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Which Hilbert space do I live in?
We are living in a “Hilbert space” doing “algebra”
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Optimal transport theory

• What is the least “work” needed to reshape 
one probability distribution(state) into 
another?

• In the noncommutative setting, states are 
density operators(positive with trace 1) on 
a Hilbert space. 

• Monge-Kantorovich transportation cost



Quantum 
simulation

• Given an initial “easy” state and a 
target state, what is the minimal 
number of unitary operators to 
transform one to another?

• S is a set of “cheap” unitary operators

• A realistic case is the set S consists of

• each unitary touches only a few qubits    

Environment(
ancilla)



Lower bound on quantum simulation: a summary

• Commutator (Triangle inequality) bound

• Geometric (Nielsen) approach: Geodesic 
length.

• Volume and covering arguments

• Schmidt-rank: lower bound on depth

• Lieb-Robinson velocity(continuous setting) 
and light cone argument(discrete setting)
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This work!



Connection

• We show that the minimal number of gates 
or depth for a quantum simulation task can 
be lower bounded by the transportation 
cost, with the dual picture given by Connes
1989, Rieffel 2003.
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Two 
quantities

• Motivated by the previous calculations, we introduce 
the following quantities for quantum circuits, or more 
generally, quantum channels. 

The first quantity, called transportation cost of channels(also named as Lipschitz cost), provides a 
lower bound on the volume(number of unitary operators). The second quantity, called Lipschitz 
constant, provides a lower bound on the depth. 



Wasserstein 
metric

The first quantity is the maximal cost 
from any state to Φ. The second 
quantity is the contraction coefficient 
under the Wasserstein metric. 



Limitations on simulation of Lindblad dynamics

Strong quantum Church-Turing thesis: 

Every quantum mechanical computational 

process can be simulated efficiently in the 

unitary circuit model of quantum computation.

Lindbladian generator:

Q: Given a set of accessible unitary circuits (gates), what is the minimum 
number of gates (simulation cost) required to approximate an open 
quantum system at a target time T?



Preparing Gibbs 
state via 
Lindbladians

Given a Hamiltonian on 𝑛-qubit 
system, how do we design a 
Lindbladian such that it 
converges to the Gibbs state 

Idea: design a Lindbladian
admitting the Gibbs state as the 
unique fixed state. To ensure 
mixing fast, we assume 
symmetry property.



Gibbs state sampler: KMS and GNS symmetry

• There are two typical choices for the Gibbs sampler: 

• GNS symmetry:

• KMS symmetry:



The issue with GNS Gibbs sampler

• GNS detailed balance is equivalent to the Lindbladian generator 
commuting with the modular automorphism group:

• The jump operators must be the eigen-operators of the modular 
automorphism group (see the remark in Carlen-Maas).

• Physically, it means the dissipation channel must “know about” the 
entire spectrum of the Hamiltonian.

• By energy-time uncertainty principle, it requires exponential time to 
implement.



Why KMS Gibbs sampler is a remedy

• Recall that a Lindbladian generator satisfies KMS-symmetry, if and 
only if



KMS Gibbs sampler

• To design a KMS Gibbs sampler, we choose the jump operator as

• The function is a nicely chosen function, usually Gaussian type.

• We choose the Hamiltonian part to make sure the Lindbladian is KMS 
symmetric. Implementing this Lindbladian only needs Hamiltonian 
evolution + energy-gap filters which have polynomially many circuits.



Theorem(Ding, Junge, Schleich, W.): Limitations 
of this simulation algorithm

• Using the Hamiltonian and energy-gap filters, when the temperature is very 
high, any simulation algorithm must incur a simulation cost satisfying 

for small constant time t and universal constant 𝑐 > 0. 
• Our method is restrictive to rapid mixing dynamics.
• When the temperature is very low, B. Kiani’s talk in workshop I showed 

that the mixing time is slow.

• Modified Log-Sobolev inequality is completely open: find a non-GNS 
and KMS-symmetric Lindbladian admitting the Gibbs state of a non-
commuting Hamiltonian as the fixed state, such that MLSI fails.

• An alternative approach for mixing time is 



lower bound on 
the depth of a 
quantum channel

Suppose Φ is a quantum channel 
on

Then for any resource set, 

we have



A concrete lower bound on the Lipschitz 
constant by measurement on the output 
state
• In 𝑛-qubit system with orthonormal basis 

•

• Define 

• Note that in the literature, the orthonormal basis is chosen as the 
computational basis. Here we do not assume that.



Main result(DJSW25+)

• If Φ is a circuit, then the Lipschitz constant of Φ must satisfy    

for any 𝐴, 𝐵 𝑎𝑛𝑑 𝑓.

• Note that if we choose the orthonormal basis as the computational basis, it 
recovers the well-known Harrow-Lidar argument (well-spread property for 
the output state).

• Answering a question during M. Marvian’s talk.
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