Some novel kernel-based divergences between probability distributions

Anna Korba (ENSAE, IP Paris)

Statistical and Numerical Methods for Non-commutative Optimal Transport, 2025

Comparing probability distributions is a fundamental task, e.g. in

Comparing probability distributions is a fundamental task, e.g. in

• testing (goodness of fit tests)

Comparing probability distributions is a fundamental task, e.g. in

- testing (goodness of fit tests)
- sampling as optimization: minimize functional $\mathcal{F}:\mathcal{P}(\mathbb{R}^d)
 ightarrow\mathbb{R}$

 $\min_{p\in\mathcal{P}(R^d)}\mathcal{F}(p),$

where $\mathcal{P}(\mathbb{R}^d)$ denotes the space of probability distributions over \mathbb{R}^d . It is an infinite-dimensional optimization problem.

Comparing probability distributions is a fundamental task, e.g. in

- testing (goodness of fit tests)
- sampling as optimization: minimize functional $\mathcal{F}:\mathcal{P}(\mathbb{R}^d)
 ightarrow\mathbb{R}$

 $\min_{p\in\mathcal{P}(R^d)}\mathcal{F}(p),$

where $\mathcal{P}(\mathbb{R}^d)$ denotes the space of probability distributions over \mathbb{R}^d . It is an infinite-dimensional optimization problem.

Applications:

- 1. Bayesian inference (learn complex posteriors for parametric models, $q = \tilde{q}/Z$ with Z unknown)
- 2. Generative modeling (learn data distributions)

 Learn to sample from a probability distribution q:
 z₁,... z_m ~ q.

References

Sampling as optimization

The sampling problem can be rewritten as minimizing $\mathcal{F}(p) = \mathcal{D}(p|q)$

- where $q \in \mathcal{P}(\mathbb{R}^d)$ is a target distribution
- and \mathcal{D} a loss objective that cancels only for p = q.

The choice of \mathcal{D}/\mathcal{F} depends on the information on the target q.

References

Sampling as optimization

The sampling problem can be rewritten as minimizing $\mathcal{F}(p) = \mathcal{D}(p|q)$

- where $q \in \mathcal{P}(\mathbb{R}^d)$ is a target distribution
- and \mathcal{D} a loss objective that cancels only for p = q.

The choice of \mathcal{D}/\mathcal{F} depends on the information on the target q.

Examples:

• $\mathcal{F}(p) = \mathrm{KL}(p|q)$, where $\mathrm{KL}(p|q) = \int \log\left(\frac{dp}{dq}(x)\right) dp(x)$ if p absolutely continuous w.r.t. q (with density dp/dq), $+\infty$ else.

Convenient when the unnormalized density of q is known since the minimization objective **does not depend on the normalization constant!**

Indeed writing $q(x) = e^{-V(x)}/Z$ we have:

$$\mathrm{KL}(p|q) = \int_{\mathbb{R}^d} \log\left(\frac{p}{e^{-V}}(x)\right) dp(x) + \log(Z).$$

But, it is not convenient when p or q are discrete, because the KL is $+\infty$ unless $supp(p) \subset supp(q)$.

The sampling problem can be rewritten as minimizing $\mathcal{F}(p)=\mathcal{D}(p|q)$

- where $q \in \mathcal{P}(\mathcal{Z})$ is a target distribution
- and \mathcal{D} a loss objective that cancels only for p = q.

The choice of \mathcal{D}/\mathcal{F} depends on the information on the target q.

Examples:

• When we have samples of q (or a discrete measure), it is convenient to choose D as an integral probability metric (IPM)

For instance, \mathcal{D} could be the MMD (Maximum Mean Discrepancy)¹:

$$MMD^{2}(p,q) = \sup_{f \in \mathbf{H}_{k}, \|f\|_{\mathcal{H}_{k}} \leq 1} \left| \int fdp - \int fdq \right|$$
$$= \|m_{p} - m_{q}\|_{\mathbf{H}_{k}}^{2}, \quad \text{where } m_{p} = \int k(x, \cdot)dp(x)$$
$$= \mathbb{E}_{x, y \sim p}[k(x, y)] + \mathbb{E}_{x, y \sim q}[k(x, y)] - 2 \mathbb{E}_{\substack{x \sim p \\ y \sim q}}[k(x, y)]$$

 ${}^{1}k : \mathbb{R}^{d} \times \mathbb{R}^{d} \to \mathbb{R}$ a p.s.d. kernel (e.g. $k(x, y) = e^{-||x-y||^{2}}$) with RKHS H_{k} , $\langle f, k(x, .) \rangle_{H_{k}} = f(x)$ for $f \in H_{k}$.

Are all functionals good optimization objectives?

Example: Take
$$k(x, y) = e^{-\frac{||x-y||^2}{\sigma^2}}$$
, $p = \frac{1}{n} \sum_{i=1}^n \delta_{x^i}$, $q = \frac{1}{m} \sum_{j=1}^m \delta_{y^j}$.

Optimizing MMD with gradient descent can miserably fail (Arbel et al., 2019).

Remark: works much better choosing k(x, y) = -||x - y||, where the MMD is known as Energy distance see (Hertrich et al., 2024).

Statistical and Geometrical Properties of Regularized Kernel Kullback-Leibler Divergence

Joint work with Clémentine Chazal (ENSAE) and Francis Bach (INRIA).

Published at Neurips 2024.

Let $q \in \mathcal{P}(\mathbb{R}^d)$. The covariance operator w.r.t. q is defined as $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, where $(a \otimes b)c = \langle b, c \rangle_{\mathrm{H}_k} a$ for $a, b, c \in \mathrm{H}_k$.

¹ if k^2 is characteristic. See paper for sufficient conditions

Let $q \in \mathcal{P}(\mathbb{R}^d)$. The covariance operator w.r.t. q is defined as $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, where $(a \otimes b)c = \langle b, c \rangle_{H_k} a$ for $a, b, c \in H_k$.

For $p, q \in \mathcal{P}(\mathbb{R}^d)$, the KKL is defined as: $KKL(p|q) := Tr(\Sigma_p \log \Sigma_p) - Tr(\Sigma_p \log \Sigma_q) = \sum_{\substack{(\lambda, \gamma) \\ \in \Lambda_p \times \Lambda_q}} \lambda \log\left(\frac{\lambda}{\gamma}\right) \langle f_{\lambda}, g_{\gamma} \rangle_{H_k}^2,$

where Λ_{ρ} and Λ_{q} are the set of eigenvalues of the covariance operators Σ_{ρ} and Σ_{q} , with associated eigenvectors $(f_{\lambda})_{\lambda \in \Lambda_{\rho}}$ and $(g_{\gamma})_{\gamma \in \Lambda_{q}}$.

¹ if k^2 is characteristic. See paper for sufficient conditions

Let $q \in \mathcal{P}(\mathbb{R}^d)$. The covariance operator w.r.t. q is defined as $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, where $(a \otimes b)c = \langle b, c \rangle_{\mathrm{H}_k} a$ for $a, b, c \in \mathrm{H}_k$.

