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Context
Comparing probability distributions is a fundamental task, e.g. in

• testing (goodness of fit tests)
• sampling as optimization: minimize functional F : P(Rd) → R

min
p∈P(Rd )

F(p),

where P(Rd) denotes the space of probability distributions over Rd .
It is an infinite-dimensional optimization problem.
Applications:

1. Bayesian inference (learn complex posteriors for parametric
models, q = q̃/Z with Z unknown)

2. Generative modeling (learn data distributions)

Learn to
sample from
a probability dis-
tribution q:
z1, . . . zm ∼ q.
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Sampling as optimization

The sampling problem can be rewritten as minimizing F(p) = D(p|q)
• where q ∈ P(Rd) is a target distribution
• and D a loss objective that cancels only for p = q.
The choice of D/F depends on the information on the target q.

Examples:
• F(p) = KL(p|q), where KL(p|q) =

∫
log

( dp
dq (x)

)
dp(x) if p absolutely

continuous w.r.t. q (with density dp/dq), +∞ else.

Convenient when the unnormalized density of q is known since the
minimization objective does not depend on the normalization constant!

Indeed writing q(x) = e−V (x)/Z we have:

KL(p|q) =
∫
Rd

log
( p

e−V (x)
)

dp(x) + log(Z).

But, it is not convenient when p or q are discrete, because the KL is
+∞ unless supp(p) ⊂ supp(q).
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The sampling problem can be rewritten as minimizing F(p) = D(p|q)
• where q ∈ P(Z) is a target distribution
• and D a loss objective that cancels only for p = q.
The choice of D/F depends on the information on the target q.

Examples:
• When we have samples of q (or a discrete measure), it is convenient to

choose D as an integral probability metric (IPM)

For instance, D could be the MMD (Maximum Mean Discrepancy)1:

MMD2(p, q) = sup
f ∈Hk ,∥f ∥Hk ≤1

∣∣∣∣∫ fdp −
∫

fdq

∣∣∣∣
= ∥mp − mq∥2

Hk
, where mp =

∫
k(x , ·)dp(x)

= Ex,y∼p [k(x , y)] + Ex,y∼q[k(x , y)] − 2Ex∼p
y∼q

[k(x , y)]

1k : Rd × Rd → R a p.s.d. kernel (e.g. k(x , y) = e−∥x−y∥2
) with RKHS Hk ,

⟨f , k(x , .)⟩Hk = f (x) for f ∈ Hk .
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Are all functionals good optimization objectives?

Example: Take k(x , y) = e− ∥x−y∥2

σ2 , p = 1
n

n∑
i=1

δx i , q = 1
m

m∑
j=1

δy j .

MMD2(p, q) = 1
n2

n∑
i=1

n∑
j=1

k(x i , x j)+ 1
m2

m∑
i=1

m∑
j=1

k(y i , y j)− 2
nm

n∑
i=1

m∑
j=1

k(x i , y j).

Optimizing MMD with gradient descent can miserably fail (Arbel et al., 2019).

Remark: works much better choosing k(x , y) = −∥x − y∥, where the MMD is
known as Energy distance see (Hertrich et al., 2024).
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Statistical and Geometrical Properties of
Regularized Kernel Kullback-Leibler Divergence

Joint work with Clémentine Chazal (ENSAE) and Francis Bach (INRIA).

Published at Neurips 2024.
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Kernel Kullback-Leibler (KKL) divergence (Bach, 2022)

Let q ∈ P(Rd). The covariance operator w.r.t. q is defined as
Σq =

∫
k(·, x) ⊗ k(·, x)dq(x), where (a ⊗ b)c = ⟨b, c⟩Hk a for a, b, c ∈ Hk .

For p, q ∈ P(Rd), the KKL is defined as:

KKL(p|q) := Tr(Σp log Σp)−Tr(Σp log Σq) =
∑
(λ,γ)

∈Λp×Λq

λ log
(

λ

γ

)
⟨fλ, gγ⟩2

Hk ,

where Λp and Λq are the set of eigenvalues of the covariance operators
Σp and Σq, with associated eigenvectors (fλ)λ∈Λp and (gγ)γ∈Λq .

