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History Matching

Inverse problem: given specific observations (observed data) of
the state variables (or data that are a direct function of state
variables), infer information about model parameters (includes
uncertainty). Our focus is on discrete inverse problems (system
characterized by a finite number of parameters).

History matching is a discrete inverse problem.
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Principle Ideas

The number of data is always finite, and the data always contain
measurement errors.

It is impossible to correctly estimate all the parameters of a model
from inaccurate, inconsistent, and insufficient data using a forward
model that may contain modeling errors, but reducing the number
of parameters can yield an unrealistic reduction in the level of
uncertainty which can be highly misleading.

We always have some prior information about the plausibility of
models. In the case of history matching, it includes a geological
prior model (hopefully stochastic) constructed from log, core and
seismic data and information on depositional environment.
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Principle Ideas, Continued

In gradient based assisted history matching, calculation of
sensitivities must be done efficiently, i.e., using an adjoint solution.

Probabilistic estimates or bounds are often the most meaningful.
For nonlinear problems, this is usually best accomplished using
Markov chain Monte Carlo but its cost is often prohibitive. (Recent
work has the potential to reduce the costs.)

The ultimate goal of inverse theory (and history matching) is to
make informed decisions on investments, surveillance operations
for data acquisition, and optimal reservoir management. Good
decisions and risk management require that the uncertainty in
reservoir description and future performance, and the
consequences of actions can be accurately characterized.
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Introduction to Gradients

m a column vector, f (m) a real valued function.
g = g(m) = [g1(m) g2(m) · · · gNd

] is a 1× Nd matrix, i.e., a row
vector.
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Introduction to Gradients

g = g(m) = [g1(m) g2(m) · · · gNd
]T is a Nd × 1 matrix. .

GT ≡∇m g(m)T =
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Introduction to Gradients

If A= A(m) is 1× p and B = B(m) is p× 1, then

∇m(AB) = (∇mA)B+ (∇m(B
T ))AT .

Thus if entries of B are independent of m,

∇m(AB) = (∇mA)B.

If m is Nm× 1 and B is Nm× 1,

∇m(m
T B) = (∇mmT )B+ (∇m(B

T ))m= B+ (∇m(B
T ))m,

or if B independent of m, ∇m(mT B) = B. Similarly if A is Nm× 1 and
independent of m, ∇m(AT m) = A.
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Introduction to Gradients

Let A be Nd × Nd with entries independent of the Nm× 1 vector m, let
G be Nd ×M with entries independent of m, let d be a constant Nd
dimensional column vector and define

O(m) = (Gm− d)T A(Gm− d) = (mT GT − dT )A(Gm− d).

∇mO(m) = [∇m(m
T GT − dT )]A(Gm− d)+

[∇m((m
T GT − dT )AT )](Gm− d) =

GT A(Gm− d) + GT AT (Gm− d)

If A is symmetric,

∇mO(m) = 2GT A(Gm− d)
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Real Symmetric Positive Definite Matrices, [Strang(1976)]

Definition

A real symmetric N × N matrix A is said to be positive definite if for
every real N -dimensional column vector x 6= 0, x T Ax > 0

Theorem

Let A be a N × N real matrix.

(i) If A is real symmetric (AT = A), then the eigenvalues {λi}Ni=1 of A
are all real and A has a set of orthonormal eigenvectors, {x i}Ni=1.

(ii) A is positive definite if and only if all eigenvalues of A are positive.

(iii) If A is positive definite, then A is nonsingular. Moreover, if {λi , x i}Ni
are the eigenpairs of A, then {1/λi , x i}Ni are eigenpairs of A−1.

Positive semi-definite defined similarly. Real SPD matrices are
important because they arise when solving self-adjoint pde’s by
discretization methods and in regularized least squares problems.
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Null Space of a Linear Operator

All vectors are column vectors unless explicitly stated otherwise. Let G
be a known, or computable, Nd × Nm matrix, G : RNm → RNd and
consider the forward model

d = Gm (1)

Inverse problem: given noisy data dobs , solve Gm= dobs.
Note ∇mdT = GT and the entries of G are gi, j =

∂ di

∂m j
. G is the

sensitivity matrix.

Definition

The null space of G is the set of all vectors in S(m)≡ RNm that satisfy
Gm= 0.

The null space of G is denoted by N(G). Let dim N(G) = ` > 0. If m0
is a solution of Gm0 = dobs and {mk}`k=1 is a basis for N(G), then for

any scalars, α j , j = 1, 2, · · ·n, m= m0+
∑`

j=1α jm j is a solution of
Eq. 1. In fact, all solutions of the inverse problem of Eq. 1 are of this
form.
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Range of a Linear Operator

Definition

The range of the Nd × Nm matrix G (denoted R(G)) is the set of all
vectors d in S(d) = RNd such that there exists at least one m in
S(m) = RNm which satisfies Gm= d.

The dimension of the range of the Nd ×M matrix G is denoted by
dimR(G) and is called the rank of G. The rank of G is equal to
the number of linearly independent columns of G which is also
equal to the number of linearly independent rows of G.

R(G)≤min{Nd , Nm}. If R(G) =min{Nd , Nm}, G is said to be of
full rank.
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Solutions of Linear Inverse Problems

If Nd > Nm, then rank (G)≤ Nm < Nd so for some dobs ∈ RNd ,
Gm= dobs has no solution. Instead, try finding a least squares
solution by minimizing ‖ Gm− dobs ‖22. Setting the gradient of

O(m)≡‖ Gm− dobs ‖22= (Gm− dobs)
T (Gm− dobs) (2)

equal to zero and rearranging gives

GT Gm= GT dobs (3)

So any least squares solution satisfies Eq. 3. If G is of full rank,
then the Nm× Nm matrix GT G is also full rank, so Eq. 3 has a
unique solution. In this case, GT G which is always positive
definite.
Singular value decomposition can be applied to find the least
squares solution of minimum norm.
On the other hand, if Nm > Nd , then the rank of GT G is
≤ Nd < Nm so GT G is singular. Some form of regularization is
needed to pick a solution.
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Zero Order Regularization

Minimize the following objective function by setting its gradient w.r.t. m
equal to zero.