For $p, q \in \mathcal{P}(\mathbb{R}^d)$, the KKL is defined as: $KKL(p|q) := Tr(\Sigma_p \log \Sigma_p) - Tr(\Sigma_p \log \Sigma_q) = \sum_{\substack{(\lambda, \gamma) \\ \in \Lambda_p \times \Lambda_q}} \lambda \log\left(\frac{\lambda}{\gamma}\right) \langle f_{\lambda}, g_{\gamma} \rangle_{H_k}^2,$

where Λ_{ρ} and Λ_{q} are the set of eigenvalues of the covariance operators Σ_{ρ} and Σ_{q} , with associated eigenvectors $(f_{\lambda})_{\lambda \in \Lambda_{\rho}}$ and $(g_{\gamma})_{\gamma \in \Lambda_{q}}$.

• can be seen as **second-order embeddings** of probability distributions, in contrast with first-order kernel mean embeddings (as used in MMD)

¹ if k^2 is characteristic. See paper for sufficient conditions

Let $q \in \mathcal{P}(\mathbb{R}^d)$. The covariance operator w.r.t. q is defined as $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, where $(a \otimes b)c = \langle b, c \rangle_{\mathrm{H}_k} a$ for $a, b, c \in \mathrm{H}_k$.

For $p, q \in \mathcal{P}(\mathbb{R}^d)$, the KKL is defined as: $KKL(p|q) := Tr(\Sigma_p \log \Sigma_p) - Tr(\Sigma_p \log \Sigma_q) = \sum_{\substack{(\lambda, \gamma) \\ \in \Lambda_p \times \Lambda_q}} \lambda \log\left(\frac{\lambda}{\gamma}\right) \langle f_{\lambda}, g_{\gamma} \rangle_{H_k}^2,$ where Λ and Λ are the set of simplified as approximate constant

where Λ_{ρ} and Λ_{q} are the set of eigenvalues of the covariance operators Σ_{ρ} and Σ_{q} , with associated eigenvectors $(f_{\lambda})_{\lambda \in \Lambda_{\rho}}$ and $(g_{\gamma})_{\gamma \in \Lambda_{q}}$.

- can be seen as second-order embeddings of probability distributions, in contrast with first-order kernel mean embeddings (as used in MMD)
- $\operatorname{KL}(\tilde{k}\star p|\tilde{k}\star q) \leq \operatorname{KKL}(p|q) \leq \operatorname{KL}(p|q)$ for some smoothing kernel \tilde{k}

¹ if k^2 is characteristic. See paper for sufficient conditions

Let $q \in \mathcal{P}(\mathbb{R}^d)$. The covariance operator w.r.t. q is defined as $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, where $(a \otimes b)c = \langle b, c \rangle_{H_k} a$ for $a, b, c \in H_k$.

For $p, q \in \mathcal{P}(\mathbb{R}^d)$, the KKL is defined as: $KKL(p|q) := Tr(\Sigma_p \log \Sigma_p) - Tr(\Sigma_p \log \Sigma_q) = \sum_{\substack{(\lambda,\gamma) \\ \in \Lambda_p \times \Lambda_q}} \lambda \log\left(\frac{\lambda}{\gamma}\right) \langle f_{\lambda}, g_{\gamma} \rangle_{H_k}^2,$

where Λ_{ρ} and Λ_{q} are the set of eigenvalues of the covariance operators Σ_{ρ} and Σ_{q} , with associated eigenvectors $(f_{\lambda})_{\lambda \in \Lambda_{\rho}}$ and $(g_{\gamma})_{\gamma \in \Lambda_{q}}$.

- can be seen as **second-order embeddings** of probability distributions, in contrast with first-order kernel mean embeddings (as used in MMD)
- $\mathrm{KL}(ilde{k}\star p| ilde{k}\star q)\leq \mathrm{KKL}(p|q)\leq \mathrm{KL}(p|q)$ for some smoothing kernel $ilde{k}$
- KKL(p|q) = 0 if and only if $p = q^1$ Bach (2022, Proposition 4)

¹ if k^2 is characteristic. See paper for sufficient conditions

Questions:

- what is the behavior of KKL for empirical measures? does it admit a tractable closed-form expression ?
- is it a suitable optimization objective?

Regularized KKL (Chazal et al., 2024)

$$\mathrm{KKL}(p|q) := \mathsf{Tr}(\boldsymbol{\Sigma}_{\rho} \log \boldsymbol{\Sigma}_{\rho}) - \mathsf{Tr}(\boldsymbol{\Sigma}_{\rho} \log \boldsymbol{\Sigma}_{q}) = \sum_{(\lambda, \gamma) \in \Lambda_{p} \times \Lambda_{q}} \lambda \log \left(\frac{\lambda}{\gamma}\right) \langle f_{\lambda}, g_{\gamma} \rangle_{\mathrm{H}_{k}}^{2}.$$

- $\operatorname{KKL}(p|q) < \infty$ requires $\operatorname{Ker}(\Sigma_q) \subset \operatorname{Ker}(\Sigma_p)$
- True if $\operatorname{Supp}(p) \subset \operatorname{Supp}(q)$: if $f \in \operatorname{Ker}(\Sigma_q)$, then

$$\langle f, \Sigma_q f \rangle_{\mathrm{H}_k} = \int \langle f, k(x, \cdot) \otimes k(x, \cdot) f \rangle_{\mathrm{H}_k} dq(x) = \int_{\mathbb{R}^d} f(x)^2 dq(x) = 0$$

and so f is zero on the support of q, then also on the support of p

• Hence the KKL is not convenient if p, q are discrete with different supports

Regularized KKL (Chazal et al., 2024)

$$\mathrm{KKL}(p|q) := \mathsf{Tr}(\boldsymbol{\Sigma}_{\rho} \log \boldsymbol{\Sigma}_{\rho}) - \mathsf{Tr}(\boldsymbol{\Sigma}_{\rho} \log \boldsymbol{\Sigma}_{q}) = \sum_{(\lambda, \gamma) \in \Lambda_{p} \times \Lambda_{q}} \lambda \log \left(\frac{\lambda}{\gamma}\right) \langle f_{\lambda}, g_{\gamma} \rangle_{\mathrm{H}_{k}}^{2}.$$

- KKL(p|q) < ∞ requires Ker(Σ_q) \subset Ker(Σ_p)
- True if $\operatorname{Supp}(p) \subset \operatorname{Supp}(q)$: if $f \in \operatorname{Ker}(\Sigma_q)$, then

$$\langle f, \Sigma_q f \rangle_{\mathrm{H}_k} = \int \langle f, k(x, \cdot) \otimes k(x, \cdot) f \rangle_{\mathrm{H}_k} dq(x) = \int_{\mathbb{R}^d} f(x)^2 dq(x) = 0$$

and so f is zero on the support of q, then also on the support of p

• Hence the KKL is not convenient if p, q are discrete with different supports

A simple fix that we propose is to consider a regularized version of KKL which is, for $\alpha \in]0, 1[$,

$$\begin{aligned} \mathrm{KKL}_{\alpha}(p|q) &:= \mathrm{KKL}(p|(1-\alpha)q + \alpha p) \\ &= \mathsf{Tr}(\boldsymbol{\Sigma}_{p}\log\boldsymbol{\Sigma}_{p}) - \mathsf{Tr}(\boldsymbol{\Sigma}_{p}\log((1-\alpha)\boldsymbol{\Sigma}_{q} + \alpha\boldsymbol{\Sigma}_{p})). \end{aligned}$$

and which recovers KKL as $\alpha \to 0$ (it goes to 0 when $\alpha \to 1$). Note it still cancels for p = q.

