m(c)\omega \mu_w^{1-\omega}} + \frac{c/c_m}{\mu_m(c)\omega \mu_p^{1-\omega}}
\]
Enhanced Oil Recovery: polymer flooding

Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

\[
\vec{u}_w = -\frac{k_{rw}(S)}{\mu_{w,eff}(c) R_k(c)} \mathbf{K} \left(\nabla p_w - \rho_w g \nabla z \right)
\]

Polymer transported in polymer:

\[
\vec{u}_p = -\frac{k_{rw}(S)}{\mu_{p,eff}(c) R_k(c)} \mathbf{K} \left(\nabla p_w - \rho_w g \nabla z \right)
\]

Conservation of polymer component:

\[
\partial_t \left[\phi (1 - S_{ipv}) c_{bw} S + \rho_r c_{rp} p \right] + \nabla \cdot \left(c_{bw} \vec{u}_w \right) = q_p
\]

Todd–Longstaff mixing:

\[
\frac{1}{\mu_{w,eff}} = \frac{1 - c/c_m}{\mu_m(c) \omega \mu_w^{1-\omega}} + \frac{c/c_m}{\mu_m(c) \omega \mu_p^{1-\omega}}
\]
Simple model: introduce extra immiscible component and mixture law

Polymer transported in water:

\[
\vec{u}_w = -\frac{k_{rw}(S)}{\mu_{w,\text{eff}}(c) R_k(c)} \mathbf{K} \left(\nabla p_w - \rho_w g \nabla z \right)
\]

Polymer transported in polymer:

\[
\vec{u}_p = -\frac{k_{rw}(S)}{\mu_{p,\text{eff}}(c) R_k(c)} \mathbf{K} \left(\nabla p_w - \rho_w g \nabla z \right)
\]

Conservation of polymer component:

\[
\partial_t \left[\phi (1 - S_{ipv}) c_b w S + \rho_r c_w \right] = q_p
\]

Todd–Longstaff mixing:
Summary

- **Geological models:** complex unstructured grids having many obscure challenges
- **Flow models:** system of highly nonlinear parabolic PDEs with elliptic and hyperbolic sub-character
- **Well models:** subscale models, complex logic, strong impact on flow
- **Validation and availability in software**

Challenges:

- **Main point of grid:** describe stratigraphy and structural architecture, i.e., not chosen freely to maximize accuracy of numerical discretization
- **Industry standard:** corner-point / stratigraphic grids
- **Grid topology is generally unstructured,** with non-neighboring connections
- **Geometry:** deviates (strongly) from box shape, high aspect ratios, many faces/neighbors, small faces, . . .
- **Potential inconsistencies since faces are bilinear or tetrahedral surfaces**
Summary

- Geological models: complex unstructured grids having many obscure challenges
- Flow models: system of highly nonlinear parabolic PDEs with elliptic and hyperbolic sub-character
- Well models: subscale models, complex logic, strong impact on flow
- Validation and availability in software

Challenges:
- Delicate balances: viscous forces, gravity, capillary, . . .
- Strong coupling between 'elliptic' and 'hyperbolic' variables (small scale: capillary, large scale: gravity)
- Large variation in time constants and coupling
- Orders-of-magnitude variations in permeability
- Parameters with discontinuous derivatives
- Path-dependence: hysteretic parameters
- Sensitive to subtle changes in interpolation of tabulated physical data
- Monotonicity and mass conservation
Summary

- Geological models: complex unstructured grids having many obscure challenges
- Flow models: system of highly nonlinear parabolic PDEs with elliptic and hyperbolic sub-character
- Well models: subscale models, complex logic, strong impact on flow
- Validation and availability in software

Challenges:
- Near singular radial flow in near-well zone (much larger flow than inside reservoir)
- Induce nonlocal connections
- Completely different multiphase flow inside wellbore
- Coupling to surface facilities
- Abrupt changes in driving forces
- Control strategies with intricate logic which is highly sensitive to state values
Summary

- Geological models: complex unstructured grids having many obscure challenges
- Flow models: system of highly nonlinear parabolic PDEs with elliptic and hyperbolic sub-character
- Well models: subscale models, complex logic, strong impact on flow
- Validation and availability in software

Challenges:
- New methods tend to be immature and too simplified
- Researchers: incompressible flow and explicit methods. Industry: implicit methods for compressible flow
- Industry relies on a few software providers and has strong faith in software with (undocumented) safeguards and algorithmic choices
- Oil companies seldom give away data
- Realistic models involve a large number of intricate details (Eclipse has 2–3000 keywords...
The MATLAB Reservoir Simulation Toolbox (MRST) is developed by the Computational Geosciences group in the Department of Applied Mathematics at SINTEF ICT.

Version 2016b was released on the 14th of December 2016, and can be downloaded under the terms of the GNU General Public License (GPL).

http://www.sintef.no/MRST
Originally:
- developed to support research on multiscale methods and mimetic discretizations
- first public release as open source, April 2009

Today:
- general toolbox for rapid prototyping and verification of new computational methods
- wide range of applications
- two releases per year
- each release has from 900 (R2013a) to 2100 (R2015a) unique downloads

Users:
- academic institutions, oil and service companies
- large user base in USA, Norway, China, Brazil, United Kingdom, Iran, Germany, Netherlands, France, Canada, ...

Publications:
- used in 24 PhD theses and 59 master theses
- used in more than 100 scientific papers by people outside of SINTEF

http://www.sintef.no/MRST