O(m) =
1

2
‖Gm− dobs‖22+

1

2
λ ‖ m−m0 ‖22 . (4)

∇O(m) = GT (Gm− dobs) +λ(m−m0)

= (GT G(m−m0+m0− dobs) +λI(m−m0) = 0 (5)

(λI + GT G)(m−m0) = (G
T (dobs− Gm0)) (6)

mest = m0+ (λI + GT G)−1(GT (dobs− Gm0)). (7)

Solution is unique for any λ > 0, but if λ is small, the matrix
(λI + GT G) can become very ill-conditioned. Note if m0 is a solution of
the original inverse problem, then mest = m0. It is convenient to think of
the problem as trying to find the closest model to m0 so that this model
agrees well with the observed data; λ controls both the conditioning of
the real SPD matrix (λI + GT G) and how strongly we wish to impose
the constraint that m is close to m0.
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First order regularization

Choose the “flattest” model that satisfies the data exactly or in a least
squares sense. For the continuous inverse problem: find the flattest
m(x) such that

dobs,i =

∫ b

a

Gi(x)m(x)d x .

the flattest solution is the function m(x) ∈ L2[a, b] whose derivative is
square integrable and minimizes

F(m) =

∫ b

a

�dm(x)
d x

�2
d x ,

subject to the constraint that m(x) must satisfy the continuous inverse
problem in a least-squares sense.
Second order regularization would replace the first derivative by the
second derivative. We can also consider combinations of regularization
terms, e.g., zero order plus second order.
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First Order Regularization

In the discrete linear inverse problem, difference operators replace
derivatives. Thus, define the (Nm− 1)× Nm matrix D by

D =

















−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 −1 1 . . . 0
...

...
. . .

. . .
. . .

...
0 0 0 . . . −1 1

















.

Letting di, j denote the element in the ith row and jth column of D,
di,i =−1 and di,i+1 = 1 for i = 1, 2, ..., Nm− 1, with all other entries of
D equal to zero. Note that if ‖Dm‖2 = 0, then Dm= 0 which implies
−mi +mi+1 = 0 for i = 1, 2, ..., Nm− 1, i.e., all components of m must
be identical.
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First Order Regularization

Minimize

O(m) =
1

2
[(m−m0)

T A(m−m0) + (Gm− dobs)
T C−1

D (Gm− dobs)].

First order regularization: A= aI + DT D with a = 0.
First order with a zeroth order component, a > 0, A= aI + DT D.
Solution:

mest = m0+
�

A+ GT C−1
D G

�−1GT C−1
D (dobs− Gm0).
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First Order Regularization, Example

Forty dimensional 1D inverse permeability field. Measurements at
x = 6, 19, 32 with fairly small measurement error, σd = 0.1.
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1.2

1.4

1.6

1.8

10 20 30 40

0.8

1.2

1.4

1.6

1.8

Figure: Two estimates using the derivative as a measure of closeness to the
prior. For the estimate on the left A= DT D. On the right, A= DT D+ 0.2I .

Note for a = 0, the solution linearly interpolates between measurement
locations. In both cases, the solution is not differentiable at
measurement locations.
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Singular Value Decomposition
(SVD)[Golub and van Loan(1989)], [Strang(1976)]

Let G be any Nd × Nm real matrix. Then there exists an Nd × Nd
orthogonal matrix U , an Nm×Nm orthogonal matrix V and an Nd ×Nm
matrix Λ such that

G = UΛV T (8)

Λ =

�

Λq O
O O

�

where Λq = diag (λ1,λ2, · · ·λq) with λ1 ≥ λ2 ≥ λq ≥ 0 and
q =min{Nd , Nm}. Note, in the following we choose r to be the largest
integer such that λr > 0 and then the preceding equation reduces to
G = UrΛr V T

r . where the columns of Ur are equal to the first r columns
of U , the columns of Vr are equal to the first r columns of V and
Λr = diag (λ1,λ2, · · ·λr)
If G is a square real-symmetric positive definite matrix, V = U and the
SVD decomposition is the standard Schur (eigenvalue-eigenvector)
decomposition.
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Singular Value Decomposition (SVD)

The Nd × Nm matrix G maps RNm
into RNd

. Basic inverse problem
is Gm= dobs or in terms of the least squares problem
GT Gm= GT dobs where GT G is Nm× Nm. One way to show that
GT Gm= GT dobs always has at least one solution is to first show
that the range of GT G is identical to the range of GT . To do so
requires knowledge of the orthogonality of the four principle
subspaces (see around slide 87).
SVD solution of the least squares problem is

mest = V

�

Λ−1
r O
O O

�

U T dobs = VrΛ
−1
r U T

r dobs.

We let ui , i = 1,2, · · ·Nd be the columns of U . These vectors form
an orthonormal set and are referred to as the left singular vectors
of G. The columns of V , v j , j = 1, · · ·Nm, also form an
orthonormal set and are referred to as the right singular vectors of
G.

U T U = INd
UU T = INd

V T V = V V T = INm
.

The columns of U are a basis for RNd
and the columns of V are a

basis for RNm
, so there for and m in RNm and any dobs ∈ RNd , there

exist two vectors of scalars, α and β such that
m= Vα=

∑Nm
j=1α j v j and dobs = Uβ .

Al Reynolds Assisted History Matching IPAM Workshop III, March 22, 2017 (22/95)



Singular Value Decomposition (SVD)

The columns of U are a basis for RNd
and the columns of V are a

basis for RNm
, so for any m in RNm and any dobs ∈ RNd , there exist

two vectors of scalars, α and β such that m= Vα=
∑Nm

j=1α j v j
and dobs = Uβ .

With singular values of λ1 ≥ λ2 ≥ · · ·λr > 0, the frequency of v j
and u j increase as j increases, so as we will see more clearly
later, parameterizing m in terms of a linear combination of
Vp = {v1, v2, · · · vp} where p < r where we preserve only the
largest singular values may be appropriate. Then, the projection of
m onto the span of Vp will preserve the smoothest (largest
components) features of m provided we pick p appropriately, e.g.,
s.t.

p
∑

j=1

λ j ≥ 0.9
r
∑

j=1

λ j .
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Other Comments on SVD

Among all solutions of the least squares problem,
min ‖ Gm− dobs ‖2, the SVD solution is the solution of minimum
norm.

If GT G is positive definite, then the SVD solution

mest =
�

VpΛ
−1
p U T

p

�

dobs (9)

is the unique least squares solution.