Proposition

Let $p \ll q$. The function $\alpha \mapsto \text{KKL}_{\alpha}(p|q)$ is decreasing on [0,1].

Proposition

Let $p, q \in \mathcal{P}(\mathbb{R}^d)$. Assume that $p \ll q$ and that $\frac{dp}{dq} \leqslant \frac{1}{\mu}$ for some $\mu > 0$. Then,

$$|\mathrm{KKL}_{lpha}(p|q) - \mathrm{KKL}(p|q)| \leqslant \left(lpha \left(1 + \frac{1}{\mu} \right) + \frac{lpha^2}{1 - lpha} \left(1 + \frac{1}{\mu^2} \right)
ight) |\operatorname{Tr} \left(\Sigma_p \log \Sigma_q
ight)|.$$

Proposition

Let $p \ll q$. The function $\alpha \mapsto \text{KKL}_{\alpha}(p|q)$ is decreasing on [0,1].

Proposition

Let $p, q \in \mathcal{P}(\mathbb{R}^d)$. Assume that $p \ll q$ and that $\frac{dp}{dq} \leqslant \frac{1}{\mu}$ for some $\mu > 0$. Then,

$$|\mathrm{KKL}_{\alpha}(p|q) - \mathrm{KKL}(p|q)| \leqslant \left(lpha \left(1 + \frac{1}{\mu} \right) + \frac{lpha^2}{1 - lpha} \left(1 + \frac{1}{\mu^2} \right)
ight) |\operatorname{Tr} \left(\Sigma_p \log \Sigma_q
ight) |.$$

These two propositions above show that the regularized KKL shares a similar behavior than the regularized (standard) KL:

Proposition

Let $p \ll q$. The function $\alpha \mapsto \text{KKL}_{\alpha}(p|q)$ is decreasing on [0,1].

Proposition

Let $p,q \in \mathcal{P}(\mathbb{R}^d)$. Assume that $p \ll q$ and that $\frac{dp}{dq} \leqslant \frac{1}{\mu}$ for some $\mu > 0$. Then,

$$|\mathrm{KKL}_{lpha}(\pmb{p}|\pmb{q}) - \mathrm{KKL}(\pmb{p}|\pmb{q})| \leqslant \left(lpha \left(1 + rac{1}{\mu}
ight) + rac{lpha^2}{1 - lpha} \left(1 + rac{1}{\mu^2}
ight)
ight) | \mathsf{Tr} \left(\Sigma_{p} \log \Sigma_{q}
ight) |.$$

These two propositions above show that the regularized KKL shares a similar behavior than the regularized (standard) KL:

• which is also monotone decreasing in α

Proposition

Let $p \ll q$. The function $\alpha \mapsto \text{KKL}_{\alpha}(p|q)$ is decreasing on [0,1].

Proposition

Let $p,q \in \mathcal{P}(\mathbb{R}^d)$. Assume that $p \ll q$ and that $\frac{dp}{dq} \leqslant \frac{1}{\mu}$ for some $\mu > 0$. Then,

$$|\mathrm{KKL}_{lpha}(\pmb{p}|\pmb{q}) - \mathrm{KKL}(\pmb{p}|\pmb{q})| \leqslant \left(lpha \left(1 + rac{1}{\mu}
ight) + rac{lpha^2}{1 - lpha} \left(1 + rac{1}{\mu^2}
ight)
ight) | \mathsf{Tr} \left(\Sigma_{p} \log \Sigma_{q}
ight) |.$$

These two propositions above show that the regularized KKL shares a similar behavior than the regularized (standard) KL:

- which is also monotone decreasing in α
- same bound, replacing $|\operatorname{Tr}(\Sigma_p \log \Sigma_q)|$ by $\int \log q dp$

Proposition

Let $p \ll q$. The function $\alpha \mapsto \text{KKL}_{\alpha}(p|q)$ is decreasing on [0,1].

Proposition

Let $p,q \in \mathcal{P}(\mathbb{R}^d)$. Assume that $p \ll q$ and that $\frac{dp}{dq} \leqslant \frac{1}{\mu}$ for some $\mu > 0$. Then,

$$|\mathrm{KKL}_{lpha}(p|q) - \mathrm{KKL}(p|q)| \leqslant \left(lpha \left(1 + \frac{1}{\mu} \right) + \frac{lpha^2}{1 - lpha} \left(1 + \frac{1}{\mu^2} \right)
ight) |\operatorname{Tr} \left(\Sigma_p \log \Sigma_q
ight) |.$$

These two propositions above show that the regularized KKL shares a similar behavior than the regularized (standard) KL:

- which is also monotone decreasing in $\boldsymbol{\alpha}$
- same bound, replacing $|\operatorname{Tr}(\Sigma_p \log \Sigma_q)|$ by $\int \log q dp$
- yet the tools used to derive these are completely different by nature than for the KL case, e.g. identities like

$$\mathsf{Tr}(\Sigma_{\rho}(\log \Sigma_{\rho} - \log \Sigma_{q})) = \int_{0}^{+\infty} \mathsf{Tr}(\Sigma_{\rho}(\Sigma_{\rho} + \beta I)^{-1}) - \mathsf{Tr}(\Sigma_{q}(\Sigma_{q} + \beta I)^{-1}) d\beta$$

and operator monotony.

Concentration of the regularized KKL

Proposition Let $p, q \in \mathcal{P}(\mathbb{R}^d)$. Assume that $p \ll q$ with $\frac{dp}{dq} \leq \frac{1}{\mu}$ for some $0 < \mu \leq 1$ and let $\alpha \leq \frac{1}{2}$, and that $c = \int_0^{+\infty} \sup_{x \in \mathbb{R}^d} \langle k(x, \cdot), (\Sigma_p + \beta I)^{-1} k(x, \cdot) \rangle_{H_k}^2 d\beta$ is finite. Let \hat{p}, \hat{q} supported on n, m i.i.d. samples from p and q respectively. We have: $\mathbb{E}|\text{KKL}_{\alpha}(\hat{p}|\hat{q}) - \text{KKL}_{\alpha}(p|q)| \leq \frac{35}{\sqrt{m \wedge n}} \frac{1}{\alpha \mu} (2\sqrt{c} + \log n)$ $+ \frac{1}{m \wedge n} \left(1 + \frac{1}{\mu} + \frac{c(24\log n)^2}{\alpha \mu^2} (1 + \frac{n}{m \wedge n})\right).$

Concentration of the regularized KKL

Proposition Let $p, q \in \mathcal{P}(\mathbb{R}^d)$. Assume that $p \ll q$ with $\frac{dp}{dq} \leq \frac{1}{\mu}$ for some $0 < \mu \leq 1$ and let $\alpha \leq \frac{1}{2}$, and that $c = \int_0^{+\infty} \sup_{x \in \mathbb{R}^d} \langle k(x, \cdot), (\Sigma_p + \beta I)^{-1} k(x, \cdot) \rangle_{H_k}^2 d\beta$ is finite. Let \hat{p}, \hat{q} supported on n, m i.i.d. samples from p and q respectively. We have: $\mathbb{E}|\text{KKL}_{\alpha}(\hat{p}|\hat{q}) - \text{KKL}_{\alpha}(p|q)| \leq \frac{35}{\sqrt{m \wedge n}} \frac{1}{\alpha \mu} (2\sqrt{c} + \log n)$ $+ \frac{1}{m \wedge n} \left(1 + \frac{1}{\mu} + \frac{c(24 \log n)^2}{\alpha \mu^2} (1 + \frac{n}{m \wedge n})\right).$

Remarks:

- It is possible to derive a similar bound which does not require the condition $p \ll q$; yet it scales in $O(\frac{1}{\alpha^2})$ instead of $O(\frac{1}{\alpha})$ above.
- if n = m, the bound above scales as $\mathcal{O}\left(\frac{(\log n)^2}{n} + \frac{\log n}{\sqrt{n}}\right)$
- proof involves technical intermediate results: concentration of sums of random self-adjoint operators and estimation of degrees of freedom.

