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Abstract. The subject of nonlinear wave equations has been transformed in

the last twenty years by three fundamental developments.
1. The emergence of sophisticated geometric techniques, i.e. techniques wich

involve only geometric constructions in the physical space.
2. Systematic application of Littlewood-Paley decompositions and introduc-

tion of paradi�erential calculus.
3. The development of Fourier spacetime techniques such as Strichartz type

inequalities and Bilinear estimates.
The goal of these lectures is to discuss some of the technical issues concerning
these advancements and illustrate them through the main new results which
they led to. We also plan to discuss some recent developments which require a
highly nontrivial cooperation of the geometric and Fourier methods and hint
towards a future powerful fusion of these seemingly irreconcilable points of
view.

The subject of nonlinear wave equations has been transformed in the last twenty
years by three fundamental developments.

1. The emergence of sophisticated geometric techniques, i.e. techniques wich
involve only geometric constructions in the physical space.

2. Systematic application of Littlewood-Paley decompositions and introduction
of paradi�erential calculus.

3. The development of Fourier spacetime techniques such as Strichartz type
inequalities and Bilinear estimates.

The goal of these lectures is to discuss some of the technical issues concerning
these advancements and illustrate them through the main new results which they
led to. We also plan to discuss some recent developments which require a highly
nontrivial cooperation of the geometric and Fourier methods and hint towards a
future powerful fusion of these seemingly irreconcilable points of view.

In the �rst lecture we shall review the basic estimates of solutions to the stan-
dard wave equation in Minkowski space and discuss various geometric and Fourier
methods to prove them. In the second lecture we shall discuss applications of these
techniques to semilinear equations such as Wave Maps, Maxwell-Klein -Gordon and
Yang Mills. Finally, in the last lecture, we shall discuss applications to quasilinear
equations related to the Einstein vacuum equations.
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1. Lecture I: Estimates for the standard wave equation

Consider the standard wave equation in Minkowski space Rn+1

�� = 0: (1)

The canonical, inertial, coordinates in Rn+1 are denoted by x�, � = 0; 1; : : : ; n rela-
tive to which the Minkowski metric takes the diagonal formm�� = diag(�1; 1; : : : ; 1).
We have x0 = t and x = (x1; : : : ; xn) denote the spatial coordinates. We shall use
throughout the notes the usual summation convention over repetead indices and
the standard conventions concerning raising and lowering the indices of vectors and
tensors. In particular, if x� = m��x

� , we have x0 = �t and xi = xi, i = 1; : : : ; n.

We shall use the notation @� = @
@x� and @t =

@
@x0 . We denote by �t0 the spacelike

hyperplanes t = t0. The wave operator is de�ned by � = m��@�� = �@2t +
P

i @
2
i .

In what follows we recall the basic known estimates for solutions of (1) which verify
the initial value problem at t = 0,

�(0; x) = f(x); @t�(0; x) = g(x) (2)

For convenience we denote �[0] = (f;D�1g) with D�1 the pseudodi�erential oper-
ator with symbol j�j�1.
Proposition 1.1 (Energy Identity, Inequality). The solutions (1), (2) verify,

E[@�](t) = E[@�](0) (3)

where

E[@�](t) =

Z
�t

(j@t�j2 +
X
i

j@i�j2)dx (4)

As a consequence we have the energy inequalities, for all s � 0,

k@�(t)kHs(Rn) � k @�(0) kHs(Rn)

Proof The energy identity can be proved both by geometric techniques, involving
only integration by parts, and by Fourier techniques, using Plancherel formula
together with the Fourier representation formula,

�(t; x) = (2�)�n
Z
eix��

�
cos tj�jf (̂�) +

sin tj�j
j�j g (̂�)

�
d� (5)

The higher energy inequalities are based on the commutation between � and @�.

Remark 1.2. The standard Sobolev embedding Hs(Rn ) � L1(Rn ), for s > n
2

allows us to get L1 bounds of solutions to (1) without using the explicit represen-
tation. This procedure generalizes to nonlinear equations in connection to the local
existence theorem.

Proposition 1.3 (Dispersive inequality). The solutions to (1), (2) verify,

j�(t)jL1 � ct�
n�1
2 kD n+1

2 �[0] kL1 (6)
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Remark 1.4. In fact 6 is not quite right, the correct estimate holds if we replace
the L1 norm on the left by the BMO-norm, or, the L1 norm on the right by the
Hardy norm H1. The inequality (6) is true however, as it stands, if the Fourier
transform of the data �(0) = f , @t�(0) = g have their Fourier transform supported
in a dyadic shell �

2 � j�j � 2� for some �xed � 2 2N.

Proof Until very recently the only robust proof of (6) was based on the method of
stationary phase applied to the representation (5). In odd dimensions one can prove
a related form of the dispersive estimate using the spherical means representation of
solutions. We shall later discuss a derivation of (6) which avoids any representation
formulas.

Remark 1.5. The dispersive inequality provides two types of information. The �rst
concerns the precise decay rate of k�(t)kL1 as t ! 1 while the second provides
information about the regularity properties of k�(t)kL1 for t > 0. As far as im-
proved regularity is concerned the estimate (6) gains, for t > 0, n�1

2 derivatives

when compared to the Sobolev embedding L1(Rn ) �W 1;n(Rn ).

It is well known that as far as the asymptotic behavior is concerned (6) is not very
useful in applications to nonlinear wave equations. A more e�ective procedure to
derive the asymptotic properties of solutions of the wave equation is based on gener-
alized energy estimates, obtained by the commuting vector�elds method, together
with global Sobolev inequalities. In what follows we shall give a very fast presen-
tation of this point of view; we shall develop it in a more systematic manner in the
Complement to Lecture I. In what follows we review the commuting vector�elds
method for deriving the above decay rate estimate. The idea is to use the energy
identity (3) together with commuting vector�elds and a global form of the classical
Sobolev inequalities.

The Minkowski space-time Rn+1 is equipped with a family of Killing and conformal
Killing vector �elds, the translations T� = @�, Lorentz rotationsO�� = x�@��x�@�,
scaling S = t@t + xi@i and the inverted translations K� = �2x�S+ < x; x > @�.
Recall that x�, denote the standard variables x0 = t, x1; : : : ; xn, and x� = m��x

� .
The Killing vector �elds T� and O�� commute with � while S preserves the space
of solutions in the sense that �� = 0 implies �S� = 0 as [�; S] = 2�. We split
the operators O�� into the angular rotation operators (ij)O = xi@j � xj@i and the

boosts (i)L = xi@t + t@i, for i; j; k = 1; : : : ; n. Recall the energy expression in
(4), Based on the commutation properties described above we de�ne the following
\generalized energies "

Ek[@�] =
X

Xi1 ;::;Xij

E2[@Xi1Xi2 :::Xij�] (7)

with the sum taken over 0 � j � k and over all Killing vector �elds T; L�� as well
as the scaling vector �eld S. The crucial point of the commuting vector�eld method
is that the quantities Ek, k � 1 are conserved by solutions to (1). Therefore, if for
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all 0 � k � s the data f; g verify,Z
(1 + jxj)2k

�
jrk+1f(x)j2 + jrkg(x)j2

�
dx � Cs <1 (8)

then for all t, Es[@�](t) � Cs. The desired decay estimates of solutions to (1) can
now be derived from the following global version of the Sobolev inequalities ( see
[27]):

Proposition 1.6 (Decay Estimates[27]). Let � be an arbitrary function in Rn+1

such that Es[�] is �nite for some integer s >
n
2 + 1. Then,

j@�(t; x)j . (1 + t+ jxj)�n�1
2 (1 + jt� jxjj)� 1

2Es[u] (9)

for all t > 0. Therefore if the data f; g in (1) satisfy 8 , for 0 � k � s with some
s > n

2 , then for all t � 0,

j@�(t; :)jL1 . 1

(1 + t+ jxj)n�1
2 (1 + jt� jxjj) 12

(10)

Remark 1.7. Clearly this estimate, whose proof is purely geometric1, implies the
decay properties given by the dispersive inequality (6). In fact it provides more
information outside the wave zone jxj � t which �t very well with the expected
propagation properties of the linear equation �� = 0. On the other hand, as (9) is
really a global version of the Sobolev inequality, it seems that the estimates of the
Proposition 1.6 have no bearing on the improved regularity features of (6). This is
however not true as we shall see in the next proposition.

Remark 1.8. The commuting vector�elds([27], see also [46]) method was �rst devel-
oped as an alternate, vastly simpli�ed, proof for the almost global existence result of
[17]. The method is very versatile and applies to prove global existence in dimension
n > 3 and almost global existence in dimension n = 3 to large classes of nonlinear
wave equations, including fully nonlinear, for suÆciently small initial data. It also
combines with the null condition( see discussion below following proposition 1.22)
to prove global existence results in low dimensions n = 3; 2. The vector�eld method
was further developed by many other authors, in particular H. Lindblad[48] and T.
Sideris[63, 64, 65], see also Hormander[16] and references therein. A major modi�-
cation of the vector�elds methods appears in [12], where the vector�elds had to be
modi�ed. This will be discussed to some extent in Lecture III.

Proposition 1.9 ( see[30]). The commuting vector�elds method implies the dis-
persive inequality (6).

Proof Without loss of generality we may assume that @t� = g = 0 and that the
Fourier transform of f = �(0) is supported in the shell �

2 � j�j � 2� for some

� 2 2N. By a simple scaling argument we may in fact assume � = 1. Since �̂, the
Fourier transform of � relative to the space variables x, is also supported in the
same shell it suÆces to prove the estimates for r� or rk�. Next we cover Rn by an
union of discs DI centered at points I 2 Zn with integer coordinates such that each
DI intersects at most a �nite number cn of discs DJ with cn depending only on the

1In particular it does not require any explicit representation of solutions
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dimension n. Consider a smooth partition of unity (�I)I2Zn with supp�I � DI

and each �I positive. Clearly we can arrange to have, for all k,X
I2Zn

jrk�I(x)j � Ck;n (11)

uniformly in x 2 Rn . Now set, fI = �I � f , and �I the corresponding solution to
(1) with data �I(0) = fI ; @t�I (0) = 0. Clearly f =

P
I fI , � =

P
I �I . It suÆces

to prove that for all I ,

krk�I (t)kL1 � Cn;k(1 + t)�
n�1
2

n+k+1X
j=0

kDjfIkL1 (12)

with a constant Cn;k depending only on n and k. Indeed if (12) holds true we

easily infer that, krk�(t)kL1 � Cn;k(1+ t)
�n�1

2

Pn+k+1
j=0 kPI rj�IkL1kfkL1 and

therefore, in view of (11) krk�(t)kL1 � Cn;k(1 + t)�
n�1
2 kfkL1 :

It therefore remains to check (12). Without loss of generality, by performing a space
translation, we may assume that I = 0. Applying the proposition 1.6 to  = r�0
we derive, for s� the �rst integer strictly larger than n

2 + 1,

k (t)kL1 � c(1 + t)�
n�1
2 Es� [�0](t)

� c(1 + t)�
n�1
2 Es� [�0](0):

Since the support of �0 is included in in the ball of radius 1 centered at the origin
we have,

Es� [�0](0) � Cn

s�+1X
j=0

kDjf0kL2 :

Finally, according to the standard Sobolev inequality in Rn , kfkL2 � ckrn
2 fkL1 ;

we conclude with,

k (t)kL1 � c(1 + t)�
n�1
2

n+2+1X
j=0

kDjf0kL1

as desired.

Intepolating between the energy and dispersive inequalities one derives the so called
Strichartz-Brenner result,

k�(t)kLr � cjtj�
(r)kr�@�(0)kLr0

with 
(r) = (n� 1)( 12 � 2
r ) ,

1
r +

1
r0 = 1, r � 2 and scaling condition n

r = �
(r)�
� � 1 + n

r0 . This leads, by a standard TT � argument, Hardy -Littlewood-Sobolev
inequalities and an application of the Littlewood-Paley theory, to the generalized
Strichartz type inequalities.
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De�nition 1.10. A pair of real positive numbers (q; r) is said to be wave admissible
if,

2

q
� 
(r) = (n� 1)(

1

2
� 2

r
); q � 2; (q; r; n) 6= (1; 1; 3)

Proposition 1.11 (Strichartz Type Inequalities). The solutions to the initial value
problem (1)-(2) verify,

k�kLq
tL

r
x([0;T ]�Rn) � ck�[0] kH� ; � = n(

1

2
� 2

r
)� 1

q
(13)

Remark 1.12. Strichartz himself has proved only estimates in the isotropic case
q = r. The other estimates are due to Pecher, Ginibre-Velo, Lindblad-Sogge and
Keel-Tao. For the �nal version of these estimates, and precise references, we refer
to Keel-Tao[20].

Remark 1.13. Strichartz type inequalities play a crucial role in many recent ad-
vances of the theory of nonlinear wave equations. Observe that the steps involved
in deriving (13), at �xed frequency, from the energy identity and dispersive in-
equality are quite soft, they can be traced back to the Duhamel's principle and
uniqueness of the initial value problem2. Both apply to general linear wave equa-
tions with variable coeÆcients and require very little regularity of the coeÆcients.
Thus the main building blocks of the Strichartz type inequalities are (3) and (6).

All estimates discussed so far refer to individual solutions of the wave equation (1).
They turn out to be of limited value in application to wave equations which contain
derivatives in the nonlinear terms. A new point of view has developed in the last
ten years, according to which one obtains far more 
exibility by estimating directly
bilinear or even multilinear expressions involving multiple solutions of (1).

Proposition 1.14 (Bilinear Strichartz[47]). Let �;  be two solutions of (1). As-
sume n � 2 and that the pair (q; r) is wave admissible. Then,

kD�(� )kLq=2t Lr=2x . k�[0]k _Hs1 k [0]k _Hs2 (14)

where �; s1; s2 verify,

0 < � < n� 2n

r
� 4

q
;

0 < s1; s2 <
n

2
� n

r
� 1

q
;

s1 + s2 + � = n� 2n

r
� 2

q
:

Proof The proof is based on the following microlocal version of the dispersive
inequality,

2There exists a straightforward derivation of (13) from (3) and (6) without using explicit rep-
resentations, see [?]. The uniqueness of the I.V.P. is a consequence of the basic energy inequality.
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Proposition 1.15 (Improved Dispersive Inequality[47]). Consider a solution to (1),
(2) whose initial data have their Fourier transform supported in a ball of small ra-
dius � inluded in the unit dyadic ring 1

2 � j�j � 2. Then

j�(t)jL1 � c� t�
n�1
2 k�[0] kL1 : (15)

The improved dispersive inequality follows easily from the standard stationary
phase method. We don't have yet a satisfactory geometric derivation.

Now consider more general bilinear estimates, of the form

kD
D

+
+ D


�
� (� )k

L
q=2
t L

r=2
x
. k�[0]k _Hs1 k [0]k _Hs2 ; (16)

where � and  solve (1). Here D
 ; D

+
+ ; D


�
� are multipler operators with symbols

j�j
 , ��j� j + j�j��
+ and
��j� j � j�j��
� . In the case q; r = 4 all such estimates are

known. Special cases of the following theorem have appeared �rst in [31] and later
in [37, 44, 39]. The complete solution was carried out recently by Foschi-Klainerman
[14], see also [69].