Eq. 9 is a solution of Gm= dobs if and only if dobs is in
span {u1, u2 · · ·up}, which is always true if rank G = Nd . Note

Gmest = (UpΛpV T
p )
�

VpΛ
−1
p U T

p

�

dobs = UpU T
p dobs, (10)

where the final term in this equation is equal to dobs if dobs is in the
span of the columns of Up.
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Effect of Measurement Errors and Small Singular Values

Let mtrue be the true model and let dtrue = Gmtrue. Because a
measurement of dtrue is corrupted by measurement error, we end up
generating a solution of GT Gm= GT dobs where dobs = dtrue− ε where
ε is the measurement error. The SVD solution satisfies

mest = Vp
�

Λ−1
p U T

p

�

dobs = Vp
�

Λ−1
p U T

p

�

(dtrue− ε). (11)

Similarly
mtrue = VpΛ

−1
p U T

p dtrue (12)

Subtracting Eq. 11 from Eq. 12 gives

(mtrue−mest) = VpΛ
−1
p U T

p ε≡ VpΛ
−1
p δ = Vp[

1

λ1
δ1, · · ·

1

λp
δp]

T . (13)

Small singular values amplify the measurement error and increase the
error in the solution. In particular, the singular vectors of highest
frequency are corrupted the most.
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Truncated Singular Value Decomposition, TSVD

To mitigate the highly negative effect of small singular values, one can
truncate the singular values.
Order singular values such that λ1 ≥ λ2, · · · , choose p such that

p
∑

j=1

λ j ≥ 0.9
min{Nm,Nd}
∑

j=1

λ j or such that
p
∑

j=1

λ j ≥ 0.01λ1, (14)

where the 0.9 and 0.01 values are just rule of thumb choices. Set
G = UpΛpV T

p ≡ Gp,

mest =
�

VpΛ
−1
p U T

p

�

dobs. (15)

TSVD may be viewed as regularization.
References to TSVD in History Matching:
[Tavakoli and Reynolds(2010), Tavakoli and Reynolds(2011)],
[Shirangi and Emerick(2016)], and further extensions in progress.
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ASSISTED HISTORY MATCHING - GOALS

1 Honor Observations.

2 Maintain geological realism.

3 Have predictive power not just in terms of matching future field
production but in terms of fluid distributions.

4 Give at least some reasonable estimate of uncertainties for
reservoir development and to manage risk - ideally characterize
the posterior pdf.

5 Be compatible with company/institution simulation tools.

6 Be conceptually understandable to the user and management
given a reasonable amount of training.

7 Be computationally feasible.
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Field Case 2

Observed data:

20 producers: oil rate, water rate, GOR,
bottom-hole pressure.
10 water injection: bottom-hole pressure.

Initial ensemble:

200 models.
Porosity and permeability (> 125,000
active gridblocks).
Anisotropic ratio kv/kh.
Rock compressibility.
End point of water relative permeability
curve.

Data assimilation with ES-MDA (4×) with
localization.
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Field Case 2: Model Plausibility – Permeability
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Field Case 2: Model Plausibility – Permeability

Prior # 200

Post # 200

Post # 1

Prior # 1
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Field Case 2: Well Data

Well # 30

MLS30‐3

Modelo base
Média

Modelos do conjunto

Dado observado

Prior Post

Well # 39

MLS39‐3

Modelo base
Média

Modelos do conjunto

Dado observado

Prior Post
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Gaussian pdf

A random Nm-dimensional vector M is (multivariate) Gaussian or
multinormal with mean mprior and covariance CM if the probability
density for M is

fM (m) =
1

(2π)Nm/2

1
p

det(CM )
exp
�

−
1

2
(m−mprior)

TC−1
M (m−mprior)

�

.

(16)

The expectation or mean of M is mprior and the autocovariance of
M is CM .

Notation: M ∼ N(mprior, CM ). We assume from this point on that
M is an Nm-dimensional column vector and that Dobs is an
Nd -dimensional column vector.
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Gaussian Measurement/Modeling Errors

d = g(m) is the assumed theoretical relation between the model
(a realization of M ) and the predicted data vector. In our work a
realization of Dobs is given by

dobs = g(m) + ε

where ε represents the random measurement error vector. If g(m)
is incorrect, i.e., there is modeling error because of inexact
physics, then ε would be a sum of modeling and measurement
errors. Any dobs we actually measure then represents a realization
of ε added to g(mtrue). Although dobs depends on m, we have to
assume ε does not.
Assume ε∼ N(0, CD) then f (dobs|m) is Gaussian. Since
E[dobs|m] = g(m) and cov(dobs|m) = CD, it follows that

fDobs,M (dobs|m) =
1

(2π)Nd/2
p

det CD

exp
�

−
1

2
(dobs−g(m))T C−1

D (dobs−g(m))
�
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Gaussian Likelihood Function

fDobs,M (dobs|m) =
1

p

(2π)Nd det CD

exp(−
1

2
(dobs−g(m))T C−1

D (dobs−g(m)))

Once an actual measurement dobs is obtained, we no longer assume m
is given. Instead we define the likelihood of any realization m of M by

L(m|dobs) =
1

p

(2π)Nd det CD

exp[−
1

2
(g(m)−dobs)

T C−1
D (g(m)−dobs)]

A model which maximizes the likelihood is called a maximum likelihood
estimate. Maximizing L is equivalent to minimizing

O(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs),

and at a minimum we must have

∇O(m) =∇(g(m)T )C−1
D (g(m)− dobs) = 0,

which is a nonlinear system of equations and must be solved iteratively.
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Maximum Likelihood Estimate (MLE), Cont’d

Referring to the preceding equation, GT ≡∇(g(m)T ) and
G =

�

∇(g(m)T )
�T is the sensitivity matrix. The (i, j) entry of G is

the sensitivity of the ith predicted data to the jth model parameter.
Accurate efficient computation of G requires an adjoint solution.

Gauss-Newton with ` as the iteration index and a line search: For
`= 0,1, 2, · · · until convergence

(GT
` C−1

D G`)δm`+1 =−GT
` C−1

D (g(m`)− dobs) (17)

α` ≈ argmin
α
{O(m`+α`δm`+1)} (18)

m`+1 = m`+α`δm`+1 (19)

End(For)

The matrix (GT
` C−1

D G`) may be badly ill-conditioned or even
singular so we usually need regularization.
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Maximum Likelihood Estimate (MLE) with
Levenberg-Marquardt

Levenberg-Marquardt [Levenberg(1944), Marquardt(1963)]. Precursor
of trust region methods which are generally preferred to line-search
methods.