Regularized KKL closed-form for discrete measures

Proposition Let $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ and $\hat{q} = \frac{1}{m} \sum_{i=1}^{m} \delta_{y_i}$ two discrete distributions. Define $K_{\hat{p}} = (k(x_i, x_j))_{i,j=1}^n \in \mathbb{R}^{n \times n}$, $K_{\hat{q}} = (k(y_i, y_j))_{i,j=1}^m \in \mathbb{R}^{m \times m}$, $K_{\hat{n},\hat{n}} = (k(x_i, y_i))_{i,i=1}^{n,m} \in \mathbb{R}^{n \times m}.$ Then, for any $\alpha \in]0,1[$, we have: $\begin{aligned} \operatorname{KKL}_{\alpha}(\hat{p}||\hat{q}) &= \operatorname{Tr}\left(\frac{1}{n}K_{\hat{p}}\log\frac{1}{n}K_{\hat{p}}\right) - \operatorname{Tr}\left(I_{\alpha}K\log(K)\right), \\ \end{aligned}$ where $I_{\alpha} &= \begin{pmatrix} \frac{1}{\alpha}I & 0\\ 0 & 0 \end{pmatrix}$ and $K = \begin{pmatrix} \frac{\alpha}{n}K_{\hat{p}} & \sqrt{\frac{\alpha(1-\alpha)}{nm}}K_{\hat{p},\hat{q}}\\ \sqrt{\frac{\alpha(1-\alpha)}{nm}}K_{\hat{q},\hat{p}} & \frac{1-\alpha}{m}K_{\hat{q}} \end{pmatrix}. \end{aligned}$

Computational cost (due to the singular value decomposition): $O((n+m)^3)$.

Illustrations of skewness and concentration of the KKL

Figure: Concentration of empirical KKL_{α} for d = 10, $\sigma = 10$, with Gaussian kernel $k(x, y) = \exp(-||x - y||^2/\sigma^2)$. p, q different anisotropic Gaussians. Computed over 50 runs.

Dynamical measure transport and gradient flows

Motivation of generative modeling:

Idea: transport an initial, tractable measure p_0 onto q by minimizing $\mathcal{F} = \mathcal{D}(\cdot|q)$

What about $\mathcal{D} = \mathrm{KKL}_{\alpha}$?

KKL minimization in practice

Introduce a particle system $x_0^1, \ldots, x_0^n \sim p_0$, a step-size γ , and at each step¹:

$$x_{l+1}^{i} = x_{l}^{i} - \gamma \nabla_{W_{2}} \mathcal{F}(\hat{p}_{l})(x_{l}^{i})$$
 for $i = 1, ..., n$, where $\hat{p}_{l} = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{l}^{i}}$. (1)

In particular, as $\mathcal{F}(p) = \text{KKL}_{\alpha}(p|q)$ is well-defined for discrete measures p, Algorithm (1) simply corresponds to gradient descent of $F : \mathbb{R}^{N \times d} \to \mathbb{R}$, $F(x^1, \ldots, x^n) := \mathcal{F}(p^n)$ where $p^n = \frac{1}{n} \sum_{i=1}^n \delta_{x^i}$.

$$\begin{split} ^{1}\nabla_{W_{2}}\mathcal{F}(p) &:= \nabla\mathcal{F}'(p): \mathbb{R}^{d} \to \mathbb{R}^{d} \text{ denotes the Wasserstein gradient of } \mathcal{F}, \text{ and } \mathcal{F}'(p) \text{ denotes the first variation of } \mathcal{F} \text{ at } p \text{ defined by:} \\ \lim_{\epsilon \to 0} \frac{1}{\epsilon}(\mathcal{F}(p + \epsilon(\nu - p)) - \mathcal{F}(p)) = \int_{\mathbb{R}^{d}} \mathcal{F}'(p)(x)(d\nu - dp)(x), \ \mathcal{F}'(p): \mathbb{R}^{d} \to \mathbb{R}.. \end{split}$$

KKL minimization in practice

Introduce a particle system $x_0^1, \ldots, x_0^n \sim p_0$, a step-size γ , and at each step¹:

$$x_{l+1}^{i} = x_{l}^{i} - \gamma \nabla_{W_{2}} \mathcal{F}(\hat{p}_{l})(x_{l}^{i})$$
 for $i = 1, ..., n$, where $\hat{p}_{l} = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_{l}^{i}}$. (1)

In particular, as $\mathcal{F}(p) = \text{KKL}_{\alpha}(p|q)$ is well-defined for discrete measures p, Algorithm (1) simply corresponds to gradient descent of $F : \mathbb{R}^{N \times d} \to \mathbb{R}$, $F(x^1, \ldots, x^n) := \mathcal{F}(p^n)$ where $p^n = \frac{1}{n} \sum_{i=1}^n \delta_{x^i}$.

Proposition

Consider \hat{p}, \hat{q} and the matrices $K_{\hat{p}}, K$. Let $g(x) = \frac{\log x}{x}$. Then, the first variation of $\mathcal{F} = \text{KKL}_{\alpha}(\cdot|\hat{q})$ at \hat{p} is, for any $x \in \mathbb{R}^d$:

$$\mathcal{F}'(\hat{p})(x) = 1 + S(x)^T g(K_{\hat{p}})S(x) - T(x)^T g(K)T(x) - T(x)^T AT(x),$$

where $S(x) = (\frac{1}{\sqrt{n}}k(x, x_1), ..., \frac{1}{\sqrt{n}}k(x, x_n))$, $T(x) = (\sqrt{\frac{\alpha}{n}}k(x, x_1), ..., \sqrt{\frac{1-\alpha}{m}}k(x, y_1), ...)$, and A is a matrix constructed from the eigenvectors and eigenvalues of both K and $\alpha \Sigma_{\hat{p}} + (1-\alpha)\Sigma_{\hat{q}}$.

$$\label{eq:W2} \begin{split} ^{1}\nabla_{W_{2}}\mathcal{F}(p) &:= \nabla\mathcal{F}'(p) : \mathbb{R}^{d} \to \mathbb{R}^{d} \text{ denotes the Wasserstein gradient of } \mathcal{F}, \text{ and } \mathcal{F}'(p) \text{ denotes the first variation of } \mathcal{F} \text{ at } p \text{ defined by:} \\ &\lim_{\epsilon \to 0} \frac{1}{\epsilon}(\mathcal{F}(p + \epsilon(\nu - p)) - \mathcal{F}(p)) = \int_{\mathbb{R}^{d}} \mathcal{F}'(p)(x)(d\nu - dp)(x), \ \mathcal{F}'(p) : \mathbb{R}^{d} \to \mathbb{R}.. \end{split}$$

Related divergences (competitors)

Recall that *f*-divergences write $D(p|q) = \int f\left(\frac{p}{q}\right) dq$, *f* convex, f(1) = 0. They admit a variational form [Nguyen et al. (2010)]:

$$D(p|q) = \sup_{h:\mathbb{R}^d \to \mathbb{R}} \int h dp - \int f^*(h) dq$$

where $f^*(y) = \sup_{x \in \mathbb{R}^d} \langle x, y \rangle - f(x)$ is the convex conjugate (or Legendre transform) of f and h measurable.