Proposition 1.16 (Bilinear Estimates[14]). Let n � 2 and 
; 
�; 
+; s1; s2 2 R.
The estimate

kD
D

+
+ D


�
� (� )kL2

tL
2
x
. k�[0]k _Hs1 k [0]k _Hs2

is satis�ed by the solutions of (1) for all initial data i� the following conditions
hold:


 + 
+ + 
� = s1 + s2 � n� 1

2
;


� � �n� 3

4
;


 > �n� 1

2
;

si � 
� +
n� 1

2
; i = 1; 2;

s1 + s2 � 1

2
;

(si; 
�) 6=
�
n+ 1

4
;�n� 3

4

�
; i = 1; 2;

(s1 + s2; 
�) 6=
�
1

2
;�n� 3

4

�
:

These estimates are intimately tied to null quadratic forms.

De�nition 1.17. Let �;  be two smooth functions on Rn+1 . We de�ne,

Q0(�;  ) = m��@��@� 

Qij(�;  ) = @i�@j � @i @j�

Q0i(�;  ) = @i�@t � @i @t�
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De�nition 1.18. If �;  be distributions in S 0(Rn+1 ) whose spacetime Fourier

transform b�; b are functions. We write � -  i� jb�j � C b .
Lemma 1.19 (see [44] for references). The following hold true

Q0(�;  ) - D+D�(� ) (17)

Qij(�;  ) - D
1
2D

1
2�(D

1
2�D

1
2 ) (18)

Remark 1.20. Similar formulas can be derived for Q0i. One can use the Lemma
above together with the bilinear estimates of proposition 1.16 to derive nontrivial
L2- spacetime estimates for the null quadratic forms.

Remark 1.21. Though the gain of regularity manifest in the bilinear estimates of
proposition 1.16 is a development of the last ten years, the importance of null
quadratic forms, for applications to nonlinear equations, was known before in con-
nection with gain of decay. Here is a typical fact.

Proposition 1.22 (Decay for null forms[28]). Let �;  be two solutions of (1) and
assume that their initial data verify the weighted Sobolev norm bounds (8), for
suÆciently large s. Then, for any of the null forms Q0; Qij ; Q0i we have the decay
estimates,

kQ(�;  )(t)kL2(Rn) � Ct�n (19)

as t!1.

The proof is an immediate consequence of the following re�nement of the decay
estimates of Proposition 1.6.

Proposition 1.23 (Peeling Decay Properties). Let � be an arbitrary function in
Rn+1 such that Es[�] is �nite for some integer s > n

2 + 2. Let E� = @r � @r, with

@r =
P

i
xi

jxj@i. Consider also
3, at every point of Rn+1 , vectors (EA)

n�1
A=1, such that

< EAE� >= 0 and < EA; EB >= ÆAB. Set jr= �j2 =
Pn�1

i=1 EA(�)
2. We have,

kE+�(t)kL1 .
�1
t

�n+1
2

kr=�(t)kL1 .
�1
t

�n+1
2

k(1 + juj)E��(t)kL1 .
�1
t

�n�1
2

Remark 1.24. The improved decay of null quadratic forms as appears in proposition
1.22 was used, see [28], to get a small data global existence, in R3+1 , for a general
class of quasilinear wave equations verifying the null condition. These vector�eld
techniques used in the proof of the result in [28] have been extended by Sideris in
[63] and [64],[65] in applications to Wave Maps and nonlinear elasticity.

So far we have only considered general bilinear estimates of type (16) for q = r = 4.
For the case of \wave admissible " exponents q and r and 
� the estimates given
by proposition 1.14 are sharp, if s1 = s2. There exists a general bilinear conjecture

3E+; E forms the canonical null pair in Rn+1; together with the orthonormal vectors EA they
form a null frame.
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which states that under suitable restrictions on the exponents 
; 
+; 
�; s1; s2 the
estimates (16) are true. Some very important cases of this conjecture were proved
true by T. Tao [68] using ideas developed by T. Wol�[76] in connection to his recent
important work on the cone restriction conjecture. I want however to end this �rst
lecture with one important, very simple, ingredient in these recent developments.
This is the idea that a general wave can be decomposed into tubes.

De�nition 1.25. We say that a wave � is �wave if its initial data verify

@t�(0) = �ip���(0)
or in Fourier representation @t� (̂0; �) = �ij�j� (̂0; �): Observe that any wave can
be decomposed between into �waves according to the formula

� = �+ + ��

where the initial data for �� is given by ��[0] = P��[0];

P��[0] := (
�(0)� i(��)�1=2�t(0)

2
;
�t(0)� i(��)1=2�(0)

2
):

Remark 1.26. Observe that the solutions �+; �� are uniquely de�ned by their data.
In other words we only had to decompose the data of � to de�ne them. They can
however be represented by Fourier transform as follows,

��(t; x) =
Z
e�itj�jeix�� \P��[0](�)d�: (20)

Proposition 1.27. Consider � = �� a minus wave with ��[0] (essentially) sup-
ported in the ball B = B(0;�0), �0 > 1 and its Fourier transform supported in the

region f�= 1
2 � �1 � 2; j�0j � 1

�0
g where j�0j = p

�22 + � � � �2n. For any t � 0 we

consider the region T+(t;�) = fx= jxj � t+�0;
��x1 � t

��2 + jx0j2 � �2g. Then, for
all t verifying �0 � � � t � �20 we have:

k@��(t)kL2(�tnT+(t;�)) � CN (
�0
�
)NE(�)

1
2

Proof The standard proof of the proposition is based on a simple integration
by parts in the integral representation formulas (20). One can also give a purely
geometric proof based on commuting vector�elds[43].

The proof by vector�elds methods of the preceding proposition combined with the
null estimates of proposition 1.22 and the important idea of \induction on scales"
pioneered by T. Wol�[76] and T. Tao[68] allows us4 to give a purely geometric proof
of the following bilinear estimate,

Proposition 1.28. Let �;  be two solutions of (1) and Q one of the null forms
Q0, Qij or Q0i. Then,

kQ(�;  )kL2(Rn+1)k . kD�[0]kL2(Rn)kD
n+1
2 �[0]kL2(Rn) (21)

4This is work on progress in collaboration with I Rodnianski and T. Tao.
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This estimate, which is a particular case of Proposition 1.16, was �rst proved by
Machedon and I, see [31], by relying heavily on the spacetime Fourier transform of
Q(�;  ).It has been used in the proof of �nite energy global existence of solutions
to the Yang-Mills[34], Maxwell-Klein-Gordon[33] and critical power Yang- Mills-
Higgs[19].
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2. Lecture II: Applications to semilinear wave equations

We are interested in the Cauchy problem for important geometric systems such as
Wave Maps, Yang Mills and Maxwell Klein-Gordon equations. In a �rst approxi-
mation all these equations can be put in the form

�� = N (�);

where � = �@2t + � is the standard wave operator on R � Rn , � =
Pn

1 @
2
j is

the Laplacian on Rn , � = �(t; x) takes values in RN for some N � 1 and N is a
nonlinear operator which is local with respect to the time variable(i.e., N (�)(t; �)
only depends on �(t0; �) for t0 in any neighborhood of t).

We prescribe Cauchy data on the initial hypersurface t = 0:

(�; @t�)t=0 = (f; g) 2 Hs �Hs�1

where Hs = ff : (I ��)s=2f 2 L2g. For simplicity we write �[0] 2 Hs.

We shall in fact concentrate on systems of the following types:

1. Wave Maps :

��I +
X
J;K

�IJK(�)Q0(�
J ; �K) = 0: (WM)

Here, �I denotes the I-th component function of �, the �IJK are smooth
functions from RN into R and Q0 is the null form

Q0(�;  ) =

nX
�=0

@��@
� = �@t�@t +

nX
j=1

@j�@j :

2. Yang-Mills Type:

�� = D�1Q(�; �) +Q(D�1�; �); (\YM")

where D� = (��)�=2 and Q stands for any bilinear operator of the following
type: Given vector-valued functions � and  , the I-th component function of
Q(�;  ) is a linear combination, with constant, real coeÆcients, ofQij(�

J ;  K)
for all 1 � i < j � n and all J;K, where Qij is the null form

Qij(�;  ) = @i�@j � @i�@j :

(The two Q's on the right hand side of (\YM") may represent two di�erent
such operators.)

3. Maxwell-Klein-Gordon Type:(
�� = D�1Q( ;  );
� = Q(D�1�;  );

(\MKG")

where � = (�1; : : : ; �N1),  = ( 1; : : : ;  N2), N = N1 + N2 and Q has the
same meaning as before. Thus (\MKG") is a special case of (\YM").
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The following theorem summarizes the main well-posedness results known today.

Main Theorem

i. ([35, 44].) If n � 2 and s > sc =
n
2 , then (WM) is locally well-posed for initial

data in Hs(Rn ).

ii. ([72],[73], ) The system (WM) is locally well posed for small data in the Besov

space B
n
2 ;1
2 (Rn ) for all n � 2.

iii. ([70],[41], [71], ) If n � 5 and the target manifold admits a bounded paral-
lelizable structure the wave map system is \weakly well posed" for small data in
H

n
2 (Rn ). The same result holds true for n � 2 if the target manifold is a standard

sphere Sk.

iv. ([33], [34], [19]) If n = 3 the full MKG and YM systems are globally well
poesed for large data in the energy norm, H2(Rn ). The result is also true for the
Yang-Mills -Higgs system with critical power nonlinearities.

v. ( [13], [21].) If n = 3 the full MKG system is locally well posed if s > 3
4 , and

globally well posed if s > 7
8 .

vi. ([39], [47])If n = 4 the reduced MKG and YM type systems are locally well
posed for s > sc = 1.

2.1. Motivation for the Main Theorem. Consider the system

�u = F (u; @u); (22)

where u : R1+n ! RN , @u = (@tu; @1u; : : : ; @nu) and F is a smooth RN -valued
function satisfying F (0) = 0. For this equation one has the following standard
existence and uniqueness result:

Theorem 2.2 (Classical Local Existence). Equation (22) is locally well-posed for
initial data in Hs �Hs�1(Rn ) for all s > n

2 + 1. This means that for any initial
data u[0] 2 Hs(Rn ), s > n

2 + 1, there exists a T > 0 and unique solution

u 2 C0([0; T ]; Hs(Rn )) \ C1([0; T ]; Hs�1(Rn )):

Moreover the solution depends continuously(in fact analytically) on the data.

Remark 2.3. The proof of this very classical result is based only on simple energy
estimates, the L1 � Hs Sobolev embedding, and some simple interpolation in-
equalities. Moreover the proof extends without major diÆculties to very general
classes of evolution equations including quasilinear systems of wave equations.
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Remark 2.4. The result is far from being sharp insofar as the regularity assumption
on the initial data is concerned. The issue of optimal well posednes is of fundamental
importance and has generated a large amount of work in the last 10 years.

To understand better the issue of optimal local well-posedness, in the context of our
examples (wave maps, Maxwell-Klein-Gordon and Yang-Mills equations), we need
to de�ne the critical well-posedness (henceforth abbreviated WP) exponent sc. All
our equations have a natural scaling associated to them, and sc is the unique value
of s for which the _Hs� _Hs�1-norm of the initial data is invariant under this scaling.
For example, if u solves (WM), then so does

u�(t; x) = u(�t; �x);

for any � > 0. Since ku�(t)kHs = �
n
2�sku(�t)kHs , the critical WP exponent for

(WM) is sc =
n
2 .

The same principle works for (MKG), (YM). In fact, they both have critical WP
exponent sc =

n�2
2 .

With this de�nition we formulate the following, see [29]:

General WP Conjecture

1. For all basic �eld theories the initial value problem is locally well posed for
initial data in Hs, s > sc.

2. The basic �eld theories are weakly5 globally well-posed for all initial data with
small Hsc �Hsc�1-norm.

3. The basic �eld theories are ill posed for initial data in Hs �Hs�1, s < sc.

To prove local posedness for s > sc one proceeds by Picard iteration in a suitable
Banach space. Consider the Cauchy problem

�u = N (u); (u; @tu)t=0 = (f; g)

The 0-th iterate u0 is just the homogeneous part of the solution:

�u0 = 0; (u; @tu)t=0 = (f; g):

The subsequent iterates are given inductively by

uj+1 = u0 +�
�1N (uj)

for j � 0, where ��1 is the operator which to any suÆciently regular F assigns the
solution v of �v = F with (v; @tv)t=0 = 0.

If we are to prove existence of a local solution of �u = N (u) with initial data in
Hs �Hs�1 by iteration, we must be able to prove that the iterates remain in the
data space:

f 2 Hs; g 2 Hs�1 =) uj(t) 2 Hs; @tuj(t) 2 Hs�1 (23)

5The solutions may fail to depend smoothly (analytically) on the data.
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for all j � 0 and all t in some interval (0; T ). For j = 0, (23) is trivial, but the case
j = 1 already o�ers valuable insights.

De�nition 2.5. We will say that the �rst iterate is WP for initial data in Hs if
(23) holds for j = 1 and all (f; g) 2 Hs �Hs�1.

Example 1. Consider the model problem

�u = (@tu)
2;

where u is real-valued. This equation has the same scaling properties as (WM),
hence the WP-exponent is sc =

n
2 . We want to �nd the lower bound for the set of

s such that the �rst iterate u1 is WP for initial data in Hs. A simple calculation
involving Duhamel's principle, shows that this reduces to proving an estimate of
the type Z

Rn�Rn
K(�; �)f(�)g(�)h(� + �) d� d� . kfkL2kgkL2khkL2 (24)

for all f; g; h 2 L2(Rn ), where

K(�; �) =
< � + � >s�1

< � >s�1< � >s�1 �1 +��(�; �)
� (25)

�+ = j�j+ j�j � j� + �j; �� = j� + �j � ��j�j � j�j��: (26)

Here we use the notation < � >= 1 + j � j.

One can prove the following result concerning integral estimates of the typeZ
Rn�Rn

f(�)g(�)h(� + �)

< � >a< � >b
�
1 +��(�; �)

�c d� d� . kfkL2kgkL2khkL2 ; (27)

where �� are given by (26).

Proposition 2.6. Let a; b; c � 0. Then (27) holds if a+ b+ c > n
2 and c < n�1

4 .

Remark 2.7. It should be remarked that the estimate fails if a + b + c < n
2 or

c � n�1
4 , based on simple concentration type counterexamples.

Applying proposition 2.6 to the kernel (25) we need

s� 1 +min

�
1;
n� 1

4

�
>
n

2
;

i.e., s > max
�
n
2 ;

n+5
4

�
.

Thus, for the model equation �u = (@tu)
2 in dimension n = 3, the above example

shows that the �rst iterate is WP for initial data in Hs if s > 2 = sc +
1
2 ; in fact,

one can show that this fails to be true if s � 2. This should be compared to the
counterexamples of Lindblad [49] in dimension n = 3, which show that there are
equations of the type �u = q(@u), where q is a quadratic form on R4 , which are
ill posed for data in H2. However, if the quadratic form q is of null form type, one
can go almost all the way to the critical WP-exponent sc. The next two examples
verify this at the level of the �rst iterate.
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Example 2. Consider the equation6

�u = Q0(u; u);

where u is real-valued. Again the question of WP of the �rst iterate leads to the
problem of proving an estimate of the type (24), but because of the special null
structure of the operator Q0, the singular factors �� cancel out completely from
the denominator of the kernel. In fact, K is given by

K(�; �) =< � >�s + < � >�s;

so by Proposition 2.6, the �rst iterate is WP for data in Hs, s > sc =
n
2 .