• can be seen as second-order embeddings of probability distributions, in
contrast with first-order kernel mean embeddings (as used in MMD)

• KL(k̃ ⋆ p|k̃ ⋆ q) ≤ KKL(p|q) ≤ KL(p|q) for some smoothing kernel k̃
• KKL(p|q) = 0 if and only if p = q1 Bach (2022, Proposition 4)

1if k2 is characteristic. See paper for sufficient conditions
7 / 34



References

Kernel Kullback-Leibler (KKL) divergence (Bach, 2022)

Let q ∈ P(Rd). The covariance operator w.r.t. q is defined as
Σq =

∫
k(·, x) ⊗ k(·, x)dq(x), where (a ⊗ b)c = ⟨b, c⟩Hk a for a, b, c ∈ Hk .

For p, q ∈ P(Rd), the KKL is defined as:

KKL(p|q) := Tr(Σp log Σp)−Tr(Σp log Σq) =
∑
(λ,γ)

∈Λp×Λq

λ log
(

λ

γ

)
⟨fλ, gγ⟩2

Hk ,

where Λp and Λq are the set of eigenvalues of the covariance operators
Σp and Σq, with associated eigenvectors (fλ)λ∈Λp and (gγ)γ∈Λq .

• can be seen as second-order embeddings of probability distributions, in
contrast with first-order kernel mean embeddings (as used in MMD)

• KL(k̃ ⋆ p|k̃ ⋆ q) ≤ KKL(p|q) ≤ KL(p|q) for some smoothing kernel k̃
• KKL(p|q) = 0 if and only if p = q1 Bach (2022, Proposition 4)

1if k2 is characteristic. See paper for sufficient conditions
7 / 34



References

Kernel Kullback-Leibler (KKL) divergence (Bach, 2022)

Let q ∈ P(Rd). The covariance operator w.r.t. q is defined as
Σq =

∫
k(·, x) ⊗ k(·, x)dq(x), where (a ⊗ b)c = ⟨b, c⟩Hk a for a, b, c ∈ Hk .

For p, q ∈ P(Rd), the KKL is defined as:

KKL(p|q) := Tr(Σp log Σp)−Tr(Σp log Σq) =
∑
(λ,γ)

∈Λp×Λq

λ log
(

λ

γ

)
⟨fλ, gγ⟩2

Hk ,

where Λp and Λq are the set of eigenvalues of the covariance operators
Σp and Σq, with associated eigenvectors (fλ)λ∈Λp and (gγ)γ∈Λq .

• can be seen as second-order embeddings of probability distributions, in
contrast with first-order kernel mean embeddings (as used in MMD)

• KL(k̃ ⋆ p|k̃ ⋆ q) ≤ KKL(p|q) ≤ KL(p|q) for some smoothing kernel k̃
• KKL(p|q) = 0 if and only if p = q1 Bach (2022, Proposition 4)

1if k2 is characteristic. See paper for sufficient conditions
7 / 34



References

Kernel Kullback-Leibler (KKL) divergence (Bach, 2022)

Let q ∈ P(Rd). The covariance operator w.r.t. q is defined as
Σq =

∫
k(·, x) ⊗ k(·, x)dq(x), where (a ⊗ b)c = ⟨b, c⟩Hk a for a, b, c ∈ Hk .

For p, q ∈ P(Rd), the KKL is defined as:

KKL(p|q) := Tr(Σp log Σp)−Tr(Σp log Σq) =
∑
(λ,γ)

∈Λp×Λq

λ log
(

λ

γ

)
⟨fλ, gγ⟩2

Hk ,

where Λp and Λq are the set of eigenvalues of the covariance operators
Σp and Σq, with associated eigenvectors (fλ)λ∈Λp and (gγ)γ∈Λq .

• can be seen as second-order embeddings of probability distributions, in
contrast with first-order kernel mean embeddings (as used in MMD)

• KL(k̃ ⋆ p|k̃ ⋆ q) ≤ KKL(p|q) ≤ KL(p|q) for some smoothing kernel k̃

• KKL(p|q) = 0 if and only if p = q1 Bach (2022, Proposition 4)

1if k2 is characteristic. See paper for sufficient conditions
7 / 34



References

Kernel Kullback-Leibler (KKL) divergence (Bach, 2022)

Let q ∈ P(Rd). The covariance operator w.r.t. q is defined as
Σq =

∫
k(·, x) ⊗ k(·, x)dq(x), where (a ⊗ b)c = ⟨b, c⟩Hk a for a, b, c ∈ Hk .