Examples:

• KL
$$(p|q)$$
: $f(x) = x \log(x) - x + 1$, $f^*(y) = e^y - 1$

•
$$\chi^2(p|q)$$
: $f(x) = (x-1)^2$, $f^*(y) = y + \frac{1}{4}y^2$

Related divergences (competitors)

Recall that *f*-divergences write $D(p|q) = \int f\left(\frac{p}{q}\right) dq$, *f* convex, f(1) = 0. They admit a variational form [Nguyen et al. (2010)]:

$$D(p|q) = \sup_{h:\mathbb{R}^d \to \mathbb{R}} \int h dp - \int f^*(h) dq$$

where $f^*(y) = \sup_{x \in \mathbb{R}^d} \langle x, y \rangle - f(x)$ is the convex conjugate (or Legendre transform) of f and h measurable.

Examples:

- $\mathrm{KL}(p|q)$: $f(x) = x \log(x) x + 1$, $f^{\star}(y) = e^{y} 1$
- $\chi^2(p|q)$: $f(x) = (x-1)^2$, $f^*(y) = y + \frac{1}{4}y^2$

Idea: restrict the search space to a RKHS !

- for the KL ⇒ Glaser, P., Arbel, M., & Gretton, A. KALE flow: A relaxed KL gradient flow for probabilities with disjoint support. (Neurips 2021).
- for the χ² ⇒ Chen, Z., Mustafi, A., Glaser, P., Korba, A., Gretton, A., & Sriperumbudur, B. K. (*De*)-regularized Maximum Mean Discrepancy Gradient Flow. (2024, arXiv preprint arXiv:2409.14980).

Kale (Glaser et al., 2021)

$$\mathrm{KALE}(p|q) = (1+\lambda) \max_{h \in \mathrm{H}_k} \int h dp - \int e^h dq - \frac{\lambda}{2} \|h\|_{\mathrm{H}_k}^2.$$

- interpolates between a KL ($\lambda \rightarrow$ 0) and and MMD ($\lambda \rightarrow \infty)$
- For discrete distributions *p* and *q* supported on *n* atoms, the KALE divergence does not admit a closed-form
- But it can be written as a strongly convex *n*-dimensional problem and solved with, e.g., Newton
- In constrast, KKL has a closed-form, and can be optimized with L-BFGS(Liu and Nocedal, 1989)

target.

Experiments

$$\alpha = 0.01, \ \sigma^2 = 0.1, \ n = 100.$$

Figure: Shape transfer

Higher dimensional experiments on synthetic Gaussian mixtures in the paper.

De-Regularized MMD: Interpolate between MMD and $\chi^2\text{-divergence}^1$

$$\text{DMMD}(p||q) = (1+\lambda) \left\{ \max_{h \in \mathcal{H}_k} \int hdp - \int (h + \frac{1}{4}h^2) dq - \frac{1}{4}\lambda \|h\|_{\mathcal{H}_k}^2 \right\}$$
(2)

¹Joint work with Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Arthur Gretton, Bharath K. Sriperumbudur. *https://arxiv.org/abs/2409.14980*

De-Regularized MMD: Interpolate between MMD and $\chi^2\text{-divergence}^1$

$$DMMD(p||q) = (1+\lambda) \left\{ \max_{h \in \mathbf{H}_k} \int hdp - \int (h + \frac{1}{4}h^2) dq - \frac{1}{4}\lambda \|h\|_{\mathbf{H}_k}^2 \right\}$$
(2)

• It is a divergence for any λ , recovers χ^2 for $\lambda = 0$ and MMD for $\lambda = +\infty$.

¹Joint work with Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Arthur Gretton, Bharath K. Sriperumbudur. *https://arxiv.org/abs/2409.14980*

De-Regularized MMD: Interpolate between MMD and $\chi^2\text{-divergence}^1$

$$\text{DMMD}(p||q) = (1+\lambda) \left\{ \max_{h \in \mathcal{H}_k} \int h dp - \int (h + \frac{1}{4}h^2) dq - \frac{1}{4}\lambda \|h\|_{\mathcal{H}_k}^2 \right\}$$
(2)

• It is a divergence for any λ , recovers χ^2 for $\lambda = 0$ and MMD for $\lambda = +\infty$.

• DMMD and its gradient can be written in closed-form

$$\mathrm{DMMD}(p|q) = (1+\lambda) \left\| (\Sigma_q + \lambda \operatorname{Id})^{-\frac{1}{2}} (m_p - m_q) \right\|_{H_k}^2, \quad \nabla \mathrm{DMMD}(p|q) = \nabla h_{p,q}$$

where $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, and $h_{p,q}$ solves (2).

¹Joint work with Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Arthur Gretton, Bharath K. Sriperumbudur. *https://arxiv.org/abs/2409.14980*

De-Regularized MMD: Interpolate between MMD and χ^2 -divergence¹

$$\text{DMMD}(p||q) = (1+\lambda) \left\{ \max_{h \in \mathcal{H}_k} \int h dp - \int (h + \frac{1}{4}h^2) dq - \frac{1}{4}\lambda \|h\|_{\mathcal{H}_k}^2 \right\}$$
(2)

- It is a divergence for any λ , recovers χ^2 for $\lambda = 0$ and MMD for $\lambda = +\infty$.
- DMMD and its gradient can be written in closed-form

$$\mathrm{DMMD}(p|q) = (1+\lambda) \left\| \left(\Sigma_q + \lambda \operatorname{Id} \right)^{-\frac{1}{2}} (m_p - m_q) \right\|_{\mathrm{H}_k}^2, \quad \nabla \mathrm{DMMD}(p|q) = \nabla h_{p,q}$$

where $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, and $h_{p,q}$ solves (2).

• In particular for p, q discrete (supported on n, m samples respectively), it writes with kernel Gram matrices over samples of p, p^* in complexity $\mathcal{O}(m^3 + nm)$.

¹Joint work with Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Arthur Gretton, Bharath K. Sriperumbudur. *https://arxiv.org/abs/2409.14980*

De-Regularized MMD: Interpolate between MMD and χ^2 -divergence¹

$$DMMD(p||q) = (1+\lambda) \left\{ \max_{h \in \mathbf{H}_k} \int hdp - \int (h + \frac{1}{4}h^2) dq - \frac{1}{4}\lambda \|h\|_{\mathbf{H}_k}^2 \right\}$$
(2)

- It is a divergence for any λ , recovers χ^2 for $\lambda = 0$ and MMD for $\lambda = +\infty$.
- DMMD and its gradient can be written in closed-form

$$\mathrm{DMMD}(p|q) = (1+\lambda) \left\| \left(\Sigma_q + \lambda \operatorname{Id} \right)^{-\frac{1}{2}} (m_p - m_q) \right\|_{\mathrm{H}_k}^2, \quad \nabla \operatorname{DMMD}(p|q) = \nabla h_{p,q}$$

where $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, and $h_{p,q}$ solves (2).