O(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs), (20)

Levenberg-Marquardt with ` as the iteration index: For `= 0,1, 2, · · ·
until convergence Solve Eq. 21

(λ` I + GT
` C−1

D G`)δm`+1 =−GT
` C−1

D (g(m`)− dobs) (21)

for δm`+1. Set m`+1
c = m`+δm`+1.

If O(m`+1
c )< O(m`), then set m`+1 = m`+1

c and set λ`+1 = βλ` for
β > 1 and go to the next iteration. Otherwise, set λ` = γλ` for γ < 1
and repeat the iteration (Eq. 21). Often, one chooses β = 10 and
γ= 1/10.
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Levenberg-Marquardt vs Gauss-Newton

This example is from [Li et al.(2003)Li, Reynolds, and Oliver].
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Levenberg-Marquardt vs Gauss-Newton
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Bayes Theorem

fM ,Dobs
(m, dobs) = fDobs|M (dobs|m) fM (m) = fM |Dobs

(m|dobs) fDobs
(dobs).

Bayes theorem immediately follows and implies that

f (m|dobs) =
f (dobs|m) f (m)

f (dobs)
.

The theorem says nothing; it is the way we interpret it to define
probabilities that is useful. If we have an specific observation
(dobs), then we define the posterior pdf by

f (m|dobs) = aL(m|dobs) f (m)

were a is the normalizing constant and f (m) is referred to as the
prior pdf.
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Posterior PDF for Gaussian Prior and Gaussian
Measurement/Modeling Errors

Assume the prior model is multivariate Gaussian, N(mprior, CM ),

f (m) =
1

(2π)Nd/2
p

det CM

exp
�

−
1

2
(m−mprior)

T C−1
M (m−mprior)

�

so that the product of the the prior and the likelihood inserted in
Bayes’ theorem gives

f (m|dobs) = a exp
�

−
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)

�

×

exp
�

−
1

2
(m−mprior)

T C−1
M (m−mprior)

�

= a exp
�

−O(m)
�

O(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)+

1

2
(m−mprior)

T C−1
M (m−mprior)

Al Reynolds Assisted History Matching IPAM Workshop III, March 22, 2017 (40/95)



MAP Estimate

f (m|dobs) = a exp
�

−O(m)
�

O(m) =
1

2
(m−mprior)

T C−1
M (m−mprior)+

1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs).

“The” maximum a posteriori (MAP) estimate is the model m that
minimizes O(m), or equivalently, maximizes f (m|dobs). In
general, a MAP estimate is not unique. If f (m|dobs) is multimodal,
any gradient based optimization algorithm we use will estimate
one of the modes. Which mode is obtained depends on the initial
guess. For future reference, we note we can obtain a conditional
mode by minimizing O(m) but the ensemble Kalman filter is
designed to estimate a conditional mean. For a multimodal
distribution, a conditional mean may not be very meaningful.
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Gauss-Newton for MAP Estimate

Minimize

O(m) =
1

2
(g(m)− dobs)

T C−1
D (g(m)− dobs)+

1

2
(m−mprior)

T C−1
M (m−mprior)

For `= 0, 1,2, · · · until convergence

(C−1
M +GT

` C−1
D G`)δm`+1 =−(C−1

M (m
`−mprior)+GT

` C−1
D (g(m`)−dobs))

(22)
α` ≈ arg min

α
{O(m`+α`δm`+1)} (23)

m`+1 = m`+α`δm`+1 (24)

End(For)
Difficult to work with inverses of large covariance matrices, so we
generally rewrite Eq. 26 using matrix inversion lemmas to obtain:
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Alternate Form of Gauss-Newton with Line Search

For `= 0,1, 2, · · · until convergence

δm`+1 = mprior−m`− CM GT
`

�

CD + G`CM GT
`

�−1

×
�

g(m`)− dobs− G`(m
`−mprior)

�

.

α` ≈ argmin
α
{O(m`+α`δm`+1)} (25)

m`+1 = m`+α`δm`+1 (26)

End(For)
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Gauss-Newton

The entry in the ith row and the jth column of the sensitivity matrix
G` is

gi, j =
∂ gi(m`)
∂m j

(27)

Generating all these sensitivity coefficients with the adjoint method
requires Nd adjoint solutions,
[Li et al.(2003)Li, Reynolds, and Oliver]. Generation of each
adjoint solution is similar to one backward reservoir simulation run
but generally requires on the order of 1/4 the time that a forward
simulation run requires.

Formulation of the adjoint problem for a fully-implicit reservoir
simulator is easy because the main matrix involved in the discrete
adjoint formulation is just the transpose of the Jacobian used in the
final Newton iteration in the forward solution,
[Li et al.(2003)Li, Reynolds, and Oliver].
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Gauss-Newton

Adjoint can easily be used to compute sensitivity (derivative) of
any predicted data w.r.t. any primary parameter that appear as a
coefficient in the discretized systems of PDE’s; sensitivities of data
to any other parameter requires a known relation between that
parameter and primary parameters so a chain rule can be applied.

If Nd is large, the generation of Nd adjoint solutions is not feasible.
In this case, we cannot afford Gauss-Newton or its LM form.

On the other hand computing ∇O(m`) requires only one adjoint
solution ([Zhang and Reynolds(2002)] which makes quasi-Newton
methods feasible [Nocedal and Wright(1999)].
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Quasi-Newton

In quasi-Newton, e.g., LBFGS, one solves

δm`+1 =−H−1
` O(m`) (28)

where at each iteration the new inverse Hessian is computing from the
old one using a rank one update. Initial guess for H−1 is CM . We
generally use a trust-region quasi-Newton.
The quasi-Newton methods we have used emanate from the work of
[Zhang and Reynolds(2002)]. Also see [Gao and Reynolds(2006)].
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Comments on Sensitivities

Sensitivity of the ith data to the j model parameter is ∂ di/∂m j . This
reflects how much a predicted data changes if we change m. But, in a
Bayesian setting, it is not the best indicator to understand how a
parameter will be changes to match the data. It is better to look at
dimensionless sensitivities,

gD,i, j =
∂ di

∂m j

σm, j

σd,i
.