For p, q ∈ P(Rd), the KKL is defined as:

KKL(p|q) := Tr(Σp log Σp)−Tr(Σp log Σq) =
∑
(λ,γ)

∈Λp×Λq

λ log
(

λ

γ

)
⟨fλ, gγ⟩2

Hk ,

where Λp and Λq are the set of eigenvalues of the covariance operators
Σp and Σq, with associated eigenvectors (fλ)λ∈Λp and (gγ)γ∈Λq .

• can be seen as second-order embeddings of probability distributions, in
contrast with first-order kernel mean embeddings (as used in MMD)

• KL(k̃ ⋆ p|k̃ ⋆ q) ≤ KKL(p|q) ≤ KL(p|q) for some smoothing kernel k̃
• KKL(p|q) = 0 if and only if p = q1 Bach (2022, Proposition 4)

1if k2 is characteristic. See paper for sufficient conditions
7 / 34



References

Questions:
• what is the behavior of KKL for empirical measures? does it admit a

tractable closed-form expression ?
• is it a suitable optimization objective?
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Regularized KKL (Chazal et al., 2024)

KKL(p|q) := Tr(Σp log Σp)−Tr(Σp log Σq) =
∑

(λ,γ)∈Λp×Λq

λ log
(

λ

γ

)
⟨fλ, gγ⟩2

Hk .

• KKL(p|q) < ∞ requires Ker(Σq) ⊂ Ker(Σp)
• True if Supp(p) ⊂ Supp(q): if f ∈ Ker(Σq), then

⟨f , Σqf ⟩Hk =
∫

⟨f , k(x , ·) ⊗ k(x , ·)f ⟩Hk dq(x) =
∫
Rd

f (x)2dq(x) = 0

and so f is zero on the support of q, then also on the support of p
• Hence the KKL is not convenient if p, q are discrete with different supports

A simple fix that we propose is to consider a regularized version of KKL
which is, for α ∈]0, 1[,

KKLα(p|q) := KKL(p|(1 − α)q + αp)
= Tr(Σp log Σp) − Tr(Σp log((1 − α)Σq + αΣp)).

and which recovers KKL as α → 0 (it goes to 0 when α → 1).
Note it still cancels for p = q.

9 / 34
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Skewness of the regularized KKL
Proposition
Let p ≪ q. The function α 7→ KKLα(p|q) is decreasing on [0, 1].

Proposition
Let p, q ∈ P(Rd). Assume that p ≪ q and that dp

dq ⩽ 1
µ

for some µ > 0. Then,

|KKLα(p|q)−KKL(p|q)| ⩽
(

α

(
1 + 1

µ

)
+ α2

1 − α

(
1 + 1

µ2

))
| Tr (Σp log Σq) |.

These two propositions above show that the regularized KKL shares a similar
behavior than the regularized (standard) KL:
• which is also monotone decreasing in α

• same bound, replacing | Tr (Σp log Σq) | by
∫

log qdp
• yet the tools used to derive these are completely different by nature than for

the KL case, e.g. identities like

Tr(Σp(log Σp − log Σq)) =
∫ +∞

0
Tr

(
Σp(Σp + βI)−1)−Tr

(
Σq(Σq + βI)−1)dβ

and operator monotony.

10 / 34
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Concentration of the regularized KKL

Proposition
Let p, q ∈ P(Rd). Assume that p ≪ q with dp

dq ⩽ 1
µ

for some 0 < µ ⩽ 1
and let α ⩽ 1

2 , and that
c =

∫ +∞
0 supx∈Rd ⟨k(x , ·), (Σp + βI)−1k(x , ·)⟩2

Hk dβ is finite. Let p̂, q̂
supported on n, m i.i.d. samples from p and q respectively. We have:

E|KKLα(p̂|q̂) − KKLα(p|q)| ⩽ 35√
m ∧ n

1
αµ

(2
√

c + log n)

+ 1
m ∧ n

(
1 + 1

µ
+ c(24 log n)2

αµ2 (1 + n
m ∧ n )

)
.

Remarks:
• It is possible to derive a similar bound which does not require the condition

p ≪ q; yet it scales in O( 1
α2 ) instead of O( 1

α
) above.