- In particular for p, q discrete (supported on n, m samples respectively), it writes with kernel Gram matrices over samples of p, p^* in complexity $\mathcal{O}(m^3 + nm)$.
- It is an MMD with a regularized kernel: $\tilde{k}(x, x') = \sum_{i \ge 1} \frac{\varrho_i}{\varrho_i + \lambda} e_i(x) e_i(x')$ which is a regularized version of the original kernel $k(x, x') = \sum_{i \ge 1} \varrho_i e_i(x) e_i(x')$

 \implies we inherit the statistical rates $\mathcal{O}(n^{-1/2})$ (Gretton et al., 2012)

¹Joint work with Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Arthur Gretton, Bharath K. Sriperumbudur. *https://arxiv.org/abs/2409.14980*

Kernel Trace Distance: Quantum Statistical Metric between Measures through RKHS Density Operators

Joint work with Arturo Castellanos, Pavlo mozharovskyi and Hicham Janati (Télécom ParisTech).

Kernel Trace distance

Let $q \in \mathcal{P}(\mathbb{R}^d)$. Recall that the covariance operator w.r.t. q is defined as $\Sigma_q = \int k(\cdot, x) \otimes k(\cdot, x) dq(x)$, where $(a \otimes b)c = \langle b, c \rangle_{\mathrm{H}_k} a$ for $a, b, c \in \mathrm{H}_k$.

We define the *kernel trace distance* between two probability measures p, q on \mathcal{X} is defined as:

$$d_{\mathsf{KT}}(p,q) = ||\Sigma_p - \Sigma_q||_1,$$

where $||T||_1 = (Tr(|T|))$ denotes the Schatten-1 norm, where $|T| = \sqrt{T^*T}$.

Similarly to the KKL, if k^2 is universal, d_{KT} is a well defined distance.

• Recall that $||T||_1 \ge ||T||_2$, and that $||\Sigma_p - \Sigma_q||_2 = \text{MMD}_{k^2}(p, q)$, so $\text{MMD}_{k^2}(p, q) \le d_{\kappa T}(p, q)$

- Recall that $||T||_1 \ge ||T||_2$, and that $||\Sigma_p \Sigma_q||_2 = MMD_{k^2}(p, q)$, so $MMD_{k^2}(p, q) \le d_{KT}(p, q)$
- we proved that d_{KT}(p, q) can be written as an Integral Probability Metric over F₁ = {f : x → φ(x)*Uφ(x)|U ∈ L(H), ||U||_∞ = 1}, which are functions with values in [-1,1] so d_{KT}(p,q) ≤ TV(p,q)

- Recall that $||T||_1 \ge ||T||_2$, and that $||\Sigma_p \Sigma_q||_2 = MMD_{k^2}(p, q)$, so $MMD_{k^2}(p, q) \le d_{KT}(p, q)$
- we proved that $d_{\mathcal{KT}}(p,q)$ can be written as an Integral Probability Metric over $\mathcal{F}_1 = \{f : x \mapsto \varphi(x)^* U\varphi(x) | U \in \mathcal{L}(\mathcal{H}), ||U||_{\infty} = 1\}$, which are functions with values in [-1,1] so $d_{\mathcal{KT}}(p,q) \leq TV(p,q)$
- Fuchs-van de Graaf inequality yields d_{KBW}(p, q)² ≤ d_{KT}(p, q) ≤ 2d_{KBW}(p, q) where d_{KBW}(p, q) is the Bures distance between Σ_p and Σ_q:

$$d_{\mathcal{KBW}}(p,q) = \sqrt{\operatorname{Tr}\Sigma_p + \operatorname{Tr}\Sigma_q - 2F(\Sigma_p,\Sigma_q)}$$

where $F(A,B) = \text{Tr}(A^{1/2}BA^{1/2})^{1/2}$ is called the fidelity.

- Recall that $||T||_1 \ge ||T||_2$, and that $||\Sigma_p \Sigma_q||_2 = MMD_{k^2}(p, q)$, so $MMD_{k^2}(p, q) \le d_{KT}(p, q)$
- we proved that $d_{KT}(p,q)$ can be written as an Integral Probability Metric over $\mathcal{F}_1 = \{f : x \mapsto \varphi(x)^* U\varphi(x) | U \in \mathcal{L}(\mathcal{H}), ||U||_{\infty} = 1\}$, which are functions with values in [-1,1] so $d_{KT}(p,q) \leq TV(p,q)$
- Fuchs-van de Graaf inequality yields d_{KBW}(p, q)² ≤ d_{KT}(p, q) ≤ 2d_{KBW}(p, q) where d_{KBW}(p, q) is the Bures distance between Σ_p and Σ_q:

$$d_{\mathcal{K}BW}(p,q) = \sqrt{\operatorname{\mathsf{Tr}} \Sigma_p + \operatorname{\mathsf{Tr}} \Sigma_q - 2F(\Sigma_p,\Sigma_q)}$$

where $F(A, B) = \text{Tr}(A^{1/2}BA^{1/2})^{1/2}$ is called the fidelity.

• Pinsker's inequality yields $d_{KT}(p,q) \leq \sqrt{2\text{KKL}(p|q)}$, where $\text{KKL}(p|q) = \text{KL}(\Sigma_p|\Sigma_q) = \text{Tr}(\Sigma_p(\log \Sigma_p - \log \Sigma_q))$

Computation of d_{KT} in practice

Recall that $d_{\mathcal{KT}}(p,q) = \|\Sigma_p - \Sigma_q\|_1 = \sum_{i=1}^{\infty} \lambda_i$, where (λ_i) are the singular values of $\Sigma_p - \Sigma_q = \Sigma_{p-q}$.

Let $x_1, \ldots, x_n \sim p$ and $y_1, \ldots, y_m \sim q$. Denote $X = (x_1, \ldots, x_n)$ and \hat{p}_n the samples and empirical distributions, similarly Y and \hat{q}_m .

 $\Sigma_{\rho_n-q_m}$ has the same eigenvalues as:

1

$$K = \left[\begin{array}{c|c} \frac{1}{n} K_{XX} & \frac{i}{\sqrt{mn}} K_{XY} \\ \hline \frac{i}{\sqrt{mn}} K_{YX} & -\frac{1}{m} K_{YY} \end{array} \right]$$

 \implies Get the eigenvalues by Singular Value decomposition, and compute their 1-norm (complexity $\mathcal{O}(n+m)^2$).

References

Concentration of d_{KT}

We note $A \leq_{p} b$ when for any $\delta > 0$, $\exists c_{\delta} < \infty$ s.t. $p(A \leq c_{\delta}b) \geq \delta$. Theorem

• If the eigenvalues of Σ_p follow a polynomial decay rate of order $\alpha > 1$:

$$\underline{A}i^{-\alpha} \leq \lambda_i \leq \overline{A}i^{-\alpha} \text{ for some } \alpha > 1 \text{ and } 0 < \underline{A} < \overline{A} < \infty$$
(P)
then: $d_{KT}(p, p_n) \lesssim_{p^{\otimes n}} n^{-\frac{1}{2} + \frac{1}{2\alpha}}.$

• If the eigenvalues of Σ_p follow an exponential decay rate:

$$\underline{B}e^{- au i} \leq \lambda_i \leq \overline{B}e^{- au i}$$
 for some $au > 0$ and $\underline{B}, \overline{B} \in (0, \infty)$, (E)
then: $d_{KT}(p, p_n) \lesssim_{p^{\otimes n}} \frac{(\log n)^{\frac{3}{2}}}{\sqrt{n}}$.