This generalizes to
GD = C−1/2

D GC1/2
M .

One way to do regularization effectively comes from using TSVD of the
dimensionless sensitivity coefficient matrices for an “ideal”
parameterization in a Gauss-Newton or Levenberg-Marquardt
algorithm; see
[Tavakoli and Reynolds(2010), Tavakoli and Reynolds(2010)],
[Shirangi and Emerick(2016)], and further extensions in progress.
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MAP Estimate in Linear-Gaussian Case

Assuming Gaussian prior and g(m) = Gm where the sensitivity matrix
G is independent of m.

In the linear-Gaussian case, the Gauss-Newton method converges
in one iteration for any initial guess.
The posterior pdf, f (m|dobs), is the Gaussian N(m∞, CMAP)
where

m∞ = mMAP = mprior−
�

C−1
M +GT C−1

D G
�−1GT C−1

D (Gmprior−dobs),
(29)

CMAP = C∞ = H−1 =
�

C−1
M + GT C−1

D G
�−1
=

CM − CM GT�CD + GCM GT�−1GCM (30)

where the last equality follows from an inverse matrix lemma.

f (m|dobs) = a exp
�

−
1

2
(m−m∞)

T�CMAP
�−1(m−m∞)

�

, . (31)

m∼ N(m∞, CMAP) (32)
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General Comments

The MAP estimate may be too smooth to represent the reservoir
property fields. In the linear case, the MAP estimate is the mean of
the posterior pdf and means tend to be very smooth.

In the linear case, we could sample the posterior N(m∞, CMAP) by

mc, j = m∞+ C1/2
MAPZ j; Z j a sample from N(0, I)

How do we sample the posterior pdf in the nonlinear case? Start
with randomized maximum likelihood (RML),
[Oliver et al.(1996)Oliver, He, and Reynolds]. For a simple proof
that RAML samples correctly in the linear Gaussian case, see
[Reynolds et al.(1999)Reynolds, He, and Oliver].
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Approximate Sampling the Posterior PDF by with RML

We can use RML for both the linear and nonlinear cases but can
only show it samples correctly for the linear-Gaussian case.

f (m|dobs) = a exp
�

−O(m)
�

O(m) =
1

2
(m−mprior)

T C−1
M (m−mprior)+

1

2
(g(m)−dobs)

T C−1
D (g(m)−dobs).

(33)

To generate a single sample of the posterior with RML, generate a
sample duc, j from N(dobs, CD) and a sample muc, j from
N(mprior, CM ). The corresponding RML sample of the posterior is
defined as “the” model mc, j obtained by minimizing

Or, j =
1

2
(m−muc, j)

T C−1
M (m−muc, j)+

1

2
(g(m)− duc, j)

T C−1
D (g(m)− duc, j). (34)
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Explanation of RML

1.5 2 2.5 3
0

2

4

6

8

10

Model

P
D

F
s

1.5 2 2.5 3
0

2

4

6

8

Model

P
D

F
s

1.6 1.8 2 2.2 2.4 2.6
0

5

10

15

20

Model

O
(m

)

Al Reynolds Assisted History Matching IPAM Workshop III, March 22, 2017 (51/95)



Improvements on Sampling with RML

Oliver, Dean S., Metropolized Randomized Maximum Likelihood
for sampling from multimodal distributions, SIAM JUQ, 2016.

Li, X. and A. C. Reynolds, Generation of a proposal distribution for
efficient MCMC characterization of uncertainty in reservoir
description and forecasting, in Proceedings of the SPE Reservoir
Simulation Conference, Montgomery, Texas, 20-22 February, SPE
182684, 2017.
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Equivalence between ES and Gauss-Newton

Following [Reynolds et al.(2006)Reynolds, Zafari, and Li], we derive the
ensemble smoother as an approximation to RML-Gauss-Newton
equation with full step where all ensemble members are updated with
the same average sensitivity matrix.

m`+1
j = muc, j − CM GT

`, j

�

CD + G`, jCM GT
`, j

�−1

×
�

g(m`j)− duc, j − G0, j(m
`
j −muc, j)

�

. (35)

If we do a single iteration with `= 0 (initial guess), set ma
j ≡ m1

j ,

m f
j = muc, j and d f

j = g(muc, j), then

ma
j = m j − CM GT

0, j

�

CD + G0, jCM GT
0, j

�−1
×
�

d f
j − duc, j

�

. (36)

Assuming that d f = d f (m f ) = g(m f ), a first-order Taylor series
expansion gives

d f
j −d f = g(muc, j)−g(m f ) = G(m f )(m f

j −m f )≡ G(m f
j −m f ) (37)
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Equivalence between ES and Gauss-Newton

eC f
M D =

1

Ne − 1

Ne
∑

j=1

(muc, j −m f )(d f
j − d f )T

=
1

Ne − 1

Ne
∑

j=1

(m f
j −m f )(G(m f

j −m f ))T = CM G
T

(38)

eC f
DD =

1

Ne − 1

Ne
∑

j=1

(d f
j − d f )(d f

j − d f )T

=
1

Ne − 1

Ne
∑

j=1

(G(m f
j −m f ))(G(m f

j −m f ))T = GCM G
T

(39)
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Equivalence between ES and Gauss-Newton

Replacing G0, j by G in 36

ma
j = m j − CM G

T
�

CD + GCM G
T
�−1
×
�

d f
j − duc, j

�

. (40)

Using Eqs. 38 and 39 in Eq. 40 gives the following equation which is the
ensemble smoother:

ma
j = m j − eC

f
M D

�

CD + eC
f
DD

�−1
×
�

d f
j − duc, j

�

. (41)
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Ensemble Smoother (ES)

eC f
M D =

1

Ne − 1

Ne
∑

j=1

(m f
j −m f )(d f

j − d f )T

eC f
DD =

1

Ne − 1

Ne
∑

j=1

(d f
j − d f )(d f

j − d f )T

The ensemble smoother

ma
j = m f

j − eC
f
M D

�

CD + eC
f
DD

�−1�

d f
j − duc, j

�

= m f
j −

1

Ne − 1

Ne
∑

j=1

(m f
j −m f )(d f

j − d f )T
�

x j

�

=

m f
j −

1

Ne − 1

Ne
∑

j=1

(m f
j −m)(d f

j −d f )T x j = m f
j −

1

Ne − 1

Ne
∑

j=1

(m f
j −m f )a j .