Example 3. Consider the equation

�u = Q(u; u);

where u is vector-valued and Q(u; u) is a vector whose I-th component is a linear
combination of Qij(u

J ; uK) for all i; j; J and K. As in the preceding example, there
is a cancellation due to the null strucure of Qij , but in this case we only get rid of
half a power of ��. In fact, K is now given by

K(�; �) =
�
< � >�s+

1
2 + < � >�s+

1
2

��
1 +��(�; �)

�� 1
2

so the �rst iterate is WP for data in Hs, s > max
�
n
2 ;

n+3
4

�
.

By an obvious modi�cation, if we consider instead the equation

�u = Q(D�1u; u);

we �nd that the �rst iterate is WP for data in Hs, s > max
�
n�2
2 ; n�14

�
.

Higher Iterates Once the analysis of the �rst iterate is completed the really
hard work starts. In order to show that the iterate uk+1 ver�es (23) it does not
suÆce7 to use (23) for all previous uj , j � k. We need a much stronger functional
space intimately tied to the Strichartz and bilinear estimates described in the �rst
lecture.

Notation The Fourier transform of a tempered distribution u in Rn+1 is denoted
by Fu or bu, in any space-dimension. In frequency space we use coordinates (�; �) =
� = (�0; : : : ;�1), where � 2 R and � 2 Rn correspond to the time variable t and
the space variable x respectively. The Lorentzian inner product on R1+n is

< �; e� >= nX
�=0

��e�� = ��0e�0 + nX
j=1

�je�j ;
and the symbol of the wave operator � is � < �;� >= �2� j�j2. By j�j we always
mean the Euclidean norm j�j2 = �2 + j�j2.

6The equation below can in fact be trivially solved and analyzed, see the �rst page in the
introduction of [31].

7Except in the proof of the classical local existence result for s > sc + 1.
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De�nition 2.8. Let ��, ��+ and ��� be the multipliers given byd��f(�) = �
1 + j�j2��=2 bf(�);d��+u(�) = �
1 + j�j2��=2bu(�);

d���u(�) = �
1 +

< �;� >2

1 + j�j2
��=2 bu(�):

We de�ne the space Hs;�(Rn+1 ), which is adapted to the wave operator on R1+n

in the same way that Hs(Rn ) is adapted to the Laplacian on Rn .

De�nition 2.9. For s; � 2 R, de�ne
Hs;� =

�
u 2 S 0(Rn+1 ) : �s���u 2 L2(Rn+1 )

	
with norm kuks;� = k�s���ukL2 .

There is a remarkably simple connection between Hs;� and the space of solutions
of the homogeneous wave equation with data in Hs. In e�ect, every u 2 Hs;� is of
the form

u(t) =
1

2�

Z 1

�1

eit�u�(t)

(1 + j�j)� d� (Hs-valued integral) (28)

where fu�g�2R is a one-parameter family of solutions of (1) with data in Hs;
i.e., �u� = 0 and (u�; @tu�)t=0 = (f�; 0), where � 7! f� belongs to L2(R; Hs ).
Moreover, kuk2s;� =

R kf�jj2s d�.
An important consequence of (28) is the following:

Principle A linear or multilinear space-time estimate for solutions of the ho-
mogeneous wave equation with data in Hs implies a corresponding estimate for
elements of Hs;�, � > 1

2 .

The spaces Hs;� provide a rough framework for proving the Main Theorem. In
fact they are applicable only to prove part i) of the Main Theorem. All further
advancements have required the introduction of substantial re�nements of these
spaces. We refer the interested reader to our survey [45] for how the Hs;� spaces,
and their modi�cations, together with the bilinear and Strichartz estimates of the
�rst lecture and the principle mentioned above are used to prove the well posedness
results with s > sc of the Main Theorem. The case s = sc was entirely open until
the recent work of T. Tao which will be described in the next section.

2.10. Wave Maps with critical regularity. In what follos I will discuss the
breakthrough results on wave maps with critical regularity obtained recently by
T.Tao. His results illustrate in a powerful way the the interaction between geomet-
ric ideas, in physical space, and Fourier analysis techniques such as paradi�erential
calculus, Strichartz and bilinear estimates. It thus �ts very well within the frame-
work of these lectures
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His results apply to wave maps � : Rn+1 ! SN with SN the unit sphere in the
euclidian space RN+1 , for any dimensions n � 2. The case of dimension n � 5 is
a lot easier, however, allowing one to concentrate on Tao's main new idea of gauge
renormalization. I will present in fact an extension of Tao's n � 5 result, due to
Rodnianski and I[41], to a general class of target manifolds.

Let � : Rn+1 �! (N ; h) with (N ; h) a Riemannian manifold of dimension N .
Here Rn+1 denotes the standard Minkowski space endowed with the metric m =
diag(�1; 1; : : : ; 1):We denote by r the Levi-Civitta connection on TN , the tangent
bundle of N . In local coordinates yI ; I = 1; : : : ; N on N the wave maps equation
takes the familiar form

@�@��
I + �IJK@��

J@
�
Km�
 = 0: (29)

where �IJK are the Christo�el coeÆcients of the Levi-Civitta connection r on N
and �I ; I = 1; : : : ; N the components of the map � in local coordinates on N .
Let ea = eIa

@
@yI be an orthonormal frame of vector�elds and !a = !aI dy

I be the

corresponding dual basis of 1-forms !a(eb) = Æab . Since h(ea; eb) = Æab we infer that
hIJ =

P
a !

a
I!

a
J . De�ne,

�a� = !aI @��
I (30)

where �I are the components of the map � relative to the local coordinates yI onN .
Clearly, @��

I = eIa�
a
�: Given a function F onN we write @�F (�) =

@
@yI F (�)@��

I =
@
@yI F (�)e

I
d�

d
� = F;d(�)�

d
� where F;d = ed(F ).

We easily check that the functions �a� =< @��; ea > associated to a wave map
� verify8 the following divergence-curl system,

@��
a
� � @��

a
� = Ca

bc �
b
� �

c
� (31)

@��a� = ��abc �b� �c
 m�
 (32)

where, Ca
bc and �abc are respectively the structure and connection coeÆcients of the

frame,

[eb; ec] = Ca
bcea

rebec = �abcea

In view of the formula [eb; ec] = rebec �receb we infer that,

Ca
bc = �abc � �acb:

Since the frame ea is orthonormal, �abc =< rebec ; ea >= � < ec ;reb ea > and
therefore

�abc = ��cba: (33)

Also,

�abc =
1

2

�
Ca
bc + Cb

ac + Cc
ab

�
:

8Our description of wave maps expressed relative to an ortonormal frame follows closely that
of [11]. A similar formalism has been used earlier by Helein [15] in his well known work on
2-dimensional weak harmonic maps
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De�nition 2.11. We say that a Riemannian manifold N has a \ bounded par-
allelizable" structure if there exists an orthonormal frame (ea)

N
a=1 on N relative

to which the structure coeÆcients Ca
bc and their frame derivatives Ca

bc ; d1d2:::dk
are

uniformly bounded on N .

Remark 2.12. There are plenty of examples of bounded parallelizable manifolds.
To start with on any Lie group we can construct an orthonormal basis of left
invariant vector�elds ea relative to which the structure constants Ca

bc are constant
9.

The constant negative curvature manifolds HN , N > 2 are bounded parallelizable.
MoreoverH2, i.e. the hyperbolic plane, is a Lie group, see the relevant discussion in
section 3.1 of [11]. In addition any compact Riemannian manifold can be embedded
as a totally geodesic submanifold in a bounded parallelizable Riemannian manifold,
see [11].

Proposition 2.13. Let N be a Riemannian manifold and � : Rn+1 �! N a wave
map. The 1-forms �a� =< @��; ea > verify the equations, (31),(32) as well as the
system of wave equations,

2� = �2R� � @��+E (34)

with � = (�a�), R� = (Ra
b�)

N
a;b=1 and Ra

b� = �acb�
c
�: The components of E = (Ea

�)

are homogeneous polynomial of degree three relative to the components of � = (�a�)
with coeÆcients depending only on the structure functions Ca

bc and their derivatives
Ca
bc;d with respect to the frame.

Remark 2.14. It is essential to remark that the matrices R� are antisymmetric i.e.

Ra
b� = �Rb

a� (35)

This is an immediate consequence of (??). This shows that the well known \Helein
trick" of antisymmetrizing the form of the wave maps equations in the particu-
lar case when N is a standard sphere, a trick which plays a fundamental role in
Tao's work for the standard sphere [70], [71], is due in fact to a general feature
of the connection coeÆcients on any Riemannian manifold, expressed relative to
orthonormal frames.

We study the evolution of wave maps subject to the initial value problem

�(0) = '; @t�(0) =  =  a0ea (36)

' is an arbitrary smooth map de�ned from Rn with values in N and  =  a0ea and
arbitrary smooth map from Rn+1 to TN . Let 'ai =< @i'; ea >.

De�nition 2.15. We shall say that the initial data �[0] = (';  ) belongs to the

Sobolev space _Hs(Rn ), resp. Hs(Rn ), if all components 'ai ;  
a
i belong to the space

_Hs�1(Rn ), resp. Hs�1(Rn ). We write

k�[0]k _Hs =
X
a;i

�
k'ai k _Hs�1 + k ai k _Hs�1

�
and similarly for k�[0]kHs .

We are now ready to state our theorem, see[41].

9We refer to these as \constant parallelizable".
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Theorem 2.16. Let N be a Riemannian manifold endowed with a bounded paral-
lelizable structure. Assume n � 5 and that the initial data �[0] = (';  =  ai ea) is
in Hs for some n

2 < s. We make also the critical smallness assumption:

k�[0]k _H
n
2
� "

Then the wave map � with initial data �[0] can be uniquely continued in Hs norm
globally in time.

Remark 2.17. The theorem provides an extension of the result in [70] from the case
when the target manifold is a standard sphere to that of bounded, parallelizable
manifolds. The restriction on the dimension, n � 5, is the same as in [70]; this
allows us to rely only on Strichartz estimates. The dimensional restriction, for the
case of the standard sphere, was removed in [71] with the additional help of bilinear
estimates10, Hs;� spaces, and the re�ned methods of [73]. Even in light of [71] the
extension of our result to two dimensions does not seem to be straightforward11.

The proof of the Main Theorem relies on a local well-posedness result in Hs, s > n
2 .

We state the precise result below:

Theorem 2.18. Assume that the initial data �[0] 2 Hs(Rn ) for some s � s0 >
n
2 .

There exists a T > 0, depending only on the size of k�[0]kHs0 , and a unique solution
� of the system (31) , (32) de�ned on the slab [0; T ]� Rn verifying,

k�[t]kHs � Ck�[0]kHs

for all t 2 [0; T ] and C a constant depending only on T and s, s0 � n
2 and n.

Proof We use the Littlewood-Paley notation of [70]. Thus, for a function �(t; x)
we denote the projections Pk�(t; x) =

R
eix���(2�k�)� (̂t; �)d� where � (̂t; �) is the

space Fourier transform of � and �(�) = �(�)��(2�) with � a non-negative smooth
bump function supported on j�j � 2 and equal to 1 on the ball j�j � 1. Therefore
�(�) is supported in f 12 � j�j � 2g and Pk2Z �(2

�k�) = 1 for all � 6= 0. We also
de�ne P�k =

P
l�k Pl. Also for any interval I � Z we de�ne PI in an obvious

fashion.

Notation: We shall frequently use the notation A . B to denote A � cB for
some constant c > 0 which does not depend on any of the important parameters
used in our estimates.

Following [70] we introduce the notation

k�kSk = sup
q;r2A

2k(
1
q+

n
r�1)

�
k�kLq

tL
r
x
+ 2�kk@t�kLq

tL
r
x

�
(37)

10These were used to take advantage of the presence of the special null quadratic form
Q0(u; v) = m��@�u@bv in the special expression of wave maps to the standard sphere used
in [70], [71].

11This is due to the fact that one needs to treat other other types of null quadratic forms
than Q0. Also, the fact that we use a wave equation, see (34), in � corresponding to the �rst
derivatives of the map rather than the map itself, adds additional complications.
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where A = f(q; r)=2 � q; r �1; 1
q +

n�1
2r � n�1

4 g is the set of admissible Strichartz
exponents. Recall that,

Proposition 2.19 (Strichartz type estimates). For any �xed integer k and �(t; x)

a function on R�Rn such that the support of �̂ (t; �) is included in the dyadic region
2k�1 � j�j � 2k+1 we have the estimate,

k�kSk . k�(0)kH n�2
2

+ k@t�(0)k
H

n�4
2

+ 2k
n�4
2 k2�kL1

tL
2
x
:

In what follows we recall the de�nition of frequency envelope given in [70].

De�nition 2.20. A frequency envelope is an l2 sequence c = (ck)k2Z verifying

ck . 2�jk�k
0jck0 (38)

for all k; k0 2 Z. Here � is a �xed positive constant; as in [70] we take 0 < � < 1
2 .

In addition we need 0 < � < n�4
4 and 0 < � < n�3

4(n�1) .

We say that the _Hs norm of a function f on Rn lies underneath an envelope
c if, for all k 2 Z, kPkfk _Hs � ck: We shall write f <<s c or simply f << c when
there is no danger of confusion. It is easy to check that if kfk _Hs � " then there
exists an envelope c 2 l2 such that kckl2 . " and f <<s c. Indeed we can simply

take, ck =
P

k02Z 2
��jk�k0jkPkk _Hs .

De�nition 2.21. Fix 0 < � < min( 12 ;
n�4
4 ; n�3

4(n�1) ) and c a frequency envelope. We

say that the initial data �[0] =

�
�(0) = '; @t�(0) =  =  a0ea

�
lies underneath c

if, relative to our frame ea, we have for all k 2 Z,
kPk�[0]k _H

n
2
� ck:

We shall use the short hand notation �[0] << c:

The proof of our main theorem can be easily reduced to the following:

Proposition 2.22. ( Main Proposition) Let c be a frequency envelope12 with
kckl2 � ", 0 < T <1 and � = (�a�) verify the equations (31), (32), and therefore
also (34). Assume that, according to De�nition 2.21, the initial data veri�es the
smallness condition �[0] << c. Assume also the bootstrap assumption,

kPk�kSk([0;T ]�Rn) � 2Cck (39)

for all k 2 Z. Then in fact, for suÆciently small ", and all k 2 Z,
kPk�kSk([0;T ]�Rn) � Cck : (40)

Remark 2.23. In view of the scale invariance of both our equations and the small-
ness condition �[0] << c it suÆces to prove (40) for k = 0. Let 	 = P0�. We
need to prove that,

k	kS0([0;T ]�Rn) � Cc0 (41)

12verifying (38) with � < min( 1
2
; n�4

4
; n�3
4(n�1)

).
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Remark 2.24. To prove (41) we would like to apply Theorem 2.19 to the equation
obtained by applying the projection P0. to (34) i.e.,

�	 = P0(R� � @�� +E):

A straightforward application of the Strichartz inequalities will not work however.
Indeed according to Theorem 2.19

k	kS0 � c0 + kP0(R� � @��+E)kL1
tL

2
x

The cubic term E presents no diÆculty, the problem comes up when we try
to estimate P0(R� � @��) more precisely the part of it which corresponds to the
interaction between low frequencies of R and frequencies of � comparable to those
of 	. More precisely the most dangerous terms are of the form ~R � @	 with ~R =
P��10R. To estimate k ~R � @	kL1

tL
2
x
relative to the available Strichartz norms we

are forced to take 	 in the energy norm L1t L
2
x. This leaves us with ~R in the norm

L1tL
1
x for which we don't have any Strichartz estimates.