References

Concentration of d_{KT}

We note $A \leq_{p} b$ when for any $\delta > 0$, $\exists c_{\delta} < \infty$ s.t. $p(A \leq c_{\delta}b) \geq \delta$. Theorem

• If the eigenvalues of Σ_p follow a polynomial decay rate of order $\alpha > 1$:

$$\underline{A}i^{-\alpha} \leq \lambda_i \leq \overline{A}i^{-\alpha} \text{ for some } \alpha > 1 \text{ and } 0 < \underline{A} < \overline{A} < \infty$$
(P)
then: $d_{KT}(p, p_n) \lesssim_{p^{\otimes n}} n^{-\frac{1}{2} + \frac{1}{2\alpha}}.$

• If the eigenvalues of Σ_p follow an exponential decay rate:

$$\underline{B}e^{- au i} \leq \lambda_i \leq \overline{B}e^{- au i}$$
 for some $au > 0$ and $\underline{B}, \overline{B} \in (0, \infty)$, (E)
then: $d_{KT}(p, p_n) \lesssim_{p^{\otimes n}} \frac{(\log n)^{\frac{3}{2}}}{\sqrt{n}}$.

Assuming some decay rate on the eigenvalues, we can focus on the convergence of the operators on a subspace of the top eigenvectors, using results from the Kernel PCA literature (Blanchard et al., 2007; Rudi et al., 2013).

Concentration of d_{KT}

We note $A \leq_{p} b$ when for any $\delta > 0$, $\exists c_{\delta} < \infty$ s.t. $p(A \leq c_{\delta}b) \geq \delta$. Theorem

• If the eigenvalues of Σ_p follow a polynomial decay rate of order $\alpha > 1$:

$$\underline{A}i^{-\alpha} \leq \lambda_i \leq \overline{A}i^{-\alpha} \text{ for some } \alpha > 1 \text{ and } 0 < \underline{A} < \overline{A} < \infty$$
(P)
then: $d_{KT}(p, p_n) \lesssim_{p^{\otimes n}} n^{-\frac{1}{2} + \frac{1}{2\alpha}}.$

If the eigenvalues of Σ_p follow an exponential decay rate:

$$\underline{B}e^{-\tau i} \leq \lambda_i \leq \overline{B}e^{-\tau i} \text{ for some } \tau > 0 \text{ and } \underline{B}, \overline{B} \in (0, \infty),$$
(E)
then: $d_{KT}(p, p_n) \lesssim_{p^{\otimes n}} \frac{(\log n)^{\frac{3}{2}}}{\sqrt{n}}.$

Assuming some decay rate on the eigenvalues, we can focus on the convergence of the operators on a subspace of the top eigenvectors, using results from the Kernel PCA literature (Blanchard et al., 2007; Rudi et al., 2013).

Corollary

If Assumption (P) verified:
$$d_{KBW}(p, p_n) \lesssim_{p^{\otimes n}} n^{-\frac{1}{4} + \frac{1}{4\alpha}}$$
,
If Assumption (E) is verified: $d_{KBW}(p, p_n) \lesssim_{p^{\otimes n}} (\log n)^{\frac{3}{4}} n^{-\frac{1}{4}}$.

Experiments - Particle flows

Figure: Particle flow with d_{KT}

Figure: Particle flow with MMD

Experiments - ABC computation

Fact: Denote $P_{\varepsilon} = (1 - \varepsilon)P + \varepsilon C$ where C is some contamination distribution. If k(x, x) = 1, $|d_{KT}(P_{\varepsilon}, Q) - d_{KT}(P, Q)| \le 2\varepsilon$.

 $\implies d_{KT}$ is pretty robust to contamination, in contrast to the W_2 !

Experiments - ABC computation

Fact: Denote $P_{\varepsilon} = (1 - \varepsilon)P + \varepsilon C$ where C is some contamination distribution. If k(x, x) = 1, $|d_{KT}(P_{\varepsilon}, Q) - d_{KT}(P, Q)| \le 2\varepsilon$.

 \implies d_{KT} is pretty robust to contamination, in contrast to the W_2 !

ABC: performing Bayesian inference in a likelihood-free fashion

ABC posterior:
$$\pi(\theta|X^n) \propto \int \pi(\theta) \mathbb{1}_{\{d(X^n, Y^m) < \epsilon\}} p_{\theta}(Y^m) \mathrm{d}Y^m$$
, where

- $\pi(\theta)$ is a prior over the parameter space Θ
- $\epsilon > 0$ is a tolerance threshold
- Y^m are synthetic data generated according to $p_{\theta}(Y^m) = \prod_{i=1}^m p_{\theta}(Y_i)$.

Experiments - ABC computation

Fact: Denote $P_{\varepsilon} = (1 - \varepsilon)P + \varepsilon C$ where C is some contamination distribution. If k(x, x) = 1, $|d_{KT}(P_{\varepsilon}, Q) - d_{KT}(P, Q)| \le 2\varepsilon$.

 \implies d_{KT} is pretty robust to contamination, in contrast to the W_2 !

ABC: performing Bayesian inference in a likelihood-free fashion

ABC posterior:
$$\pi(\theta|X^n) \propto \int \pi(\theta) \mathbb{1}_{\{d(X^n, Y^m) < \epsilon\}} p_{\theta}(Y^m) \mathrm{d}Y^m$$
, where

- π(θ) is a prior over the parameter space Θ
- $\epsilon > 0$ is a tolerance threshold
- Y^m are synthetic data generated according to p_θ(Y^m) = ∏^m_{j=1} p_θ(Y_j).
 computation:
- draw $\theta_i \sim \pi$ for i = 1, ..., T
- simulate synthetic data $Y^m \sim p_{\theta_i}$
- accept θ_i if the synthetic data is close to the real data

The result is a list L_{θ} of all accepted θ_i .

Experiments- ABC computation

True posterior (linear regression setting):

- prior $\pi = \mathcal{N}(\mathbf{0}, \sigma_0^2)$ on θ
- real data consist of n = 100 samples $X^n = x_1, \ldots, x_n$ following $\mu^* = \mathcal{N}(1, 1)$ where 10% of the samples are replaced by contaminations from $\mathcal{N}(20, 1)$
- we can compute the (expected) true posterior mean as $\mathbb{E}[\sum_{i=1}^{n} x_i] \frac{n}{n + (\sigma_0^2)^{-1}}$, where $\mathbb{E}[\sum_{i=1}^{n} x_i] = 0.9 \times 1 + 0.1 \times 20 = 2.9$

Experiments- ABC computation

True posterior (linear regression setting):

- prior $\pi = \mathcal{N}(\mathbf{0}, \sigma_0^2)$ on θ
- real data consist of n = 100 samples $X^n = x_1, \ldots, x_n$ following $\mu^* = \mathcal{N}(1, 1)$ where 10% of the samples are replaced by contaminations from $\mathcal{N}(20, 1)$
- we can compute the (expected) true posterior mean as $\mathbb{E}[\sum_{i=1}^{n} x_i] \frac{n}{n + (\sigma_0^2)^{-1}}$, where $\mathbb{E}[\sum_{i=1}^{n} x_i] = 0.9 \times 1 + 0.1 \times 20 = 2.9$

Method

- we fit the model $p_{\theta} = \mathcal{N}(\theta, 1)$ by picking the best θ possible.
- we carry out T = 10000 iterations, generating each times m = n synthetic data.