(42)
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Comments on the Ensemble Smoother

Since m f is a linear combination of the ensemble of the initial
ensemble of models, Eq. 42 indicates that every ma

j is a linear
combination of the models in the initial ensemble, i.e., we are
trying to find a linear combination of the initial ensemble members
that matches data. Thus, if the models contain large structural
features, it will be difficult to capture the geology by assimilating
data with the ES.

Avoids explicit computation of large covariance matrices.

Easy to implement with any reservoir simulator; the simulator truly
becomes a black box.

Generates multiple realizations and a rough characterization of
uncertainty.

Al Reynolds Assisted History Matching IPAM Workshop III, March 22, 2017 (57/95)



ES Algorithm

Generate an ensemble of realizations from the prior geological
model m0

j = m f
j for j = 1,2, · · ·Ne.

For j = 1, 2, · · ·Ne, sample duc, j from N(dobs, CD).
(duc, j = dobs+ C−1

D Zd, j .)

Update equation:

ma
j = m f

j + eC
f
MD

�

eC f
DD+ CD

�−1�

duc, j − d f
j

�

, (43)

where d f
j = d f (m f

j ) = g(m f
j ), eC

f
MD is the estimated covariance

between the forecast models and the forecast data and eC f
DD is the

auto-covariance of predicted data.
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Ensemble Kalman Filter (EnKF)

Sequential data assimilation method.

d1 d2 d3
Time

U
pd
at
es

History Forecast

Sequential data assimilation with EnKF requires to updating both
model parameters and primary variables
(parameter-state-estimation problem).

yn =









model param.
︷ ︸︸ ︷

φT, (ln k)T, . . . , (pn)T, (Sn
w)

T, (Sn
g)

T, (Rn
s )

T

︸ ︷︷ ︸

primary variables









T

In practice, we may observe inconsistency between the updated
parameters and states.
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Comments on EnKF and ES

Explicit computation of large covariances are avoided. Reasonably
robust and can be automated in workflows.
ES faster and easier to implement than EnKF; no inconsistency
between states and parameters, no overwriting reservoir
simulation input files, complete parallelization.
EnKF and ES are effectively the same as updating each ensemble
member by doing one iteration of the Gauss-Newton method using
the same average sensitivity matrix for all ensemble members.
To match data, we can only adjust Ne coefficients. Thus the initial
ensemble is important. Moreover, there is a possibility of ensemble
collapse particularly when measurement error is low. Every time
one perfect datum is assimilated, you lose one degree of freedom
in the ensemble, Lorenc (2003).
Approximation of covariances by a small number of ensemble
members leads to spurious correlations. Ensemble collapse and
spurious correlations can be ameliorated by covariance
localization.
For highly nonlinear problems, may obtain a fairly poor
characterization of uncertainty because models are restricted to
subspace spanned by initial ensemble and uncertainty is
characterized by a Gaussian centered at the produced estimate of
the conditional mean.
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Ensemble Smoother (ES)

Comment: For history-matching with gradient-based methods
some form of damping at early iterations is usually necessary to
avoid getting trapped in an excessively rough model which does
not give a very good history match (Li at al., SPEJ, 2003, Gao and
Reynolds, SPEJ 2006.)
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Multiple Data Assimilation with ES (or EnKF)

Assimilate the same data multiple times with inflated data
covariance (CD).

Single and multiple data assimilations are equivalent for the
linear-Gaussian case as long as the inflation coefficients of CD

satisfy the following condition:

Na
∑

i=1

1

αi
= 1? (ex. αi = Na for i = 1, . . . , Na).

Samples correctly for the linear case.

For the nonlinear case, we replace a single (and potentially large)
correction by Na smaller corrections.

?Proof in Computers & Geosciences 2013
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ES-MDA

Parameter estimation method.

d1 d2 d3
Time

U
pd
at
es

History Forecast

Update equation:

ma
j = m f

j + eC
f
MD

�

eC f
DD+αiCD

�−1�

duc, j − d f
j

�

.

eC f
MD and eC f

DD calculated from the updated ensemble at each
iteration.
Same data assimilated Na times with αi satisfying:
∑Na

i=1

1

αi
= 1 (ex. αi = Na for i = 1, . . . , Na).
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ES-MDA Procedure

1 Choose the number of data assimilations, Na, and the coefficients
αi for i = 1, . . . , Na. Generate the initial ensemble denoted by
{ma

j }
Ne
j=1

2 For i = 1 to Na:
1 Set m f

j = ma
j for j = 1, 2, · · ·Ne.

2 Run the ensemble from time zero.
3 For each ensemble member, perturb the observation vector using

duc, j = dobs +
p
αiCDzd ,

where zd ∼ N(0, INd
).

4 Compute covariances and update the ensemble using

ma
j = m f

j + eC
f

MD

�

eC f
DD +αiCD

�−1�

duc, j − d f
j

�

.

for j = 1, 2, · · · , Ne.
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Ensemble Smoother With Multiple Data Assimilation

ES-MDA was proposed by Emerick and Reynolds in 2011.
Motivated by analogy of ES/EnKF with a single iteration of
Gauss-Newton iteration (Reynolds et al., 2005, 2006) and the
need to provide regularization and damping at early iteration.

Avoids statistical inconsistencies between updated models
parameters and states that can occur with EnKF.

Truly black box and completely parallelizable.
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Complex Geologies, Facies Modeling

When gridblock permeabilities, porosities, can described as
Gaussian random fields, assisted history matching is relatively
straightforward. But in many (most) situations, we really to
estimate the distribution of facies together with the distribution of
the rock property fields within the facies.
For random looking facies distributions, pluri-Gaussian methods
have proven potential: [Liu and Oliver(2003)] and more recent
work by Dean Oliver and his colleagues.
Sebacher, B., R. Hanea, and A. Stordal, The adaptive
plurigaussian simulation (APS) model versus the truncated
plurigaussian simulation (TPS) model used in the presence of hard
data, in Geostatistics Valencia 2016. For more complicated
models such as channelized systems:
Kernel PCA: Sarma, P., L. J. Durlofsky, and K. Aziz, Kernel
principal component analysis for efficient differentiable
parameterization of multipoint geostatistics, Mathematical
Geosciences, 2008.