De�nition 2.25. We shall use, in what follows, Tao's convention to call an ac-
ceptable error any function, or matrix valued function, F on [0; T ]� Rn such that

kFkL1
tL

2
x([0;T ]�Rn) � C3"c0 (42)

Proposition 2.26. The matrix valued function P0� = 	 veri�es the equation

�	 = �2 ~R� � @�	+ error (43)

where ~R� = P��10R� = � � ~�� and ~�� = P��10��. Here \error" refers to an
acceptable error term in the sense of (42).

Proposition 2.27. The matrix valued function 	 veri�es an equation of the form,

2	 = �2@� ~� � @�	+ error (44)

where the potential ~� veri�es the following properties:

i.) The N � N matrix ~� is antisymmetric i.e. ~�t = � ~�. The space Fourier

transform of each component of ~� is supported in j�j � 2�10.

ii.) The following estimates hold for any ~�k = Pk ~�:

k ~�kkSk . 2�kCck (45)

k@ ~�kkSk . Cck (46)

Also,

k2 ~�kkSk . 2kCck (47)

iii.) Set �R� = ~R� � @� ~�. The following estimates hold for all Pk �R,

kPk �RkL1
tL
1
x

. C2c2k (48)

kPk �RkL1t L1x . 2kC2c2k (49)
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Let M be a large integer, depending on T , which will be chosen below. De�ne the
real N �N matrix valued function U to be

U = I +
X

�M<k��10
Uk

with the Uk de�ned inductively as follows,

Uk = 0 for all k < �M
U�M = I

Uk = ~�k � U<k for all �M < k � �10 (50)

with U<k =
P

k0<k Uk. Due to the fact that the matrices ~�k = Pk ~� are antisym-
metric we �nd the identity

U t
k � U<k + U t

<k � Uk = 0

whence,

U t
<k � U<k � I =

X
k0<k

U t
k0 � Uk0 (51)

Using this identity we can prove inductively that

kU<kkL1t L1x � 2

kUkkL1t L1x . Cck for k > �M (52)

as well as

kUkkL2
tL
1
x
. C2�k=2ck for k > �M: (53)

Also,

k@U<kkL1t L1x . 2kC2ck

k@UkkL1t L1x . 2kC2ck (54)

and

k@U<kkL2
tL
1
x

. 2k=2Cck

k@UkkL2
tL
1
x

. 2k=2Cck (55)

as well as,

k�U<kkL2
tL

n�1
x

. 2k(
3
2� n

n�1 )Cck

k�UkkL2
tL

n�1
x

. 2k(
3
2� n

n�1 )Cck (56)

Proposition 2.28. Assume that " is suÆciently small depending on C and M
suÆciently large depending on T;C; ". Then the matrices U verify the following
properties:

i.) Approximate orthogonality:

kU tU � IkL1t L1x ; k@(U tU � I)kL1t L1x . C2" (57)

In particular, for small ", U is invertible and we have,

kUkL1t L1x ; kU �1kL1t L1x . 1 (58)
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ii.) Approximate gauge condition:

k@�U � @� ~� � UkL1
tL
1
x
. C2" (59)

iii.) We also have,

k@UkL1t L1x ; k@UkL1
tL
1
x
. C2" (60)

k�UkL2
tL

n�1
x

. C2" (61)

Following [70] we are now ready to perform the gauge transformation

	 = U �W (62)

W veri�es the equation

2W = �2U�1(@�U � @� ~� � U)@�W (63)

� 2U�1@� ~� � (@�U)U�1	� U�1(�U)U�1	+ error

In view of Proposition 2.28 we derive,

Proposition 2.29. The matrix valued function W veri�es an equation of the form

�W = error:

Therefore, if " is suÆciently small,

k	kS0 . kWkS0 � k	[0]kH n�2
2

+ CC3"c0 � Cc0:

This is precisely (41) which ends the proof of the Main Proposition.

3. Lecture III: General Relativity and quasilinear wave equations

We start with our primary motivation to study the issue of optimal well-posedness
for quasilinear wave equations.

3.1. Cauchy problem in General Relativity. The primary object of Einstein's
general relativity is the space-time. This can be de�ned as a class of equivalence of
di�erentiable, oriented four dimensional Lorentz manifolds (M; g). We say that two
Lorentz manifolds (M; g), (M0; g0) are equivalent if there exists a di�eomophism
M �! M0 such that g0 = ��g. A space-time is simply a class of equivalence of
such Lorentz manifolds. The space-time metric g has to satisfy the Einstein Field
Equations,

R�� � 1

2
g��R = T��

with R�� the Ricci curvature, R the scalar curvature of the metric and T�� the
energy-momentum tensor of some matter�eld de�ned on (M; g). We restrict our-
selves to the particular case of vacuum i.e. T � 0 in which case the equations take
the form,



24 SERGIU KLAINERMAN

R�� = 0:

The evolution character of the Einstein equations is much more subtle than for
other equations as there is no intrinsic de�nition of a time variable t. It may seem,
therefore, equally ambiguous to talk about the initial value problem. This can be
de�ned, however, as follows:

De�nition 3.2. An initial data set is a triplet (�; �g; �k) consisting of a three dimen-
sional complete Riemannian manifold (�; �g) and a 2-covariant symmetric tensor k
on � verifying the constraint equations:

�rj�kij � �ri tr�k = 0

�R� j�kj2 + (tr�k)2 = 0

where �r is the covariant derivative, �R the scalar curvature of (�; �g). The scalar
tr �k is the trace of �k with respect to �g.

De�nition 3.3. An initial data set is said to be 
at, or trivial, if it corresponds to
a complete space-like hypersurface in Minkowski space with its induced metric and
second fundamental form. An initial data set is said to be assymptotically 
at(AF)
if there exists a system of coordinates (x1; x2; x3) de�ned in a neighborhood of
in�nity13 on � relative to which the metric �g approaches the euclidean metric and
�k approaches zero14 as

r =
p
(x1)2 + (x2)2 + (x3)2 !1:

De�nition 3.4. A Cauchy development of an initial data set (�; �g; �k) is a space-
time manifold (M; g) verifying the Einstein equations together with an embedding15

i : � �! M such that �g; �k are the induced �rst and second fundamental forms
of � in M. A development is required to be also globally hyperbolic16 in order
to assure the unique dependence of solutions on the data. A future development
of (�; �g; �k) consists of a globally hyperbolic manifold (M; g) with boundary, veri-
fying the Einstein equations, and embedding i as before which identi�es � to the
boundary of M.

The most primitive question asked about the initial value problem, solved satis-
factory for very large classes of evolution equations, is that of local existence and
uniqueness of solutions. For the Einstein equations this type of result was �rst
established by Y.Choquet-Bruhat [7] with the help of wave coordinates which al-
lowed her to cast the Einstein equations in the form of a system of nonlinear wave
equations, to which one can apply the standard local existence theory based only
on energy estimates and the L1 � Hs Sobolev inequality.

13We assume, for simplicity, that � is di�eomorphic to Rn. A neighborhood of in�nity means
the complement of a suÆciently large compact set on �.

14Because of the constraint equations the assymptotic behavior cannot be arbitrarily pre-

scribed. A precise de�nition of asymptotic 
atness has to involve the ADM mass of (�; g). Taking

the mass into account we write gij = (1 + 2M
r
)Æij + o(r�1). According to the positive mass

theorem M � 0 and M = 0 implies that the initial data set is 
at.
15The constraint equations correspond to the contracted Codazzi and twice contracted Gauss

equations of the embedding.
16Each causal curve inM intersects � at precisely one point.
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De�nition 3.5. A system of coordinates x� are called wave coordinates if �gx
� =

0. Given such a system the Einstein vacuum equations take the following form,

g��@�@�g�� = N��(g�� ; @g��) (64)

In the case of nonlinear systems of di�erential equations the local existence and
uniquenes result leads, through a straigtforward extension argument, to a global
result. The formulation of the same type of result for the Einstein equations is a
little more subtle; it was done by Y. Choque-Bruhat and R.P. Geroch in [8]. The
result asserts that for each initial data set there exists a unique maximal future
development. Thus any construction, obtained by an evolutionary approach from
a speci�c initial data set, must be necessarily contained in its maximal develop-
ment. This may be said to solve the problem of global17 existence and uniqueness
in General Relativity; all further questions may be said to concern the qualitative
properties of the maximal development. The central issue is that of existence and
character of singularities. First we can de�ne a regular maximal development as one
which is complete in the sense that all future time-like and null geodesics are com-
plete. A well known theorem of Penrose asserts that, under certain quite extreme
conditions18 on an initial data set the corresponding future maximal development is
necessarily incomplete. In addition, with the exception of the 
at Minkowski space
itself, all explicit AF solutions of the Einstein Vacuum equations, such as the Kerr
family, have turned out to be singular. At the opposite end of Penrose's theorem
we have the following completeness result, see [12].

Theorem 3.6 ( Global Stability of Minkowski). Any assymptotically 
at initial data
set which is suÆciently close19 to the trivial one has a complete maximal future de-
velopment (M; g). Moreover the spacetime M is close to the Minkowski space in
the sense that its curvature tensor tends to zero along any timelike or null geodesics.
Its causal structure, however, is asymptotically nontrivial.

Problem (Strong stability of the Minkowski space) Does there exists a scale
invariant smallness condition20 such that all developments, whose initial data sets
(�; g; k) verify it, have complete maximal future developments.

Remark 3.7. The relationship between the old stability result of theorem 3.6 and
strong stability may be compared with the situation for Wave Maps in the wake of
Tao's result [71]. Indeed an older result due to Sideris[63], provides global existence
for suÆciently small data in a weighted Sobolev norm containing a large number of
derivatives. Tao's new result requires only the smallnes of a scale invariant norm
containing the minimum number of derivatives of the initial map.

Remark 3.8. The strong stability of the Minkowski spacetime should be viewed
itself as an intermediate step towards the even loftier goal of proving the well known

17This is of course misleading, for equations de�ned in a �xed background global is a solution
which exists for all time. In general relativity however we have no such background as the space-
time itself is the unknown. The connection with the classical meaning of a global solution requires
a special discussion concerning the proper time of timelike geodesics.

18If (�; �g) is a noncomapct Riemannian manifold containing a closed trapped surface.
19The precise condition requires weighted Hs- Sobolev norms involving 4 derivatives of the

metric �g and 3 derivatives of the second fundamental form �k.
20involving, locally, the L2 norm of 3

2
derivatives of g and 1

2
derivatives of k.
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Penrose's Cosmic Censorship conjectures. We state these in the Complements to
Lecture III.

A proof of the strong stability of the Minkowski space is a long term goal. We
present below a far simpler, yet still very challenging, intermediate, conjecture,
which motivates the subject matter of the next section.

Conjecture (Finite L2 - Curvature Conjecture) The Bruhat-Geroch result can be
extended to initial data sets (�; g; k) with,

R(g) 2 L2
(loc)

(�) and k 2 H1

(loc)
(�):

The L2- Boundedness Conjecture is the most reasonable goal we can aspire to
at this moment in connection with the strong stability of the Minkowski space
conjecture. One might compare it with the proof of local(and global in this case !)
well posedness for the YM equations in R1+3 , see [34]. It is however going to be a
lot more complicated to resolve. We might �rst want to settle for a simpler goal;
to prove well posedness for the system (64) in H2+�(R3 ). To simplify a little bit
consider wave equations of the form

G��(�)@�@�� = N(�; @�); (65)

subject to initial conditions �[0] 2 Hs. Here G��(�) is a family of Lorentz metrics
in R1+3 depending smoothly on � in a small neighborhood of the origin and N is
quadratic in @�. We want to show that the IVP is well posed for s > 2 + �. The
result analogous to this for semilinear wave equations of the form

�� = N(�; @�)

is very easy to prove21, it depends only on the Strichartz type estimates of the form:

k@ kL2
tL
1
x ([0;T ]�Rn) . k�[0]kHs(Rn) (66)

for any s > n
2 +

1
2 , n = 3. In particular it does not require that the nonlinear terms

satisfy any special structure such as the null condition.

3.9. Optimal well posedness for quasilinear wave equations. I plan to re-
port here on my recent results obtained in collaboration with I. Rodnianski[42]
concerning the issue of optimal well posedness for quasilinear wave equations. Mo-
tivated by quasilinear wave equations of the form (64) and (67), we consider the
simpli�ed model equation in Rn+1 , n � 3 of the form,

@2t �� gij(�)@i@j� = N(�; @�) (67)

with N a smooth function quadratic in @�. The classical local existence and unique-
ness results, based on Hs- energy estimates and the Sobolev embedding theorem,
show that (67) is locally well posed in the Sobolev space Hs for any s > n

2 +1. The
Hs energy estimates, obtained by standard integration by parts and commutator
lemmas, take the form

k�(t)kHs �M(k�0kHs + k�1kHs�1)

21This result turns out to be optimal, in general, according to the well-known counterexample
of H. Lindblad, [49]. His results shows that local well posedness fails for Hs data, s � 2, in
dimension n = 3.
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with M depending continuously on the integral
R t
0
k@�kL1x . The Sobolev estimate

k@�kL1 � ck�kHs for s > n
2 + 1 allows one to conclude that for suÆciently small

time t we can bound the right hand side of the above inequality purely in terms
of k�0kHs + k�1kHs�1 . These local apriori estimates, for s > n

2 + 1, can easily be
turned into a local existence and uniqueness result.

The crucial quantity
R t
0
k@�kL1x could be better controlled with the aid of Strichartz

estimates (66). This leads to the gain of 1
2 derivatives mentioned above.

In the quasilinear case the metric gij depends on the solution � and can therefore
have only as much regularity as � has. Thus one needs to address the problem of
proving the Strichartz estimates for linear wave equations 2g� = @2t � gij@i@j� =
0 with rough coeÆcients. The conditions needed for the coeÆcients gij of the
linearized wave operator �g have to be consistent with the dependence on � of
the nonlinear coeÆcients gij(�) in (67). In view of the expected boundedness of
the Sobolev norms k�kHs we may assume22 that the norms kgkHs are bounded.
Moreover, as the Hs norm of a solution of the quasilinear problem (67) at time t

is controlled by the Hs norm of the initial data as long as
R t
0
k@�kL1x is bounded,

we can inductively assume that the metric gij = gij(�) satis�es also the conditionR t
0 k@gkL1x � B0. In view of our experience with Strichartz estimates in 
at space
we do not expect have direct access to the norm of k@�kL1

tL
1
x

but, locally in time

this can be controlled by the k@�kL2
tL
1
x
. Thus, to close the argument and derive

an improved local existence and uniqueness result for (67), we need to prove the
boundedness of Hs norms as well as a local L2tL

1
x - Strichartz estimate for solutions

� to the linearized wave equation 2g� = 0.