• if n = m, the bound above scales as O
(

(log n)2

n + log n√
n

)
• proof involves technical intermediate results: concentration of sums of

random self-adjoint operators and estimation of degrees of freedom.

11 / 34
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Regularized KKL closed-form for discrete measures

Proposition
Let p̂ = 1

n
∑n

i=1 δxi and q̂ = 1
m

∑m
j=1 δyj two discrete distributions.

Define Kp̂ = (k(xi , xj))n
i,j=1 ∈ Rn×n, Kq̂ = (k(yi , yj))m

i,j=1 ∈ Rm×m,
Kp̂,q̂ = (k(xi , yj))n,m

i,j=1 ∈ Rn×m.

Then, for any α ∈]0, 1[, we have:

KKLα(p̂||q̂) = Tr
( 1

n Kp̂ log 1
n Kp̂

)
− Tr (IαK log(K)) ,

where Iα =
(

1
α

I 0
0 0

)
and K =

 α
n Kp̂

√
α(1−α)

nm Kp̂,q̂√
α(1−α)

nm Kq̂,p̂
1−α

m Kq̂

 .

Computational cost (due to the singular value decomposition): O((n + m)3).

12 / 34
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Illustrations of skewness and concentration of the KKL

0 250 500 750 1000
number of particules

0

2

4

6

8
KK

L
(p

||q
)

=  1e-06
=  1e-05
=  0.0001
=  0.001
=  0.01
=  0.1
=  0.5

Figure: Concentration of empirical KKLα for d = 10, σ = 10, with Gaussian kernel
k(x , y) = exp

(
−∥x − y∥2/σ2

)
. p, q different anisotropic Gaussians. Computed over

50 runs.
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Dynamical measure transport and gradient flows
Motivation of generative modeling:

Idea: transport an initial, tractable measure p0 onto q by minimizing
F = D(·|q)

What about D = KKLα?
14 / 34
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KKL minimization in practice
Introduce a particle system x1

0 , . . . , xn
0 ∼ p0, a step-size γ, and at each step1:

x i
l+1 = x i

l − γ∇W2 F(p̂l)(x i
l ) for i = 1, . . . , n, where p̂l = 1

n

n∑
i=1

δx i
l
. (1)

In particular, as F(p) = KKLα(p|q) is well-defined for discrete measures p,
Algorithm (1) simply corresponds to gradient descent of F : RN×d → R,
F (x1, . . . , xn) := F(pn) where pn = 1

n
∑n

i=1 δx i .

1∇W2 F(p) := ∇F ′(p) : Rd → Rd denotes the Wasserstein gradient of F , and F ′(p) denotes
the first variation of F at p defined by:
lim

ϵ→0

1
ϵ (F(p + ϵ(ν − p)) − F(p)) =

∫
Rd F ′(p)(x)(dν − dp)(x), F ′(p) : Rd → R..

15 / 34
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KKL minimization in practice
Introduce a particle system x1

0 , . . . , xn
0 ∼ p0, a step-size γ, and at each step1:

x i
l+1 = x i

l − γ∇W2 F(p̂l)(x i
l ) for i = 1, . . . , n, where p̂l = 1

n

n∑
i=1

δx i
l
. (1)

In particular, as F(p) = KKLα(p|q) is well-defined for discrete measures p,
Algorithm (1) simply corresponds to gradient descent of F : RN×d → R,
F (x1, . . . , xn) := F(pn) where pn = 1

n
∑n

i=1 δx i .

Proposition
Consider p̂, q̂ and the matrices Kp̂ , K. Let g(x) = log x

x . Then, the first
variation of F = KKLα(·|q̂) at p̂ is, for any x ∈ Rd :

F ′(p̂)(x) = 1 + S(x)T g(Kp̂)S(x) − T (x)T g(K)T (x) − T (x)T AT (x),

where S(x) = ( 1√
n k(x , x1), .., 1√

n k(x , xn)), T (x) = (
√

α
n k(x , x1), ..,

√
1−α

m k(x , y1), . . . ), and
A is a matrix constructed from the eigenvectors and eigenvalues of both K and αΣp̂ + (1 − α)Σq̂ .
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Related divergences (competitors)

Recall that f -divergences write D(p|q) =
∫

f
( p

q

)
dq, f convex, f (1) = 0.