Al Reynolds Assisted History Matching IPAM Workshop III, March 22, 2017 (66/95)



Complex Geologies, Facies Modeling

Discrete Cosine Transforms: B. Jafarpour and D. B. McLaughlin,
Efficient Permeability Parameterization With the Discrete Cosine
Transform, 2007 RSC, paper SPE 106453.

Hai X. Vo and Louis J. Durlofsky, “Data Assimilation and
Uncertainty Assessment for Complex Geological Models using a
New PCA-Based Parameterization,” Computational Geosciences,
2015. (Combines optimized principal component analysis (O-PCA)
with RML history matching that can be applied to non-Gaussian
models.

History matching of multi-facies channelized reservoirs using
ES-MDA with common basis DCT, Zhao, Yu and Forouzanfar,
Fahim and Reynolds, Albert C, Computational Geosciences, 2016.
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Methodology-DCT

Step 1 - Sampling

Generate the prior ensemble using MPS algorithm or object-based
modeling.

Step 2 - Common basis DCT

Implement DCT for the facies field, m facies, j , of the jth ensemble
member to obtain Φ j and v j .

Construct common set of basis function, Φ̄, and recalculate the
corresponding coefficients, v ′j .
Note: we use v j to replace v ′j in the following text.

Assembly the model parameters vector y by

y =
�

vT, mT
shale, mT

levee, mT
sand

�T
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Methodology

Step 3 - ES-MDA & Post-processing

Update the model parameters vector of the jth ensemble member,
y j , to obtain vupdated

j .

Reconstruct the continuous facies field, m̃updated
facies, j , with common

basis set, Φ̄, and updated coefficients, vupdated
j .

Obtain the discrete facies field, mupdated
facies, j , by implementing the

post-processing technique, [Vo and Durlofsky(2015)].

Renew the petrophysical property fields of the entire reservoir,
then start next iteration of ES-MDA.
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HM of channelized reservoir: 3D case

Reservoir dimension: 50× 50× 5 with ∆x =∆y = 100 ft and
∆z = 20 ft

3 facies: shale (0, k=20mD, ln(k̄)=2.996, σ(ln(k))=0.3),
levee (1, k=200mD, ln(k̄)=5.298, σ(ln(k))=0.3),
sand (2, k=2000mD, ln(k̄)=7.601, σ(ln(k))=0.3)

Two-phase (oil and water) flow

Models are generated using object-based modeling

Initial pressure: 5000 psi, initial water saturation: 0.2

4 injectors and 9 producers

Known facies hard data at all well locations

History matching period: 10 years, prediction period: 5 years

Ne = 200, Nc = 100 (retained number for each layer), Na = 8
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HM of channelized reservoir: 3D case

Two geological zones: zone 1 (layers 1 and 2), zone 2 (layers 3
through 5)

(a) True layer 1 (b) True layer 2

(c) True layer 3 (d) True layer 4 (e) True layer 5
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HM of channelized reservoir: 3D case

True model and three prior realizations: layer 1 (first row), layer 3
(second row) and layer 5 (third row)

(a) True (b) Realization 1 (c) Realization 2 (d) Realization 3
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HM of channelized reservoir: 3D case

True model and three posterior realizations: layer 1 (first row),
layer 3 (second row) and layer 5 (third row)

(a) True (b) Realization 1 (c) Realization 2 (d) Realization 3
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HM of channelized reservoir: 3D case

Data match results

(a) P1 water flow rate (b) P5 water flow rate (c) P8 water flow rate

(d) I2 water injection rate (e) I3 water injection rate (f) I4 water injection rate
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Field Case 1

Upper zone of a turbidite reservoir in
Campus Basis.

Current model: manual history matching.

Very clean sandstones with high permeability
(1–20 Darcy).

Observed data:
3D seismic (P-impedance) before
production.
Time-lapse (4D) seismic after 5 years of
production.
10 years of production data (7.6 years for
history matching and 2.4 for forecast).
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Field Case 1, Emerick and Reynolds, SPE 163675

Initial ensemble:
200 models.
Porosity using sequential Gaussian simulation (SGS).
NTG using SG co-simulation with porosity.
Permeability with SGS using well testing interpretation data as
“hard data.”

Data assimilation with EnKF and ES-MDA.

Both methods with localization.
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Observed 3D Seismic

Inverted P-impedance data.
Average P-impedance over all layers of the model.

P-impedance (kg/m2s) Reservoir thick (m) Active data

Residual (kg/m2s) Variograms (residual)

0.0E+00

4.0E+09

8.0E+09

1.2E+10

0 5 10 15 20

Distance (gridblocks)

Va
rio

gr
am

x-dir

y-dir

Model

Spatially
correlated noise
with range of
500 meters.
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Water Rate (P-86)

Manual history matching

EnKF

Initial

ES-MDA (4×)
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Permeability – Ensemble Mean

Manual history matching

EnKF

Prior mean

ES-MDA (4×)
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Computational Cost

The CPU time of ES-MDA (4×) was only 4% higher than the CPU
time of EnKF.
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Comments History Matching and Uncertainty Quantification

Randomized maximum likelihood with adjoint gradients and
quasi-Newton trust region method samples modes of the
distribution but does not give a strictly correct sampling. Proposal:
Find multiple modes (local minima) with gradient-based RML,
cluster if necessary and then build a Gaussian mixture model to
use as a proposal distribution. See my talk at Workshop III, Data
Assimilation, Uncertainty Reduction and Optimization for
Subsurface Flow, May 23, 2017.