Historical remarks: The �rst important work concerning Strichartz type estimates
for solutions to 2g� = 0 with rough 23 coeÆcients is due to H. Smith [60]. He
showed that the standard Strichartz estimates hold for equations with C1;1 coef-
�cients. However the C1;1 condition is too strong for applications to quasilinear
equations. Moreover some important counterexamples of H. Smith and C. Sogge[61]
showed that the standard Strichartz estimates fail if the coeÆcients are rougher than
C1;1.

This was the situation before the important breakthrough of H. Bahouri and J.-Y.
Chemin. In [1] they showed that some weaker form of the Strichartz estimates still
survive for equations with coeÆcients rougher than C1;1, compatible with appli-
cations to quasilinear equations. Namely, they were able to establish a Strichartz
estimate with a loss

k@ kL2
tL
1
x
. k [0]k

H
n
2
+ 1
2
+� ; (68)

for solutions to the variable coeÆcient wave equation �g = 0, with coeÆcients
verifying assumptions of the type discussed above. As long as the loss � � 1

2 such
an estimate can be applied to prove a local well posedness result for the quasilinear
problem considered here, stronger than the classical one. The results of H. Bahouri

22These are typical bootstrap assumptions.
23For C1 metrics the Strichartz estimates were proved by Kapitanski[25] and by Mockenhaupt-

Seeger-Sogge [52].
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and J.-Y. Chemin are based on Strichartz estimates with a loss of � > 1
4 for the

linearized problem 2g = 0 where the metric g satisfying conditions of the type
discussed above. Later, D. Tataru[72] showed that the loss24 in the Strichartz
estimate can be improved � > 1

6 . In fact [72] provides the precise relationship

between the smoothness of the metric, below C1;1, and the corresponding loss in
the Strichartz estimates. Recently H. Smith and D. Tataru[62] have shown that
these results are also sharp and therefore there is no hope of improving Tataru's
results based purely on linear theory.

Both the results of Bahouri-Chemin and those of Tataru are based on two major
ingredients.

a) Paradi�erential Calculus: Consider the dyadic projection operator P�, corre-
sponding to a cut-o� relative to the spatial frequencies �

2 � j�j � 2�, � 2 2N. Let

�� = �� = P��. We have � =
P

� ��. If � satis�es the quasilinear wave equation

(67) then �� veri�es the equation

�2g��a�
� = �@2t �� + gij��a@i@j�

� = Ra
�; (69)

with g��a =
P

���a P�g, 0 < a < 1 and R� an easy to control error term. The

original idea of Bahouri-Chemin, later re�ned by Tataru, was to prove a Strichartz
estimate, without losses, for (69) in a frequency dependent time interval I� of size
jI�j . �1�a. It is this loss in the control of the size of the time interval I� which is
responsible for the loss of di�erentiability of (71).

b) Parametrix based proof of the Dispersive inequality: As we know the major
hard ingredients in the proof of Strichartz inequalities are the energy and dispersive
inequalities. Both Bahouri-Chemin and Tataru use a parametrix construction25 for
solutions to the approximate linearized equation (69). They derive the disper-
sive inequality for the explicit form of the approximate solutions, provided by the
parametrix construction, using the method of stationary phase.

c) Eikonal equation: A major ingredient in both methods is the construction of
solutions to the eikonal equation,

u2t � gij��a@iu@ju = 0; u(0; x; �) = x � �: (70)

as well as associated transport equations.

In [30] I have developed a di�erent, more geometric approach, to the proof of
the dispersive inequality for the equations (69) based on a modi�cation of the
vector�elds method discussed in Lecture I. Recall indeed, see proposition (1.9), that
we were able to prove the dispersive inequality without any explicit representation

24The immediate consequence of these results is local well posedness for the quasilinear problem
(67) in the space Hs with s > n

2
+ 1

2
+ 1

6
, if n � 3, and s > n

2
+ 5

6
for n = 2.

25Bahouri-Chemin use a standard progressing wave approximation while Tataru uses a
parametrix based on the FBI transform.
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of solutions, just the commutation properties of the standard wave equation with
the scaling, boosts and angular momentum vector�elds. To implement such a
strategy for quasilinear equations of the type (69) we would like a similar family
of Killing and conformal Killing vector�elds for the metric g��a This is, of course,
not possible; a general metric does not possess any symmetries. The best we can
do is to construct vector�elds whose deformation tensors are as small as possible.
In [30] I have outlined how to make such a construction based on the same eikonal
equation (79) but with di�erent initial conditions, corresponding not to a family
of null hyperplanes as before but on a family of outgoing characteristic cones with
vertices on the time axis. This direct geometric approach had allowed me to recover
the Tataru's results for quasilinear wave equations in dimension three.

By using a similar geometric approach as in [30], recently Rodnianski and I, [42],
were able to improve the well posedness results of Bahouri-Chemin and Tataru by
taking into account the nonlinear character of the equation (67). We do not simply
prove a Strichartz estimates for solutions of 2g� = 0 with bounds on kgkHs and
k@gkL1

tL
1
x
, we make use in an essential way of the fact that the coeÆcients gij(�)

of the equation (67) verify themselves an equation of the type 2ggij = N with N
depending only on � and @�.

Our main result is included in the following theorem.

Theorem 3.10. The quasilinear initial value problem (67) in R3+1 is locally well

posed in Hs� for s� > s0 = 2+ 2�p3
2 . Namely, for any initial data �[0] 2 Hs� there

exists a suÆciently small interval [0; T ] with T = T (k�[0]kHs� ) such that problem
(67) has a unique solution � 2 C([0; T ]; Hs�) \ C1([0; T ]; Hs��1). In addition, �
satis�es a Strichartz type estimate

k@�kL2
[0;T]

L1x
� c T s��s0k�[0]kHs� : (71)

Moreover we believe that, with a relatively small modi�cation of the proofs in [42],
we now have all the tools needed to show that the Einstein equations26 are locally
well posed in H2+�.

3.11. Sketch of the proof of Theorem 3.10. After a series of reductions, which
are now canonical(see the complements to this lecture), we can reduce the proof of
the Theorem to the following situation:

Assume given a family27the of Riemannian metrics h�ij(t; x)dx
idxj de�ned on a

time slab I� � R3 with I� = [0; t�], t� � �a verifying the following conditions

26in a speci�c gauge such as wave coordinates.
27The metrics h� are in fact the rescales of g��a appearing in (??), more precisely we have

h�(t; x) = g��a(�
�1t; ��1x).
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k@1+mh�kL1
I�
L1x

. ��(1�a)(m+1); (72)

k@1+mh�kL2
I�
L1x

. ��
2�a
2 �(1�a)m; (73)

k@1+mh�kL1I�L1x . ��1+
a2

2 �(1�a)m; (74)

k@ 1
2+m
x (@2h�)kL1I�L2

x
. ��1+

a2

2 �(1�a)m; (75)

k@m ��h�h�kL1
I�
L1x

. ��(2�a)�(1�a)m; (76)

Here ��h� = @2t�hij� @i@j We need to prove the following decay estimates for solutions
to the covariant wave equation

�h� = 0 (77)

where �h� � 1p
deth�

@t
p
deth� @t + 1p

deth�
@i(h

ij
�

p
deth� @j )

Theorem 3.12. Assume  is a solution of (77) in [0; t�] � Rn , t��a with initial
data  [0] supported in a ball of radius 1

2 centered at the origin in physical space.

Assume that the metrics h� verify (138){(142) with a < �1 + p
3. Then, for all

t 2 [0; t�],

k@ (t)kL1 � (1 + t)�1+�k [0]kHk : (78)

The proof is based on a curved spacetime analogue of Proposition 4.11 discussed in
the Complements to Lecture I. Before stating it we need to make some de�nitions:

De�nition 3.13. A null pair consists of two vector�elds L;L, verifying

H(L ; L) = H(L ; L) = 0; H(L ; L) = �2:
A null frame, associated to the null pair L;L, consists of 4 linearly independent
vectors e1; e2; e3 = L; e4 = L verifying

H(eA; L) = H(eA; L) = 0; H(eA; eB) = ÆAB ; for A = 1; 2

De�nition 3.14. The optical function28 u is de�ned to be the unique forward
solution to the eikonal equation

H��@�u@�u = 0; or @tu = jrujh (79)

with the boundary condition u = t on the time axis. The 2-surfaces of intersection
between the level hypersurfaces �t of the time function t and the level hypersurfaces
Cu of u are denoted by St;u.

De�nition 3.15. Given such u we de�ne a canonical null pair as follows:

L = T +N L = T �N (80)

28In what follows we drop the labels � from h�. We denote by H the spacetime metric
�dt2 + hijdx

idxj .
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where,

T = @t; N = �h
ij@ju

jrujh @i:
Observe that T + N are the generating normals of the null cones Cu. We can
complement L;L to create a null frame spanning the whole tangent space. This
can be done by choosing an arbitrary orthonormal frame eA on St;u = Cu \�t. We
rewrite the full null frame e1; e2; e3 = L; e4 = L.

We also introduce the following:

i) Energy-momentum tensor: Q�� = @� @� � 1
2H��(H

��@� @� )

ii) Modi�ed energy-momentum tensor: �Q�� = Q�� + (n� 1)t @� � n�1
2  2

iii) Modi�ed Morawetz vector�eld: We set K = 1
2 (u

2L+ u2L) with u = 2t� u.

iv) Modi�ed deformation tensor: �� = (K)� � 4tH

v) Conformal Energy: Q0[ ](t) =
R
�t

�Q(K; @t)[ ]:

vi) Full Conformal Energy: Q[ ](t) = Q0[ ](t) +Q0[@t ](t) +Q0[@
2
t  ](t)

vii) Null components of Q: The components of Q relative to a null frame are
given by:

Q44 = (D4 )
2; Q34 = jr= j2; (81)

Q33 = (D3 )
2; Q3A = D3 r=A ; (82)

Q4A = D4 r=A ; QAB = r=A r=B +
1

2
(D3 D4 � jr= j2)ÆAB : (83)

viii) Conformal energy density Using vii) we easily calculate:

Q(K; @t)[ ] =
1

4

�
u2(D4 )

2 + u2(D3 )
2 + (u2 + u2)jr= j2�

The proof of theorem 3.12 can be reduced to the following:

Theorem 3.16 (Boundedness Theorem). Under the same assumptions as in the-
orem 3.12 we have,

Q(t) . Q(0):

We sketch below some of the main ideas in the proof of the boundedness theorem.
We restrict ourselves to a discussion of the boundedness of Q0.
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Step 1. Introduce the quantity

E0[ ](t) =
Z
�t

(u2(D4 )
2 + u2(D3 )

2 + u2jr= j2 +  2) . Q0[ ](t):
(84)

By a simple comparison theorem, similar to part iii) of proposition 4.11, we show
that

E0[ ](t) . Q0[ ](t) (85)

Step 2. The key ingredient in the proof theorem 3.16 is the following curved
spacetime version of the generalized conformal identity of proposition 4.11 discussed
in the complement to Lecture I.

Proposition 3.17 (Generalized conformal identity). Let  be a solution to �h =
0. Then,

Q0[ ](t) = Q0[ ](t0)� 1

2

Z
[t0;t]�R3

Q������ +
n� 1

2

Z
[t0;t]�R3

 22h(t):
(86)

Step 3. To prove the boundedness theorem we need to control
R
[t0;t]�R3Q

������ .

Expanding relative to a null frame, we have

Q������ =
1

4
Q44��33 +

1

4
Q33��44 +

1

2
Q34��34

� Q3A��4A �Q4A��3A +QAB��AB

We need an estimate of the form,Z
[t0;t]�R3

Q������ . ��� sup
[t0;t]

Z
��

(u2(D4 )
2 + u2(D3 )

2 + u2jr= j2 +  2)

= ��� sup
[t0;t]

E0[ ](�) . ��� sup
[t0;t]

Q0[ ](�)

with an arbitrary � > 0. Consider in particular the term,Z
[t0;t]�R3

Q33��44 =

Z
[t0;t]�R3

jD3 j2��44

To obtain the desired estimate we need,

j��44(�; �)j . u2��1���:

In other words ��44 must be very small in the wave zone juj << t. In fact, to
estimate most of the terms in

R
[t0;t]�R3Q

������ we need the following estimates for

the modi�ed deformation tensor �� of K:

Proposition 3.18. The null components of the modi�ed deformation tensor of K
veri�es the estimates:

j��44j � u2�����1 j��34j � u2�����1;

j��33j � u2�����1; j��3Aj � u2�����1;

j��4Aj � uu�����1; j��AB j � u2�����1:
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Step 4. The estimates above would take care of all but the term

1

2

Z
[t0;t]�R3

��D3 D4 ; with �� = ÆAB��AB

To estimate this term we have to use an integration by parts argument which would
bring in D4�� and r= �� for which we need similar estimates as those in proposition
3.18.

Step 5. We need to prove the asymptotic estimates of proposition 3.18, as well
as similar ones for D4�� and r= ��. This relies on tke analysis of the eikonal equation
(79). Indeed it is easy to see, by a straightforward calculation that �� depends on
the second fundamental form k of the time foliation �t and, more importantly, on
the Hessian D2u. Since kij = � 1

2@thij we have a very good control on k. The
hessian of u, on the other hand, veri�es a Ricatti type equation of the form,

DL(D
2u) +D2u �D2u = R(L;L)

with R(L;L) represents the components of the curvature tensor R��
Æ twice con-
tracted with L. At a �rst glance it looks as if D2u has the same di�erentiability
properties as those of the curvature tensor R. Moreover to estimate D2u at some
time t we need to integrate R(L;L) on a geodesic generator of the null cones Cu.
Thus, in view of the assumption (138), since R depends on two derivatives of h, it
seems that the best estimate we can hope to get is

kD2u(t)kL1 .

Z t

0

j@2h(�; �)jd�

. ��2(1�a)

Arguments along this line would only give the optimal result obtained by Tataru.
To do better we have to make use of the nonlinear assumption (142). The ability
to make use of that assumption is the crucial advantage of our geometric method.

To do this we need to decompose D2u relative to our canonical null frame. This
can be done by introducing the quantities:

�AB =< DAe4; eB >; �A =
1

2
< D3e4; eA > (87)

Also, set,

b�1 = @tu = jrujh
We also split �AB into tr� = ÆAB�AB and traceless part �̂AB . They satisfy the
following equations:

L(b) = �b kNN ; (88)

L(tr�) +
1

2
(tr�)2 = �j�̂j2 � kNN tr��R44; (89)

D= 4�̂AB +
1

2
(tr�)�̂AB = �kNN �̂AB � �̂AB ; (90)

D= 4�A +
1

2
(tr�)�A = �(kBN + �B)�̂AB � 1

2
(tr�)kAN � 1

2
�A; : (91)

where �AB = RA4B4, �̂ = ÆAB�AB and �A = RA43B . If we try to estimate tr�,
�̂, � from their corresponding transport equations (89), (90) and respectively (91)
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we run into precisely the same diÆcutlies mentioned above. We circumvent these
diÆculties using the following two ideas:

Idea 1 Observe that the curvature term R44 appearing in the transport equation
for tr� has a special structure. In fact we have,

Lemma 3.19 (Remarkable decomposition). The R44 = e�4e
�
4R�� component of the

Ricci curvature admits the following decomposition:

R44 = L(z)� 1

2
e�4 e

�
42hH�� +Error; (92)

with the functions z and Error obeying pointwise estimates jzj . j@H j and jErrorj .
(@H)2.