Experiments- ABC computation

True posterior (linear regression setting):

- prior $\pi = \mathcal{N}(\mathbf{0}, \sigma_0^2)$ on θ
- real data consist of n = 100 samples $X^n = x_1, \ldots, x_n$ following $\mu^* = \mathcal{N}(1, 1)$ where 10% of the samples are replaced by contaminations from $\mathcal{N}(20, 1)$
- we can compute the (expected) true posterior mean as $\mathbb{E}[\sum_{i=1}^{n} x_i] \frac{n}{n + (\sigma_0^2)^{-1}}$, where $\mathbb{E}[\sum_{i=1}^{n} x_i] = 0.9 \times 1 + 0.1 \times 20 = 2.9$

Method

- we fit the model $p_{\theta} = \mathcal{N}(\theta, 1)$ by picking the best θ possible.
- we carry out T = 10000 iterations, generating each times m = n synthetic data.

Evaluation:

• we measure the average Mean Square Error between the target parameter $\theta^* = 1$ and the accepted $\theta_i \in L_{\theta}$: $\widehat{MSE} = \frac{1}{|L_{\theta}|} \sum_{\theta_i \in L_{\theta}} ||\theta_i - \theta^*||^2$

ABC - Results

Table: Average MSE of ABC Results. Gaussian kernel is used with $\sigma = 1$. MMD_E denotes MMD with the energy kernel k(x, y) = -||x - y||.

ε	distance	#accept. (<i>std</i>)	MSE (std)
0.05	$\begin{array}{l} \text{MMD} \\ \text{MMD}_{\text{E}} \\ \textit{d}_{\textit{KT}} \end{array}$	1092 (45) 0 0	0.19 (<i>0.02</i>) N/A N/A
0.25	$\begin{array}{l} \text{MMD} \\ \text{MMD}_{\text{E}} \\ \textit{d}_{\textit{KT}} \end{array}$	2964 (<i>92</i>) 0 58 (<i>2</i> 5)	1.29 (<i>0.06</i>) N/A 0.03 (<i>0.01</i>)
0.5	$\begin{array}{c} \mathrm{MMD} \\ \mathrm{MMD}_\mathrm{E} \\ \textit{d}_{\textit{KT}} \end{array}$	6168 (<i>406</i>) 846 (<i>35</i>) 828 (<i>34</i>)	7.47 (1.83) 0.17 (0.05) 0.12 (0.01)
1	$\begin{array}{c} \mathrm{MMD} \\ \mathrm{MMD}_\mathrm{E} \\ \textit{d}_{\textit{KT}} \end{array}$	10000 (<i>0</i>) 2926 (<i>52</i>) 2067 (<i>93</i>)	26.0 (0.18) 1.33 (0.6) 0.63 (0.04)

Conclusion:

- MMD is too lenient to accept most sampled θ_i leading to a high average MSE unless ε is carefully chosen
- d_{KT} discriminates between the correct and the wrong θ_i for a wide range of ε (even larger than the contamination threshold ε = 0.1).

We introduced novel divergences between probability distributions

- that are closed-form for discrete measures
- enjoy nice statistical rates
- are more expensive than the MMD, but perform better on a wide variety of tasks

We introduced novel divergences between probability distributions

- that are closed-form for discrete measures
- enjoy nice statistical rates
- are more expensive than the MMD, but perform better on a wide variety of tasks

What is missing:

• Statistical lower bounds

We introduced novel divergences between probability distributions

- that are closed-form for discrete measures
- enjoy nice statistical rates
- are more expensive than the MMD, but perform better on a wide variety of tasks

What is missing:

- Statistical lower bounds
- Quantization rates

We introduced novel divergences between probability distributions

- that are closed-form for discrete measures
- enjoy nice statistical rates
- are more expensive than the MMD, but perform better on a wide variety of tasks

What is missing:

- Statistical lower bounds
- Quantization rates
- Propagation of chaos/descent lemma: "standard" proof requires Lipschitzness of the vector field

We introduced novel divergences between probability distributions

- that are closed-form for discrete measures
- enjoy nice statistical rates
- are more expensive than the MMD, but perform better on a wide variety of tasks

What is missing:

- Statistical lower bounds
- Quantization rates
- Propagation of chaos/descent lemma: "standard" proof requires Lipschitzness of the vector field
- Characterize the convexity, i.e. get a lower bound on the (Wasserstein) Hessian of the loss, or use a functional inequality?

We introduced novel divergences between probability distributions

- that are closed-form for discrete measures
- enjoy nice statistical rates
- are more expensive than the MMD, but perform better on a wide variety of tasks

What is missing:

- Statistical lower bounds
- Quantization rates
- Propagation of chaos/descent lemma: "standard" proof requires Lipschitzness of the vector field
- Characterize the convexity, i.e. get a lower bound on the (Wasserstein) Hessian of the loss, or use a functional inequality?

(In constrast, for the MMD these things are known (Arbel et al., 2019), and partly for the kernel regularized variational approximations such as KALE or De-regularized MMD (Neumayer et al., 2024; Chen et al., 2024))

References I

- Ambrosio, L., Gigli, N., and Savaré, G. (2005). Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Springer Science & Business Media.
- Arbel, M., Korba, A., Salim, A., and Gretton, A. (2019). Maximum mean discrepancy gradient flow. *Advances in Neural Information Processing Systems*, 32.
- Bach, F. (2022). Information theory with kernel methods. *IEEE Transactions* on *Information Theory*, 69(2):752–775.
- Blanchard, G., Bousquet, O., and Zwald, L. (2007). Statistical properties of kernel principal component analysis. *Machine Learning*, 66:259–294.
- Chazal, C., Korba, A., and Bach, F. (2024). Statistical and geometrical properties of regularized kernel kullback-leibler divergence. Advances in neural information processing systems.
- Chen, Z., Mustafi, A., Glaser, P., Korba, A., Gretton, A., and Sriperumbudur, B. K. (2024). (De)-regularized maximum mean discrepancy gradient flow. *arXiv preprint arXiv:2409.14980*.

References II

- Glaser, P., Arbel, M., and Gretton, A. (2021). KALE flow: A relaxed KL gradient flow for probabilities with disjoint support. *Advances in Neural Information Processing Systems*, 34:8018–8031.
- Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A kernel two-sample test. *The Journal of Machine Learning Research*, 13(1):723–773.
- Hertrich, J., Wald, C., Altekrüger, F., and Hagemann, P. (2024). Generative sliced MMD flows with Riesz kernels. *International Conference on Learning Representations.*
- Liu, D. C. and Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. *Mathematical programming*, 45(1-3):503–528.
- Neumayer, S., Stein, V., and Steidl, G. (2024). Wasserstein gradient flows for Moreau envelopes of f-divergences in reproducing kernel hilbert spaces. arXiv preprint arXiv:2402.04613.
- Nguyen, X., Wainwright, M. J., and Jordan, M. I. (2010). Estimating divergence functionals and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*, 56(11):5847–5861.

References III

- Rudi, A., Canas, G. D., and Rosasco, L. (2013). On the Sample Complexity of Subspace Learning. Advances in Neural Information Processing Systems, 26.
- Steinwart, I. and Christmann, A. (2008). Support Vector Machines. Springer Science & Business Media.