They admit a variational form [Nguyen et al. (2010)]:

D(p|q) = sup
h:Rd →R

∫
hdp −

∫
f ⋆(h)dq

where f ⋆(y) = supx∈Rd ⟨x , y⟩ − f (x) is the convex conjugate (or Legendre
transform) of f and h measurable.

Examples:
• KL(p|q): f (x) = x log(x) − x + 1 , f ⋆(y) = ey − 1
• χ2(p|q): f (x) = (x − 1)2, f ⋆(y) = y + 1

4 y 2

Idea: restrict the search space to a RKHS !
• for the KL =⇒ Glaser, P., Arbel, M., & Gretton, A. KALE flow: A relaxed

KL gradient flow for probabilities with disjoint support. (Neurips 2021).
• for the χ2 =⇒ Chen, Z., Mustafi, A., Glaser, P., Korba, A., Gretton, A., &

Sriperumbudur, B. K. (De)-regularized Maximum Mean Discrepancy
Gradient Flow. (2024, arXiv preprint arXiv:2409.14980).
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Kale (Glaser et al., 2021)

KALE(p|q) = (1 + λ) max
h∈Hk

∫
hdp −

∫
ehdq − λ

2 ∥h∥2
Hk .

• interpolates between a KL (λ → 0) and and MMD (λ → ∞)
• For discrete distributions p and q supported on n atoms, the KALE

divergence does not admit a closed-form
• But it can be written as a strongly convex n-dimensional problem and solved

with, e.g., Newton
• In constrast, KKL has a closed-form, and can be optimized with L-BFGS(Liu

and Nocedal, 1989)
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Experiments

α = 0.01, σ2 = 0.1, n = 100.

KALE

T=0 T=2 T=30 T=60

MMD

KKL

Figure: MMD, KALE and KKL flow for 3 rings
target.

kale_0001

T=0 T=10 T=30 T=60 T=99

MMD

target

KKL

Figure: Shape transfer

Higher dimensional experiments on synthetic Gaussian mixtures in the paper.
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De-Regularized MMD: Interpolate between MMD and χ2-divergence1

DMMD(p||q) = (1 + λ)
{

max
h∈Hk

∫
hdp −

∫
(h +

1
4

h2)dq −
1
4

λ∥h∥2
Hk

}
(2)

• It is a divergence for any λ, recovers χ2 for λ = 0 and MMD for λ = +∞.
• DMMD and its gradient can be written in closed-form

DMMD(p|q) = (1 + λ)
∥∥∥(Σq + λ Id)− 1

2 (mp − mq)
∥∥∥2

Hk

, ∇ DMMD(p|q) = ∇hp,q

where Σq =
∫

k(·, x) ⊗ k(·, x)dq(x), and hp,q solves (2).
• In particular for p, q discrete (supported on n, m samples respectively), it writes with

kernel Gram matrices over samples of p, p∗ in complexity O(m3 + nm).
• It is an MMD with a regularized kernel: k̃(x , x ′) =

∑
i≥1

ϱi
ϱi +λ

ei (x)ei (x ′) which is a
regularized version of the original kernel k (x , x ′) =

∑
i≥1

ϱi ei (x)ei (x ′)

=⇒ we inherit the statistical rates O(n−1/2) (Gretton et al., 2012)

1Joint work with Zonghao Chen, Aratrika Mustafi, Pierre Glaser, Arthur Gretton, Bharath K.
Sriperumbudur. https://arxiv.org/abs/2409.14980
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Kernel Trace Distance: Quantum Statistical Metric
between Measures through RKHS Density Operators

Joint work with Arturo Castellanos, Pavlo mozharovskyi and Hicham Janati
(Télécom ParisTech).
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Kernel Trace distance

Let q ∈ P(Rd). Recall that the covariance operator w.r.t. q is defined as
Σq =

∫
k(·, x) ⊗ k(·, x)dq(x), where (a ⊗ b)c = ⟨b, c⟩Hk a for a, b, c ∈ Hk .

We define the kernel trace distance between two probability measures
p, q on X is defined as:

dKT (p, q) = ||Σp − Σq||1,

where ∥T∥1 = (Tr(|T |)) denotes the Schatten-1 norm, where |T | =√
T ∗T .