In view of the Lemma we can rewrite the transport equation for tr� as follows:

Proposition 3.20. Let y = tr�� 2
s with s = t � u and the functions z and error

as in the Lemma above. Then,

L(y + z) + tr�(y + z) =
1

2
(y + z)2 +

2

s
z � 1

2
z2 � j�̂j2

� kNN tr�+
1

2
e�4e

�
42hH�� �Error;

Idea 2: The equation for y + z seems substantially better then the one for tr�.
Unfortunately one can not do the same trick for �̂ and �. Moreover the equation for
y + z is itself coupled with the transport equation for �̂. To solve this problem we
appeal to an entirely di�erent geometric equation, namely the Codazzi equations
for �. This has the form,

(div= �̂)A + �̂ABkBN =
1

2
(r=Atr�+ kAN tr�)�RB4AB (93)

Observe that the equation div= �̂A = FA is an elliptic Hodge system on the surfaces
St;u. Using the coupled system between the above transport equation for y+ z and
(93) we derive estimates of the type:

jtr�� 2

s
j . ���a

j�̂j . ���a

with

�a = 1� a2

2
:

This is a lot better then the estimates by ��2(1�a) obtained before.

Remark 3.21. We have a similar approach to treat �. The idea is to obtain a
divergence -curl system for � coupled with a transport equation which is similar to
the one for tr�.
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Remark 3.22. The idea of using coupled elliptic Hodge systems with favorable
transport equations appears, in a very di�erent context in [12], in connection with
the global stabilty of the Minkowski space.
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4. Complements to Lecture I

The important nonlinear wave equations such as Yang -Mills, Wave Maps and
the Einstein equations have fundamental symmetries intimately connected to their
geometric character. An in depth knowledge of Di�erential Geometry, in particular
Lorentzian Geometry, is as at least as important in the study of these equations as
Harmonic Analysis. In what follows we shall investigate the relationship between
the conformal structure of Minkowski spacetime and estimates for the wave equation
(1). In particular we shall use the generalized energy estimates discussed below in
Lecture III. I assume some familiarity with basic notion of di�erential geometry,
such as Lie and covariant di�erentiation as well as the curvature tensor.

4.1. Conformal structure of Minkowski spacetime.

De�nition 4.2. Consider a spacetime (M; g), i.e.a Lorentzian manifolds with g
a Lorentz metric of signature (�1; 1 : : : ; 1).

A di�eomorphism � : U �M!M is said to be a conformal isometry if, at every
point p, ��g = �2g, i.e.,

(��g)(X;Y )jp = g(��X;��Y )j�(p) = �2g(X;Y )jp
with � 6= 0. If � = 1, � is called an isometry of M.

De�nition 4.3. A vector �eld K which generates a one parameter group of isome-
tries, respectively, conformal isometries is called a Killing, respectively, conformal
Killing vector �eld.

Let K be such a vector �eld and �t the corresponding 1-parameter group. Since
the (�t)� are conformal isometries, we infer that LKg must be proportional to the
metric g. Moreover LKg = 0 if K is a Killing vector �eld.

Observe that C has the important property of being conformal invariant with re-
spect to a conformal isometry.

De�nition 4.4. Given an arbitrary vector �eld X we denote (X)� the deformation
tensor of X de�ned by the formula

(X)��� = (LXg)�� = D�X� +D�X� :

The tensor (X)� measures, in a precise sense, how much the di�eomorphism gener-
ated by X di�ers from an isometry or a conformal isometry.

Proposition 4.5. The vector �eld X is Killing if and only if (X)� = 0. It is
conformal Killing if and only if (X)� is proportional to g.

To prove the \if" part we can choose local coordinates x0; x1; :::; xn such that X =
@
@x0 . It then immediately follows that, relative to these coordinates, the metric g is

independent of x0.
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Proposition 4.6. On any spacetimeM there can be no more than 1
2 (n+1)(n+2)

linearly independent Killing vector �elds.

The spacetime which possesses the maximum number of Killing and conformal
Killing vector �elds is the Minkowski spacetime. Let us review its associated isome-
tries and conformal isometries.

Let x� be an inertial coordinate system, positively oriented, we have:

1. Translations: for any given vector a = (a0; a1; ::::; an) 2M,

x� ! x� + a�

2. Lorentz rotations: Given any � = ��� 2 O(1; n),

x� ! ���x
�

3. Scalings: Given any real number � 6= 0,

x� ! �x�

4. Inversion: Consider the transformation x� ! I(x�), where

I(x�) =
x�

(x; x)

de�ned for all points x 2M such that (x; x) 6= 0.

The �rst two transformations are isometries of M, the group generated by them
is called the Poincar�e group. The last two type of transformations are conformal
isometries. the group generated by all the above transformations is called the
Conformal group. Let us list the Killing and conformal Killing vector �elds which
generate the above transformations.

i. The generators of translations in the x� directions, � = 0; 1; :::; n:

T� =
@

@x�

ii. The generators of the Lorentz rotations in the (�; �) plane:

L�� = x�@� � x�@�

iii. The generators of the scaling transformations:

S = x�@�

iv. The generators of the inverted translations:

K� = 2x�(x
� @

@x�
� (x�x�)

@

@x�
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Theorem 4.7. Any conformal Killing vector �eld in Mn+1, for n > 1 is a linear
combination, with real constant coeÆcients, of the vector �elds T; L; S and K. If
n = 1 all conformal vector �elds are given by the formula

f(t+ x)(@t + @x) + g(t� x)(@t � @x)

where f; g are arbitrary smooth, functions of one variable.

4.8. Generalized energy estimates. Consider the wave equation �� = 0 in the

at Minkowski space Rn+1 and its associated energy meomentum tensor,

Q�� = Q�� [�] = @��@��� 1

2
m��(m

��@��@��):

Proposition 4.9. The energy momentum tensor is symmetric and divergenceless
i.e.,

@�Q�� = 0:

Also, for any future, timelike, vector�elds X;Y we have Q(X;Y ) � 0.

Proof The �rst two statements are obvious. To check the third consider, at any
point, a null pair29 L;L spaning a plane containing X and Y . Thus X;Y are linear
combinations of L;L with positive coeÆcents. The positivity is then an immediate
consequence of the following simple but important calculation,

Q(L;L) = L(�)2 (94)

Q(L;L) = jr= �j2 (95)

Q(L;L) = L(�)2 (96)

where jr= �j =P
A jeA(�)j2 with (eA)A=1;::: ;n�1 an orthonormal frame spanning the

orthogonal complement of L;L.

Let X be an arbitrary vector�eld and consider the spacetime momentum vector-
�eld associated to it P� = Q��X

� . Using the symmetry and the divergenceless

properties of Q along with the de�nition of the deformation tensor � = (X)� we
infer that,

@�P
� =

1

2
Q����� :

Thus, if X is a Killing vector�eld, we have @�P
� = 0 which leads by integration to

the familiar conservation laws. Thus, in particular, if we integrate in the spacetime
slab [t0; t]� Rn we derive,Z

�t

Q(X; @t)dx =

Z
�t0

Q(X; @t)dx (97)

with @t playing here the role of future oriented unit normal to the spacelike hyper-
surfaces �t. Taking X to be also the Killing vector�eld @t we derive the familiar

29two future directed linearly independent null vectors L;L verifying < L; L >=< L; L >=
0 and the normalization condition < L;L >= �2.
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law of conservation of energyZ
�t

Q(@t; @t)dx =

Z
�t0

Q(@t; @t)dx

with Q(@t; @t) =
1
2

�
j@t�j2 +

Pn
i=1 j@i�j2

�
the usual energy density. The laws of

conservation of linear and angular momentum are also included in (97) by choosing
X = @i or X = Lij .

If instead of integrating the identity @�P� over the slab [0; T ] � Rn we integrate
over the future domain30,

D = f(t; x)=jx� yj � T � t; t0 � t � t1 � Tg;
we derive the conservation law,Z

�t1

Q(X; @t)dx+

Z
C(t0;t1)

Q(X;L) =

Z
�t0

Q(X; @t)dx (98)

where C(t0; t1) is the exterior boundary of D, L = @t�
P

i
(xi�xi0)
jx�x0j @i the null vector-

�eld normal31 to the incoming null hypersurface C and the 
ux
R
C(t0;t1)

Q(X;L) =R t1
t0
dt
R
Su;t

Q(X;L), with Su;t the sphere of intersection between C, and �t. In the

particular case of X = @t both the energy integrals on �t and the 
ux are positive
which leads to a simple proof of the domain of dependence properties of the wave
equation.

The procedure outlined above, leading to (97), can be extended to conformal Killing
vector�elds.

Proposition 4.10. Let Q�� = Q��[�] the corresponding energy momentum tensor

to a solution of �� = 0. Let X be a conformal Killing vector�eld, i.e. � = (X)� =
LXm = 
m, and tr� = m����� . It is easy to check that �
 = 0; in fact, in the
particular case of X = K0, 
 = 4(n+ 1)t. Let

�P� = Q��X
� +

n� 1

4(n+ 1)
tr��@��� n� 1

8(n+ 1)
@�(tr�)�

2:

We have,

@� �P� = 0:

Applying the proposition to the conformal Killing vector�eld X = K := K0 and
integrating the corresponding divergence free equation on a time slab [t0; t] � Rn
we infer the following32:

30or domain of dependence
31in the sense of the spacetime Minkowski metric
32Part i and ii of the proposition are due to C. Morawetz [?]. For part iii see [?], pages 310{313.
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Proposition 4.11. Let Q(K0; T0) = Q(K0; T0)+ (n� 1)t�@t�� n�1
2 �2; with T0 =

@t the unit normal to �t and � a solution to �� = 0.

i.) The following conformal conservation law holds true,Z
�t

Q(K0; T0) =

Z
�t0

Q(K0; T0) (99)

ii.) Moreover we have,Z
�t

Q(K0; T0) =
1

4

�Z
�t

u2(L0�)2 +
Z
�t

2(t2 + r2)jr= �j2 +
Z
�t

u2(L0�)2
�
(100)

where L = @t+@r, L = @t�@r, u = t�r, u = t+r and uL0(�) = uL(�)+(n�1)�,
uL0(�) = uL(�) + (n� 1)�.

iii.) Also, if n � 3, there exists a constant c > 0 such that,

Z
�t

Q(K0; T0) � c

�Z
�t

u2(L�)2 +

Z
�t

2(t2 + r2)jr= �j2 +
Z
�t

u2(L�)2 + �2
�
(101)

De�nition 4.12. We introduce the following norms:

E[�](t) =

Z
�t

j�(t)j2

Q[�](t) =

Z
�t

Q[�](K0; T0)

E [�](t) =

Z
�t

�
u2jL�j2 + 2(t2 + r2)jr=�j2 + u2jL�j2 + j�j2

�
We introduce also the higher order norms:

Es[�](t) =

sX
j=0

X
�i1 ;::;�ij

E[�i1 ; ::;�ij�](t)

Qs[�](t) =

sX
j=0

X
�i1 ;::;�ij

Q[�i1 ; ::;�ij�](t)

with � any of the vector�elds

S = t@t +
X
i

xi@i; Li = xi@t + t@i; 
ij = xi@j � xj@i:

Remark 4.13. Observe that

Es+1(t) . Qs(t) = Qs(0):
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4.14. Decay Estimates. It is well known that solutions of the free wave equation

�� = 0, in Rn+1 , decay in the uniform norm like t�
n�1
2 as t ! 1. Moreover

the decay is faster away from the outgoing characteristic directions. This type
of information can be derived from explicit representation of solutions in physical
or Fourier space. The goal of this section is to show how such information can be
obtained without using explicit representation, just the generalized energy estimates
discussed in the previous section.

Consider the canonical null pair E� = @t � @r; as well as the angular vector�elds,
Ai = @i � xi

r @r: Clearly, X
i

jAi�j . jr= �j .
X
i

jAi�j

. Also,

j@r�j+
X
i

jAi�j . jD�j . j@r�j+
X
i

jAi�j

We can also easily check the following simple algebraic identities,

1

2

�
(t+ r)E+ + (t� r)E�

�
= S

1

2

�
(t+ r)E+ � (t� r)E�

�
=

X
i

xi
jxjLi

tAi = Li � xi
jxj
X
j

xj
jxjLj

t
ij = xiLj � xjLi

From the �rst two identities we easily derive,

jE+�(t; x)j . 1

t
j��(t; x)j

jE��(t; x)j . 1��t� jxj�� j��(t; x)j (102)

with j��j = jS�j+ jL�j.

jr=�(t; x)j . 1

t
j��(t; x)j: (103)

Clearly, we also have,

j@�(t; x)j . 1��t� jxj�� j��(t; x)j
or, more generally,

j@N�(t; x)j . 1��t� jxj��N j�N�(t; x)j (104)

where j�N�j =P j�1 : : :�N�j with �1; : : : ;�N any of the vector�elds S;L1; : : : Ln.

Combining the above inequalities with the de�nition of our norms we derive
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tkE+�(t)kL2 . E1(�)
1
2

tkr=�(t)kL2 . E1(�)
1
2

kuE��(t)kL2 . E1(�)
1
2

We are now ready to prove the following:

Proposition 4.15. Let �� = 0 with initial data verifying the assumptions above.
Then, for all t � �0, s >

n
2 ,

k�(t)kL1 .
�1
t

�n�1
2 Es[�](t)

1
2 (105)

k(1 + juj)k@k�(t)kL1 .
�1
t

�n�1
2 Es+k [�](t)

1
2 (106)

Also,

kE+�(t)kL1 .
�1
t

�n+1
2 Es+1[�](t)

1
2

kr=�(t)kL1 .
�1
t

�n+1
2 Es+1[�](t)

1
2

k(1 + juj)E��(t)kL1 .
�1
t

�n�1
2 Es+1[�](t)

1
2

The proof is based on the following Lemma

Lemma 4.16. Let u(x) be a smooth, compactly supported function on Rn , n � 2.
We have,

ju(x)j � C
1

jxjn�1
�
k@rukL1 + k(rr= )n�1@rukL1

�
(107)

As an immediate corrolary to the Lemma we deduce the following:

ju(x)j � C
1

jxjn�1
n�1X
k=0

k@r
kukL1 (108)

with 
ku representing all derivatives of the form 
1 : : :
ku, with 
i the angular
momentum vector�elds 
i =2ijk xj@k. We now apply the inequality (108) to the
function u(x) = �2(t; x), for some �xed t.

j�(t; x)j2 .
1

jxjn�1
n�1X
k=0

X
i+j=k

k
i�(t)kL2k@
j�(t)kL2

.
1

jxjn�1En[�]
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from where we infer that, for jxj � t
2 ,

j�(t; x)j .
�
1

t

�n�1
2

E
1
2
n [�] (109)

Consider now the region jxj � t
2 . Let � be a test function supported in the region

jxj � 1 with �(x) = 1 if jxj � 1
2 . Apply to the function u(x) = �(x=t)�2(t; x) the

Sobolev inequality,

ju(x)j . kDnukL1 :

Thus, for jxj � t
2 , taking into account (104) and then (31),

j�(t; x)j2 .
X

i+j+k=n

kDi�(x=t)kL1 � kDj�(t)kL2(jxj� t
2 )
� kDk�(t)kL2(jxj� t

2 )

.
X

i+j+k=n

t�i � t�jk�j�(t)kL2 � t�kk�k�(t)kL2

. t�nEn[�]

Therefore,

sup
jxj� t

2

j�(t; x)j .
�
1

t

�n
2

E
1
2
n [�]:

which together with (109) proves that

k�(t)kL1 .
�
1

t

�n�1
2

E
1
2 [�]

as desired.