Common industry practice: Reduce model to a small number of
parameters; use ED to build a proxy models commonly a set of
response surfaces. Response surface used as the forward model
when proposing new models in a MCMC procedure (Chevron).
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End of Presentation

THIS ENDS MY TALK.
However, there are a few additional slides on matrix inversion lemmas,
probability and one very basic slide on linear algebra.
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Matrix Inversion Lemmas

First matrix inversion formula is

(C−1
M + GT C−1

D G)−1GT C−1
D = CM GT (CD + GCM GT )−1,

Second matrix inversion lemma is

(C−1
M + GT C−1

D G)−1 = CM − CM GT (CD + GCM GT )−1GCM ,
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Derivation of First Matrix Inversion Lemma

Start with the following identity:

GT C−1
D (CD + GCM GT ) = (C−1

M + GT C−1
D G)(CM GT )

Because CD and CM are real-symmetric positive definite,
(CD+GCM GT ) and (C−1

M +GT C−1
D G) are also real-symmetric positive

definite and hence nonsingular.
Premultiplying the preceding equation by (C−1

M + GT C−1
D G)−1 and

postmultiplying by (CD + GCM GT )−1 gives

(C−1
M + GT C−1

D G)−1GT C−1
D = CM GT (CD + GCM GT )−1,

which we refer to as the first matrix inversion lemma (identity). We will
use it to derive the second matrix inversion lemma on the next slide.
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Derivation of the Second Matrix Inversion Lemma

We derived the first matrix inversion lemma:

(C−1
M + GT C−1

D G)−1GT C−1
D = CM GT (CD + GCM GT )−1,

Now note that

INm
= (C−1

M + GT C−1
D G)−1(C−1

M + GT C−1
D G)

= (C−1
M + GT C−1

D G)−1C−1
M + (C

−1
M + GT C−1

D G)−1(GT C−1
D )G.

Using the first matrix inversion lemma, we can rewrite the preceding
equation as

INm
= (C−1

M + GT C−1
D G)−1C−1

M + CM GT (CD + GCM GT )−1G.

Postmultiplying by CM and rearranging

(C−1
M + GT C−1

D G)−1 = CM − CM GT (CD + GCM GT )−1GCM ,

which we refer to as the second matrix inversion lemma. Note that if G
is the sensitivity matrix, then the LHS of the preceding equation is CMAP.
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Orthogonality of Four Principal Subspace associated with
Nd × Nm matrix G

(i) Every row of G is orthogonal to N(G). This means that R(GT )
and N(G) are orthogonal subspaces of RNm and
R(GT )

⋂

N(G) = {0}. Moreover since
dimR(GT ) + dim N(G) = Nm, R(GT )

⋃

N(G) = RNm .

(ii) Every column of G is perpendicular to N(GT ) which means that
R(G) and N(GT ) are orthogonal subspaces of RNd and
R(G)

⋂

N(GT ) = {0}.
Similar to item (i), we also have that R(G)

⋃

N(GT ) = RNd .
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Continuous Random Variable

Definition: X is a continuous random variable if the probability of X
taking the value x for any x is zero. We write this as

P(X = x) = 0, −∞< x <∞. (44)

When this is the case, it is often more useful to speak of the probability
density, or the probability density function (pdf). A pdf is any
nonnegative function f such that

∫ ∞

−∞
f (x) d x = 1. (45)
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Random Vector

A continuous random vector X = [X1, X2, · · ·Xn]T is defined similarly.
A nonnegative function fX (x) is a (joint) probability density function for
X if

∫

Rn

fX (x) d x = 1. (46)

The probability that a realization x of X lies within the region
a1 ≤ X1 < b1, . . . , and an ≤ Xn < bn is

P(a1 ≤ X1 < b1 and . . . and an ≤ Xn < bn)

=

∫ b1

a1

· · ·
∫ bn

an

fX (x1, . . . , xM ) d x1 . . . d xM (47)
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Marginal PDF

The marginal probability density for the random variable X i is found by
integrating the joint probability density over the remaining variables. For
example, the marginal density for the random variable X1 is

fX1
(x1) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fX (x1, x2, . . . , xn) d x2d x3 . . . d xn. (48)
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Conditional PDF

The conditional probability density of X given Y is defined by

fX |Y (x |y) =
fX Y (x , y)

fY (y)
. (49)

In this case, we are computing the probability density that X is equal to
x when Y is equal to y . For reservoir characterization problems, we
might be interested in the conditional probability density for the
permeability at a particular location given a set of well test data.
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Bayes Theorem

From Eq. 49 we immediately see that

fX Y (x , y) = fX |Y (x |y) fY (y) = fY |X (y|x) fX (x). (50)

When we are interested in the conditional probability of a variable given
measurements of another variable, we rearrange the equations slightly
to obtain:

fX |Y (x |y) =
fY |X (y|x) fX (x)

fY (y)
. (51)

This result is called Bayes’ theorem. It provides the basis for computing
the conditional probability of reservoir parameters from a combination of
inaccurate measurements and a marginal probability density for
reservoir parameters.
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Expectation

The expected value of a function g of a random vector X whose
probability density is fX (x) is

E[g(X )] =

∫

Rn

g(x) fX (x) d x . (52)

The expected value (or expectation) of X is also called the mean
value and is often denoted µX or simply µ=

∫

Rn x fX (x) d x ..
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Covariance

Let X be a vector of random variables, i.e.,

X =
�

X1 X2 · · ·Xn

�T
(53)

and let µX be the expected value of X . The auto-covariance of the
elements of the random vector X is defined as follows,

CX X = E
h

(X −µX )(X −µX )
T
i

= E[X X T −µX X T − XµT
X +µXµ

T
X ]

= E[X X T ]− E[µX X T ]− E[XµT
X ] + E[µXµ

T
X ]

= E[X X T ]−µXµ
T
X −µXµ

T
X +µXµ

T
X

= E[X X T ]−µXµ
T
X

(54)
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Covariance Matrix

This is the covariance matrix given by

CX =













E[X1X1]−µ1µ1 · · · E[X1Xn]−µ1µn
E[X2X1]−µ2µ1 · · · E[X2Xn]−µ2µn

...
...

...
E[XnX1]−µnµ1 · · · E[XnXn]−µnµn













(55)

The components X i and X j are uncorrelated if

E[X iX j] = µiµ j (56)

in which case the covariance matrix is a diagonal matrix with the
variances of the X i on its diagonal.
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Covariance Matrix

If X and Y are random column vectors of dimension n, then the
covariance between X and Y is

cov(X , Y ) = CX ,Y = E
�

(X −µX )(Y −µY )
T�

=
�

E[(X i −µX i
)(Yj −µYj

)]
�

=
�

cov(X i , Yj)
� (57)

Letting ρi, j denote the correlation coefficient between X i and X j , i.e.,
ρi, j = (cov[X i , Yj])/(σX i

σYj
) and letting Dx and Dy , respectively, be

diagonal matrices with σX i
and σYi

, respectively as the ith diagonal
entry, we have

CX ,Y = Dx

�

ρi, j

�

Dy (58)

where
�

ρi, j

�

is the correlation matrix.
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