Similarly to the KKL, if k2 is universal, dKT is a well defined distance.
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Comparison with other divergences

• Recall that ∥T∥1 ≥ ∥T∥2, and that ∥Σp − Σq∥2 = MMDk2 (p, q), so
MMDk2 (p, q) ≤ dKT (p, q)

• we proved that dKT (p, q) can be written as an Integral Probability Metric
over F1 = {f : x 7→ φ(x)∗Uφ(x)|U ∈ L(H), ||U||∞ = 1}, which are
functions with values in [-1,1] so dKT (p, q) ≤ TV (p, q)

• Fuchs–van de Graaf inequality yields dKBW (p, q)2 ≤ dKT (p, q) ≤ 2dKBW (p, q)
where dKBW (p, q) is the Bures distance between Σp and Σq:

dKBW (p, q) =
√

Tr Σp + Tr Σq − 2F (Σp , Σq)

where F (A, B) = Tr
(
A1/2BA1/2)1/2 is called the fidelity.

• Pinsker’s inequality yields dKT (p, q) ≤
√

2KKL(p|q), where
KKL(p|q) = KL(Σp |Σq) = Tr(Σp(log Σp − log Σq))
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Computation of dKT in practice

Recall that dKT (p, q) = ∥Σp − Σq∥1 =
∑∞

i=1 λi , where (λi) are the singular
values of Σp − Σq = Σp−q.

Let x1, . . . , xn ∼ p and y1, . . . , ym ∼ q. Denote X = (x1, . . . , xn) and p̂n the
samples and empirical distributions, similarly Y and q̂m.

Σpn−qm has the same eigenvalues as:

K =
[ 1

n KXX
i√
mn KXY

i√
mn KYX − 1

m KYY

]
=⇒ Get the eigenvalues by Singular Value decomposition, and compute their
1-norm (complexity O(n + m)2).
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Concentration of dKT
We note A ≲p b when for any δ > 0, ∃cδ < ∞ s.t. p(A ≤ cδb) ≥ δ.
Theorem
• If the eigenvalues of Σp follow a polynomial decay rate of order α > 1:

Ai−α ≤ λi ≤ Āi−α for some α > 1 and 0 < A < Ā < ∞ (P)

then: dKT (p, pn) ≲p⊗n n− 1
2 + 1

2α .

• If the eigenvalues of Σp follow an exponential decay rate:

Be−τ i ≤ λi ≤ B̄e−τ i for some τ > 0 and B, B̄ ∈ (0, ∞), (E)

then: dKT (p, pn) ≲p⊗n
(log n) 3

2
√

n
.

Assuming some decay rate on the eigenvalues, we can focus on the convergence
of the operators on a subspace of the top eigenvectors, using results from the
Kernel PCA literature (Blanchard et al., 2007; Rudi et al., 2013).
Corollary
If Assumption (P) verified: dKBW (p, pn) ≲p⊗n n− 1

4 + 1
4α ,

If Assumption (E) is verified: dKBW (p, pn) ≲p⊗n (log n) 3
4 n− 1

4 .
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Experiments - Particle flows

iteration 0 iteration 50 iteration 100

iteration 200 iteration 400 iteration 1000

Figure: Particle flow with dKT

iteration 0 iteration 50 iteration 100

iteration 200 iteration 400 iteration 1000

Figure: Particle flow with MMD
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Experiments - ABC computation
Fact: Denote Pε = (1 − ε)P + εC where C is some contamination distribution.
If k(x , x) = 1, |dKT (Pε, Q) − dKT (P, Q)| ≤ 2ε.
=⇒ dKT is pretty robust to contamination, in contrast to the W2 !

ABC: performing Bayesian inference in a likelihood-free fashion

ABC posterior: π(θ|X n) ∝
∫

π(θ)1{d(Xn,Y m)<ϵ}pθ(Y m)dY m, where

• π(θ) is a prior over the parameter space Θ
• ϵ > 0 is a tolerance threshold
• Y m are synthetic data generated according to pθ(Y m) =

∏m
j=1 pθ(Yj).

computation:
• draw θi ∼ π for i = 1, ..., T
• simulate synthetic data Y m ∼ pθi

• accept θi if the synthetic data is close to the real data
The result is a list Lθ of all accepted θi .
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Experiments- ABC computation

True posterior (linear regression setting):
• prior π = N (0, σ2

0) on θ

• real data consist of n = 100 samples X n = x1, . . . , xn following µ∗ = N (1, 1)
where 10% of the samples are replaced by contaminations from N (20, 1)