To prove Lemma 4.16 we write, in polar coordinates x = r� with � 2 Rn�1 ,

u(r�) = �
Z 1

r

@ru(��)d�

Hence, Z
j�j=1

ju(r�)jd�(�) � 1

rn�1

Z
Rn

j@ru(y)jdy:

On the other hand, using the Sobolev inequality on the unit sphere Sn�1,

ju(x)j � cn

�
ku(r �)kL1(Sn�1) + k(rr= )n�1u(r �)kL1(Sn�1)

�
which combined with the inequality above proves the desired result.

De�nition 4.17. Let �;  be two smooth functions on Rn+1 . We de�ne,

Q0(�;  ) = m��@��@� 

Q��(�;  ) = @��@� � @� @��



44 SERGIU KLAINERMAN

In what follows we will estimate the null quadratic forms Q0(�;  ) and Qij(�;  )
by using the decay estimates established before and appropriate decompositions of
the null forms in the spirit of [28]. Assume that �� = � = 0: Consider the null
form Q0(�;  ) and write it in the form,

Q0(�;  ) = �1

2
(E+� �E� +E+� � E� ) +r= � � r= 

Now, in view of the results of Propositions 4.15,

kQ0(�;  )(t)kL2 � 1

2

�
kE+(�)(t)kL1kE�( )(t)kL2

+ kE�(�)(t)kL1kE+( )(t)kL2

�
+ kr=�(t)kL1kr= (t)kL2

.
�1
t

�n+1
2 En+1[�]

1
2E1[ ]

1
2

Similarly, to estimate Qij(�;  ) we write @i = Ai +
xi
jxj@r. Therefore,

Qij(�;  ) = Ai�Aj �Aj�Ai + @r�(
xi
r
Aj�� xj

r
Ai)�

Thus taking into account the third formula in (32) as well as (31) we deduce the
same type of estimate for Qij .

5. Complements to Lecture II

5.0.1. Wave Maps. A wave map from the Minkowski space-time into a Riemannian
manifold (M; g) is a map � : R1+n ! M which is a critical point with respect to
compactly supported variations of the Lagrangian

L[u] = 1

2

Z
R1+n

< du; du > dt dx;

where < du; du >=
Pn

�=0

P
a;b gab@�u

a@�ub in local coordinates onM . The Euler-

Lagrange equation for this variational problem is exactly of the form (WM), in
local coordinates on M , with �IJK the Christo�el symbols of M in the local chart
and N = dimM (see, e.g., Shatah-Struwe [58]).

5.0.2. Maxwell-Klein-Gordon Equations. In the following discussion, the summa-
tion convention is in e�ect. Greek indices are summed from 0 to n, roman indices
from 1 to n. Recall that indices are raised and lowered relative to the Minkowski
metric m�� = diag(�1; 1; : : : ; 1). For example, � = @�@� and � = @j@j . We
denote by i the imaginary unit.

The unknowns of the equations are a one-form A�dx
� (the gauge potential) and a

scalar �, both de�ned on the Minkowski space-time:

A� : R1+n ! R;
� : R1+n ! C:
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The electromagnetic �eld is the two-form F�� = @�A� � @�A�. The covariant
derivative relative to the gauge potential is

D�� = @��+ iA��:

We are looking for critical points of the Lagrangian

L[A�; �] =

Z
R1+n

�
�1

4
F��F

�� � 1

2
D��D��

�
dt dx:

The corresponding Euler-Lagrange equations are

@�F�� = �=��D��
�
; (MKGa)

D�D�� = 0; (MKGb)

where =z denotes the imaginary part of z.

Let � be a real-valued function on R1+n , and consider the transformation (A�; �)!
( eA�; e�) given by eA� = A� � @��;e� = ei��:

Clearly, the electromagnetic �eld is left unchanged by the gauge transformation

A� ! eA�, and a simple calculation reveals that if (A�; �) veri�es (MKG), then so

does ( eA�; e�) (keep in mind that D� depends on A�). This gives an equivalence
relation on the set of pairs (A�; �) verifying (MKG), and by a solution of the latter,
we understand an equivalence class of such pairs.

Thus, we have gauge freedom; i.e., we are free to choose any representative of a
given solution (equivalence class), and we may stipulate a condition that the gauge
potential should satisfy. The traditional gauge conditions are:

� Lorentz: @�A� = 0,
� Coulomb: @jAj = 0,
� Temporal: A0 = 0.

(MKG) in Lorentz gauge. Coupling the Lorentz condition with (MKG) yields the
system

�A� = �=��@���+ j�j2A�; (110a)

�� = �2iA�@��+A�A��; (110b)

@�A� = 0: (110c)

Now observe that if (A�; �) satis�es (110a) and (110b) with initial data

A�jt=0 = a�; @tA�jt=0 = b�; (111a)

�jt=0 = �0; @t�jt=0 = �1 (111b)

satisfying the constraints

b0 = @jaj ; �a0 � j�0j2a0 = @jbj �=(�0�1); (112)
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then (110c) is automatically satis�ed. For by (110a) and (110b), u = @�A� solves

�u = j�j2u;
and by (111a) and (112), ujt=0 = @tujt=0 = 0. By uniqueness of solutions, u = 0.

Thus, (110c) is equivalent to the constraint (112) on the initial data, so we are
left with (110a) and (110b). Therefore, (MKG) in Lorentz gauge is schematically
of the form �u = u@u + u3. Unfortunately, generic equations of this type do not
have good local regularity properties, so the Lorentz gauge is not very useful for
our purposes.

(MKG) in Coulomb gauge. Coupling the Coulomb condition with (MKG) gives

�A0 = �=��@t��+ j�j2A0; (113a)

�Aj = �=��@j��+ j�j2Aj � @j@tA0; (113b)

�� = �2iAj@j�+ 2iA0@t�+ i(@tA0)�+A�A��; (113c)

@jAj = 0: (113d)

Here we have split the gauge potential into its time component A0 and its spatial
component A = Ajdx

j . We prescribe initial data at time t = 0:

Aj jt=0 = aj ; @tAj jt=0 = bj ; (114a)

�jt=0 = �0; @t�jt=0 = �1: (114b)

No initial condition is imposed on A0; if we set a0 = A0jt=0, then by (113a),
�a0 � j�0j2a0 = �=(�0�1).

Equation (113d) is automatically satis�ed if the data are divergence-free:

@jaj = @jbj = 0: (115)

For if (A0; A; �) satis�es (113a){(113c), then u = @jAj solves �u = j�j2u, and if
(114) and (115) are satis�ed, then ujt=0 = @tujt=0 = 0.

We are then left with the equations (113a){(113c). The �rst of these, being an
elliptic equation, is relatively easy to handle, so we leave it out of our model equa-
tions. The two remaining equations have terms of three types on the right hand
side:

� \Elliptic terms" involving A0; these are collectively denoted by E .
� Cubic terms in Aj and �; these are collectively denoted by C.
� Quadratic terms with a null-form structure.

The terms falling into the latter category are �=��@j�� and �2iAj@j�. We now
uncover the null-form structure inherent in these expressions (due to the Coulomb
condition).

Split � into its real and imaginary parts: � = u+ iv. Then

�=��@j�� = u@jv � v@ju;
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so (113b) reads, as an equation of (time-dependent) one-forms on Rn :

�A = udv � vdu+ C � d(@tA0):
Apply d to both sides:

�(dA) = 2du ^ dv + dC:
But

du ^ dv = 1

2
Qjk(u; v)dx

j ^ dxk ;
whence

�Fjk = Qjk(u; v) + @C:
The Coulomb gauge condition implies that @kFjk = ��Aj , so we have

���Aj = @kQjk(u; v) + @2C:
Thus, modulo Riesz operators,

�A = D�1Q(<�;=�) + C; (116)

where Q is some linear combination of the null forms33 Qjk. Since the cubic term
C is easier to estimate, we leave it out of our model problem.

Now consider equation (113c). Separating real and imaginary parts, we have

�u = 2A � rv + C + E ;
�v = �2A � ru+ C + E :

(Here we consider A as a vector �eld by raising its indices; r denotes the gradient
in the space variables.) We claim that the terms A �ru and A �rv have a null-form
structure, due to the fact that A is divergence-free (by the Coulomb condition).
Let Bjk be the unique solution of

�Bjk = @jAk � @kAj (117)

(with appropriate regularity assumptions). By the Coulomb condition,

�@jBjk = �Ak; which implies @jBjk = Ak: (118)

Thus,

A � ru = @jBjk@
ku =

1

2
Qjk(u;B

jk):

The above equations for u = <� and v = =� can therefore be rewritten

�<� = Qjk(=�;Bjk) + C + E ;
�=� = Qjk(B

jk ;<�) + C + E :
But in view of (117), B is of the form D�1A modulo Riesz operators. Combining
this with (116) and discarding the terms C and E throughout, we obtain a system
of the form (\MKG"), which is our model for (MKG).

33To be precise, the j-th component of Q is
P

k RkQjk, where Rk = D�1@k is the k-th Riesz
operator. Since we work with norms which only depend on the size of the Fourier transform, we
ignore the Riesz operators.
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5.0.3. Yang-Mills Equations. Let G be one of the classical, compact Lie groups of
matrices (such as SO(k;R) or SU(k;C)), and let g be its Lie algebra. The unknown
is a g-valued one-form A�dx

� on R1+n . The corresponding covariant derivative is

D�H = @�H + [A�; H ];

where H is any g-valued tensor �eld on R1+n and [�; �] is the matrix commutator.

The curvature is the g-valued two-form

F�� = @�A� � @�A� + [A�; A� ]:

The Lagrangian is

L[A�] = �1

4

Z
< F�� ; F

�� > dt dx;

where < �; � > is the inner product on g inherited from the ambient space (e.g.,

SO(k;R) embeds in Rk
2

, so its Lie algebra can be viewed as a subspace of the
latter). The Euler-Lagrange equations are

D�F�� = 0: (YM)

Let O be a G-valued function on R1+n . Consider the gauge transformation A� !eA�, given by eA� = OA�O
�1 � @�OO

�1:
A calculation shows that the curvature then transforms intoeF�� = OF��O

�1:

Denoting by eD� the covariant derivative corresponding to eA�, we then haveeD� eF�� = OD�F��O
�1;

so (119) is invariant under gauge transformations. We therefore have gauge freedom,
and may impose a gauge condition on A�.

(YM) in Coulomb gauge. Relative to the Coulomb condition @jAj = 0, (119) takes
the form (see [34])

�A0 = 2[@jA0; Aj ] + [Aj ; @tAj ] + [Aj ; [A0; Aj ]]; (119a)

�Aj + @t@jA0 = �2[Ak; @kAj ] + [Ak ; @jAk] + [@tA0; Aj ] + 2[A0; @tAj ]
(119b)

� [A0; @jA0]� [Ak; [Ak; Aj ]] + [A0; [A0; Aj ]];

@jAj = 0: (119c)

Unfortunately, assuming the existence of a global Coulomb gauge forces a restrictive
smallness assumption on the initial data. In [34] this diÆculty was resolved by using
local arguments. Following [47], we ignore this complication, and derive our model
equation from the system (119).

As in the discussion of (MKG), (119c) reduces to a constraint on the initial data.
The equation for A0 is elliptic, so we ignore it. As for (119b), we only retain the
�rst two terms on the right, since the other terms either involve A0 (for which we
expect to have better estimates than for Aj), or are cubic.
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Now write (119b) as an equation of time-dependent, g-valued one-forms on Rn

(ignoring all but the �rst two terms on the right):

�A+ d(@tA0) = S + T;

where A = Ajdx
j , S = �2[Ak; @kAj ]dx

j and T = [Ak; @jAk]dx
j . Apply the exterior

derivative d to both sides:

�dA = dS + dT:

Let B be the two-form (in this case g-valued) determined by equation (117). Thus

��Bjk = @jSk � @kSj + @jTk � @kTj :

By (118), it follows that

���Aj = @k (@jSk � @kSj + @jTk � @kTj) ;

so for the purposes of estimates in frequency space, we may replace (119b) by

�A = S +D�1dT: (120)

It remains to identify the null form structure hidden in S and dT . To begin with,
we have

Sj = [@kB
kl; @lAj ] =

1

2
[@kB

kl � @kB
lk; @lAj ]

=
1

2

�
[@kB

kl; @lAj ]� [@lB
kl; @kAj ]

�
=

1

2

�
@kB

kl@lAj � @lB
kl@kAj + @kAj@lB

kl � @lAj@kB
kl
�
;

so each entry of the matrix Sj is a linear combination of terms of the formQkl(A;B),
where A and B stand for any two entries of Aj and Bkl. But by (118), we may
replace B by D�1A. Schematically,

S � Q(A;D�1A): (121)

Now consider the one-form T . We calculate:

(dT )jk = @j [A
l; @kAl]� @k[A

l; @jAl]

= [@jA
l; @kAl]� [@kA

l; @jAl]:

Thus, each entry of the matrix (dT )jk is a linear combination of terms of the
form Qjk(A;A

0), where A and A0 stand for any two entries of Al, 1 � l � n.
Combining this with (121) and (120), we arrive at the model (\YM") for the Yang-
Mills equations.

6. Complements to Lecture III

An important corollary of this result is the following34:

34This was recently given a direct proof in [40]
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Theorem 6.1. For any assymptotically 
at initial data set (�; �g; �k) with maximal
future development (M; g) one can �nd a suitable domain 
0 with compact closure
in � such that the boundary D+

0 of its domain of in
uence35 C+(
0) in M has
complete null geodesic generators36.

The above Corollary can be used to introduce the concept of complete future null
in�nity37:

De�nition 6.2. We say that the maximal future development (M; g) of an AF
initial data set (�; �g; �k) possesses as complete future null in�nity if, for any positive
real number A, we can �nd a domain 
 containing the set 
0 of Theorem 1.2 such
that the boundary D� of the domain of dependence of 
 in M has the property
that each of its null geodesic generators has a total aÆne length, measured from
D� \ D+

0 , of at least A.

The unavoidable presence of singularities, for suÆciently large initial data sets, has
led Penrose to formulate two conjectures which go under the name of the weak and
strong cosmic censorhip conjectures.