• we can compute the (expected) true posterior mean as E[
∑n

i=1 xi ] n
n+(σ2

0)−1 ,
where E[

∑n
i=1 xi ] = 0.9 × 1 + 0.1 × 20 = 2.9

Method
• we fit the model pθ = N (θ, 1) by picking the best θ possible.
• we carry out T = 10000 iterations, generating each times m = n synthetic

data.
Evaluation:
• we measure the average Mean Square Error between the target parameter

θ∗ = 1 and the accepted θi ∈ Lθ: M̂SE = 1
|Lθ|

∑
θi ∈Lθ

||θi − θ∗||2

29 / 34



References

Experiments- ABC computation

True posterior (linear regression setting):
• prior π = N (0, σ2

0) on θ

• real data consist of n = 100 samples X n = x1, . . . , xn following µ∗ = N (1, 1)
where 10% of the samples are replaced by contaminations from N (20, 1)

• we can compute the (expected) true posterior mean as E[
∑n

i=1 xi ] n
n+(σ2

0)−1 ,
where E[

∑n
i=1 xi ] = 0.9 × 1 + 0.1 × 20 = 2.9

Method
• we fit the model pθ = N (θ, 1) by picking the best θ possible.
• we carry out T = 10000 iterations, generating each times m = n synthetic

data.

Evaluation:
• we measure the average Mean Square Error between the target parameter

θ∗ = 1 and the accepted θi ∈ Lθ: M̂SE = 1
|Lθ|

∑
θi ∈Lθ

||θi − θ∗||2

29 / 34



References

Experiments- ABC computation

True posterior (linear regression setting):
• prior π = N (0, σ2

0) on θ

• real data consist of n = 100 samples X n = x1, . . . , xn following µ∗ = N (1, 1)
where 10% of the samples are replaced by contaminations from N (20, 1)

• we can compute the (expected) true posterior mean as E[
∑n

i=1 xi ] n
n+(σ2

0)−1 ,
where E[

∑n
i=1 xi ] = 0.9 × 1 + 0.1 × 20 = 2.9

Method
• we fit the model pθ = N (θ, 1) by picking the best θ possible.
• we carry out T = 10000 iterations, generating each times m = n synthetic

data.
Evaluation:
• we measure the average Mean Square Error between the target parameter

θ∗ = 1 and the accepted θi ∈ Lθ: M̂SE = 1
|Lθ|

∑
θi ∈Lθ

||θi − θ∗||2

29 / 34



References

ABC - Results

Table: Average MSE of ABC Results. Gaussian kernel is used with σ = 1. MMDE
denotes MMD with the energy kernel k(x , y) = −∥x − y∥.

ε distance #accept. (std) MSE (std)

0.05
MMD 1092 (45) 0.19 (0.02)
MMDE 0 N/A
dKT 0 N/A

0.25 MMD 2964 (92) 1.29 (0.06)
MMDE 0 N/A
dKT 58 (25) 0.03 (0.01)

0.5 MMD 6168 (406) 7.47 (1.83)
MMDE 846 (35) 0.17 (0.05)
dKT 828 (34) 0.12 (0.01)

1 MMD 10000 (0) 26.0 (0.18)
MMDE 2926 (52) 1.33 (0.6)
dKT 2067 (93) 0.63 (0.04)

Conclusion:
• MMD is too lenient to accept most sampled θi leading to a high average

MSE unless ε is carefully chosen
• dKT discriminates between the correct and the wrong θi for a wide range of ϵ

(even larger than the contamination threshold ϵ = 0.1).
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Conclusion

We introduced novel divergences between probability distributions
• that are closed-form for discrete measures
• enjoy nice statistical rates
• are more expensive than the MMD, but perform better on a wide variety of

tasks

What is missing:
• Statistical lower bounds
• Quantization rates
• Propagation of chaos/descent lemma: ”standard” proof requires

Lipschitzness of the vector field
• Characterize the convexity, i.e. get a lower bound on the (Wasserstein)

Hessian of the loss, or use a functional inequality?
(In constrast, for the MMD these things are known (Arbel et al., 2019), and
partly for the kernel regularized variational approximations such as KALE or
De-regularized MMD (Neumayer et al., 2024; Chen et al., 2024) )
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