Conjecture 1 [Weak Cosmic Censorship Conjecture (WCC)] Generic asymptoti-
cally 
at initial data have maximal future developments possesing a complete future
null in�nity.

The WCC conjecture does not preclude the possibility that singularities may be
visible by local observers. This could lead to the paradoxical situation of lack of
unique predictability of outcomes of observations made by such observers. The
strong cosmic censorship was designed to forbid such undesirable feature of singu-
larities.

Conjecture 2 [Strong Cosmic Censorship] Generic initial data38 sets have maxi-
mal future developments which are locally inextendible, in a continuous manner, as
Lorentz manifolds.

In more technical terms this means that, disregarding some possible exceptional
initial conditions, the maximal future development of an initial data set is such that
along any future, inextendible, timelike geodesic of �nite length39, the space-time
curvature components, expressed relative to a parallel transported orthonormal
frame along the geodesic, must become in�nite as the value of the arclength tends
to its limiting value.

35called also the causal future of 

36with respect to the corresponding aÆne parameter
37This concept is usually de�ned in the GR literature through the concept of a regular confor-

mal compacti�cation of a spacetime, by attaching a boundary at in�nity. The de�nition given here,
due to [10], avoids the technical issue of the precise degree of smoothness of the compcti�cation.

38Not necessarily assymptotically 
at. This conjecture has been often discussed in the context
of comapct initial data sets.

39i.e. bounded proper time.
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6.3. Reduction of Theorem 3.10 to Theorem 3.12. In what follows we de-
scribe the reduction of Theorem 3.10, to which we shall now refer as Theorem (A),
to the proof of the decay estimate of Theorem 3.12 which will be refered as The-
orem (B). The �rst �ve steps are now standard, see [2] and especially [72]. The
reduction to the last step is typical to the geometric approach of [29].

6.4. Step 1 Energy estimates. As we have already noted above the energy esti-
mates for our quasilinear wave equation imply that the L1[0;T ]H

s norm of a solution �

is controlled by the Hs norm of the initial data �[0] provided that k@�kL1
[0;T ]

L1x
� 1.

The next proposition is a more precise version of this statement.

Proposition 6.5 (Energy estimate). Let � 2 C([0; T ]; Hs)\C1([0; T ]; Hs�1) be a
solution of (67) on the time interval [0; T ] for some s � 1 obeying the condition
that k�kL1

[0;T ]
L1x � �0. Then � veri�es the following energy estimate.

k�kL1
[0;T ]

_Hs � C(k@�kL1
[0;T ]

L1x
;�0)k�[0]k _Hs : (122)

Here cosntant C(a; b) denotes the dependence on a; b and _Hs are the usual homo-
geneous Sobolev spaces.

6.6. Step 2 Reduction to the Strichartz type estimates. By the Cauchy-

Schwartz inequality, k@�kL1
[0;T]

L1x
� T

1
2 k@�kL2

[0;T]
L1x

. Thus the Strichartz inequal-

ity (71) and the smallness of the time interval [0; T ] can be used to close the energy
estimates in the space Hs� . This e�ectively yields the desired local well posedness
of problem. Theorem (A) can be then reduced to the following bootstrap argument.

Theorem 6.7 (A1). Let � 2 C([0; T ]; Hs�) \ C1([0; T ]; Hs��1) be a solution of
(67) on the time interval [0; T ], T � 1. Assume that

k�kL1
[0;T ]

Hs� + k@�kL2
[0;T ]

L1x
� B0; (123)

with the constant B0 � c�1s� �0, where cs� is the Sobolev constant of the embedding
Hs� � L1. Then � satis�es the local in time Strichartz type estimate,

k@�kL2
[0;T ]

L1x
� C(B0)T

s��s0k�kL1
[0;T ]

Hs� : (124)

6.8. Step 3 The dyadic version of the Strichartz type estimate and the
paradi�erential approximation. For the purpose of proving the Strichartz type
estimate (124) we may regard the quasilinear problem (67) as a linear wave equation
for � with rough coeÆcients. It is advantageous to mollify the coeÆcients and work
with the family of linear wave equations with smooth coeÆcients dependent on a
parameter. First we introduce functions �� obtained by restricting � to the dyadic
piece of frequency � � in Fourier space. More precisely, let � be a smooth function
with support in the shell f� : 1

2 � j�j � 2g. Here, � denotes the variable of the

spatial Fourier transform. Let � also satisfy the condition
P

k2Z�(2
k�) = 1; 8� 2

R3=f0g. Let � be a dyadic parameter � = 2k with some k 2 Z and denote by P�
the \projector"

P�f(x) = f�(x) =

Z
e�ix���(��1�)f̂(�) d�:
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De�ne also
f�� = S�f =

X
���

P�f:

Theorem (A1) then follows from the following dyadic version of the Strichartz type
estimates for �� = P��.

Theorem 6.9 (A2). Let � be as in Theorem (A1). Fix a large parameter �. Then
for each � � �, the function �� satis�es the Strichartz type estimate

k@��kL2
[0;T ]

L1x
� C(B0) c�T

s��s0k�kL1
[0;T ]

Hs� ; (125)

for constants c� such that
P

� c
2
� � 1. A similar estimate also holds for ���.

Remark (A2) In the case of the low frequencies, the estimate (125) for ��� follows
trivially from the Sobolev inequality.

k@���kL2
[0;T ]

L1x
� c T

1
2 k���k

L1
[0;T ]

H
5
2
+� � c�

5
2+��s�T

1
2 k�kL1

[0;T ]
Hs� ;

where c is the norm of the embedding H
3
2+�(R3 ) � L1(R3 ). Since s� is assumed

to be suÆciently close to s0 = 2+ 1
2 (2�

p
3) and � is a �xed large parameter which

could depend only upon B0, we have the desired bound for the low frequency part of
�.

We restrict the attention to the large frequencies � � �. In the next proposition
we show that each �� satis�es an inhomogeneous wave equation with the smooth
metric gij�a = S�ag

ij(Sa��) for any �xed value of the parameter a 2 [0; 1].

Proposition 6.10. Let � be as in Theorem (A1). Fix the value of the parameter
a; a 2 [0; 1]. Then for each � � �, �� veri�es the equation

�2g��a�
� = �@2t �� + gij��a@i@j�

� = Ra
�;

��jt=0 = ��0 ; @t�
�jt=0 = ��1 :

(126)

Furthermore, the Fourier support of the right-hand side Ra
� is contained in the set

f� : � � j�j � 4�g, and for all real s > 1 and an arbitrary t 2 [0; T ]

kR�(t)k _Hs � c �skR�kL2
x
. C(B0)�

1�ac� k@�kL1x k�k _Hs (127)

with the constants c�:
P

� c
2
� � 1.

6.11. Step 4 Strichartz estimate on the frequency dependent intervals.
This step reduces the proof of Theorem (A) to the proof of the precise 40 Strichartz
estimate for the linearized equation �2g�a = 0 on small time interval I of size

� T��(1�a). The loss of regularity in the �nal Strichartz estimate follows then as
a result of summing these sharp Strichartz estimates over intervals I in [0; T ].

Theorem 6.12 (A3). Let � � � and let  be a solution of the linear wave equation

�2g�a = 0 with initial data  [0] such that the supp  ̂[0] 2 f 12� � j�j � 2�g and
the metric g�a is as de�ned in Proposition 6.10. Fix the value of the parameter a,
a = 5�2s�

1�2s�+2s0 < �1 +p3. Then there exists a partition f I g of the interval [0; T ]

40without losses as in the 
at case
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into subintervals I such that the size of each I, jI j � T��(1�a), the number of the
subintervals is approximately �1�a, and on each I,  satis�es a Strichartz estimate
with a �xed, arbitrary small � > 0,

kP� @ kL2
IL

1
x
� C(B0) jI j�k [0]k _H2+� (128)

Remark (A3) According to the bootstrap assumption (123) the solution � of the
quasilinear problem veri�es the estimate k@�kL2

[0;T ]
L1x

� B0. It easily follows that

there exists a subpartition f I g of the time interval [0; T ], with the total number
of the subintervals I between �1�a and 2�1�a and the size of each I bounded by
T��(1�a), such that on each I we have

k@�kL2
IL
1
x
� ��

1�a
2 k@�kL2

[0;T]
L1x

(129)

This construction de�nes the subpartition f I g mentioned in Theorem (A3).

6.13. Properties of the metric g�a . Inequality (128) is the Strichartz estimate
for a solution of the wave equation with variable coeÆcients (metric) �2g��a = 0
on the frequency dependent intervals I .

The metric g��a = S�ag(S�a�) depends upon the solution � of the quasilinear
problem. In the next proposition we state the properties of the family g��a which
follow from the bootstrap condition (123) on � and the construction of the partition
f I g described in the Remark (A3).

Proposition 6.14. Let � 2 C([0; T ]; Hs�)\C1([0; T ]; Hs��1) be a solution of (67)
on the time interval [0; T ], T � 1. Assume that � veri�es the assumption (123)
of Theorem (A1). Consider the subpartition f I g of the time interval [0; T ] as
de�ned by Remark (A3). Then the family of metrics g��a = S�ag(S�a�) obeys the
following conditions:

For all subintervals I and all nonnegative integers m

k@1+mg��akL1
IL
1
x
� ��(1�a)+am �B0; (130)

k@1+mg��akL2
IL
1
x
� ��

1�a
2 +am �B0; (131)

k@1+mg��akL1I L1x � �
a2

2 +am �B0; (132)

k@ 1
2+m
x (@2g��a)kL1I L2

x
� �

a2

2 +am �B0; (133)

k@m �2g��ag��akL1
IL
1
x
� ��(1�a)+am �B0: (134)

The constant �B0 depend only on the constants M0 and B0.

Remark: Observe that by the construction the frequencies of the metric g��a
are truncated above �a only with respect to the Fourier variable dual to the spatial
variable x. Therefore, each di�erentiation with respect to x introduces an additional
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factor of at most �a. However, using the fact that g��a depends on the solution of
the wave equation, we can make the same conclusion for the time derivatives

Theorem (A3) can be recast41 as a result concerning local Strichartz estimates,
on a �xed small subinterval I , for solutions to a linear wave equation with the
background metric g��a satisfying the estimates of Proposition 6.14.

Theorem 6.15 (A4). Let  be a solution of the linear wave equation

�2g��a = �@2t + gij��a@i@j = 0;

 jt=0 =  0; @t jt=0 =  1
(135)

on the time interval I of length jI j � ��(1�a) with initial data  [0] supported on
the set f� : 1

2� � j�j � 2�g in Fourier space. Assume that the metric g�a veri�es

(130)-(134) of Proposition 6.14 with the parameter a chosen such that a < �1+p3.
Let P� be the projection on the set f� : 1

2� � j�j � 2�g in Fourier space. Then for
a suÆciently large parameter �, all dyadic � � � and a �xed � > 0,

kP� @ kL2
IL

1
x
� C( �B0) jI j�k [0]k _H2+� (136)

with the constant C( �B0) independent of �.

6.16. Step 5 Rescaling. It is convenient to replace the problem (135) by its
rescaled version, so that the support of the initial data has frequencies j�j � 1 and
the time interval I has length � �a.

Translating the problem in time, if necessary, we can assume that the time interval
I starts at t = 0. Introduce the family of the rescaled metrics h�

h�(t; x) = g��a(��1t; ��1x) (137)

Proposition 6.14 implies that h� obeys the following estimates 42 on the time
interval43 I = [0; t�] with t� � �a:

k@1+mh�kL1
I�
L1x

. ��(1�a)(m+1); (138)

k@1+mh�kL2
I�
L1x

. ��
2�a
2 �(1�a)m; (139)

k@1+mh�kL1I�L1x . ��1+
a2

2 �(1�a)m; (140)

k@ 1
2+m
x (@2h�)kL1I�L2

x
. ��1+

a2

2 �(1�a)m; (141)

k@m ��h�h�kL1
I�
L1x

. ��(2�a)�(1�a)m; (142)

After rescaling Theorem (A4) transforms into

41We can therefore completely forget the origin of the metric g��a , we only need to know

(130)-(134).
42According to our convention A . B means A � C �B for some universal constant C. By the

bootstrap assumption all the constants in our estimates may depend on the constant B0. Thus

we can treat B0 as a universal constant and, in what follows, replace the dependence on it by ..
In addition, the choice of the large frequency �, as in Theorem (A3), will be determined by the
condition that A . B may be replaced by A � ��B with an arbitrary positive �

43We keep the notation I for the rescaled time interval
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Theorem 6.17 (A5). Let  be a solution of the linear wave equation

�2h� = �@2t + hij� @i@j = 0;

 jt=0 =  0; @t jt=0 =  1
(143)

on the time interval [0; t�] with t� � �a. Assume that the parameter � � � for a
suÆciently large constant � and that the metric h� veri�es (138)-(142) with the

parameter a such that a < �1+p3. Let P be the operator of projection on the set
f� : 1 � j�j � 2g in Fourier space. Then

kP @ kL2
[0;t�]

L1x
. jt�j�(k@ 0kL2

x
+ k 1kL2

x
) (144)

with a constant independent of � in the inequality ..

Remark: Note that Theorem (A5) does not contain any assumptions on the
Fourier support of the initial data  [0].

6.18. Step 6 Decay estimates. A variation of the standard TT � type argu-
ment, see [29], allows us to reduce the Strichartz estimate (144) to a correspond-
ing dispersive inequality, see (145). In the process we replace44 the equation
�2h� = 0 by the geometric wave equation 2h� = � 1p

deth�
@t
p
deth� @t +

1p
deth�

@i(h
ij
�

p
deth� @j ) = 0.

Theorem 6.19 (A6). Let  be a solution of the linear wave equation

2h� = � 1p
deth�

@t
p
deth� @t +

1p
deth�

@i(h
ij
�

p
deth� @j ) = 0;

 jt=0 =  0; @t jt=0 =  1 (145)

on the time interval [0; t�] with t� � �a and with initial data  [0] supported in the set
f� : 1

2 � j�j � 2g in Fourier space. We consider only large values of the parameter
� � �. Assume that the metric h� veri�es (138)-(142) with the parameter a such

that a < �1 +p3. Then for all t � t� and a �xed arbitrary small � > 0

kP @ (t)kL1x .
1

(1 + jtj)1�� k [0]kL1
x
: (146)

We make the �nal reduction by decomposing the initial data  [0] in the physical
space into a sum of functions with essentially disjoint supports contained in balls of
radius 1

2 . Using the additivity of the L1 norm and the standard Sobolev inequality

we can reduce the dispersive inequality (146) to an L2 � L1 decay estimate.

Theorem 6.20 (B). Let  be a solution of the linear wave equation (145) on the
time interval [0; t�] with t� � �a and with initial data  [0] supported in the ball
B 1

2
(0) of radius 1

2 centered at the origin in the physical space. We �x a big constant

� and consider only large values of the parameter � � �. Assume that the metric

44The two wave operators di�er only by lower order terms in so far as the Strichartz estimates
are concerned.
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h� veri�es (138)-(142) with the parameter a such that a < �1 +p3. Then for all
t � t�, an arbitrary small � > 0, and a suÆciently large integer m > 0,

kP @ (t)kL1x .
1

(1 + jtj)1��
mX
k=1

k@k [0]kL2
x
: (147)
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