From noncommutative optimal transport to
limitations of quantum simulation

Peixue Wu
I Q‘ Institute for Quantum Computing, University of Waterloo

arXiv 2407.15357 I

ArXiv 2303.11304 Discussion at IPAM + Discussion inside Junge team



https://arxiv.org/abs/2407.15357
https://arxiv.org/abs/2303.11304

ive in?

Which Hilbert space do | |

on-tracial von Neumann algebra

“algebra”

doing

“Hilbert space”

Iving In a

We are |

e —
o 1.‘.1.—..—..-..—“-*1‘1‘1 .-.+++.-.++.1t.1 e
i e S
R
e R -
.—.++++++++++++++.—v.-
N
LA
o

e
e
Expeteaieeciaebieteeetes debeh bebbeebeiebehe et bt bbbt

i
b
i
i
b
i
i
b
i
i
b
i
i
G

-
o

o

e

o
5

b2
o
I3

i
2
&%
£
e
2%
2
2
&%
2
2
&%
2
2
&%
2
2
&%
£
!
.

o
o
e
b

o
5
t

£
2
2
&%

2
2
&%

2
2
&%

2
2
&%

2
2
&%

£
!

i
£
£
45
£
£
45
£
£
45
£
£
45
£
£
45
£
o

£
B
e

i
&%
£
e
&%
£
e
&%
2
2
&%
2
2
&%
2
2
&%
2
2
R,
2
e e

S

ol

&
s
i
g
13: E
o
)
£
23
o
5
£
i
)
£
23
5
e
23
5
e
23
5
e
23
5
5
£
23

S

&
Fel

£

o

o

o

e
£
45
£
£
45
£
£
45
£
£
45
£
£
45
£
£
45
Fyk

£
b

o
i

i
&%
2

2
&%
2

2
&%

£
£

bt
5
5
5
5
5
e
i
S5

!
e

%

i
5

5
e
bt

FEEER)
e
e
et
L (2
S
o e
oy HEEF RO
bty Yottt bt BB Y it
R g
ey R R, FATPEE Y Lty
N

b2

o
S

o

5
)
£
23

5
e
23

5
5

£
23
Fe
23
e
23

i

o
St
o
e
o
&
T
i

£
o

o5
St

e
o

S

2

T
i
el

S
S

)

=
o
e

)
et
S

—
o

e

5

!
B R R
e e
e o
bl Bt
i
Y
R e s
e
(s et
o

t
o
e

!

5

T
o

4

i}
£

5
&t

ial von Neumann algebra

e
G
e

Trac

T ——
T T
O
O M

Non-separable

i
Fie

&
R
i
R

e

£
o
ik

bt
e

i

e

i tih ety
T, et S
SR o oty it Gy
S o R :
it bt
i
et
o i
Bk o ey )
S e B
e e Feeeh
S S bty
e bt ety
L e e
e b ey
S ey i
e e Eitetbeky
L e L
e et e
fr] i (i
feddont B ° ek e
et Attt by
ettty e
[ Frn L
bttt o ety arpiee Y
s R S SRR |
e o e st
Tk S Tl
Bt e Gl
ShEE R o KGR 2
e e TR
i g
N g P A

e NG e

N R B R
N it Sl L
i D e, R, T
Srbnbtet e, CEAAEET

i

et

i

i

Hierarchy of Hilbert space

Hierarchy of algebras



Optimal transport theory

* What is the least “work” needed to reshape
one probability distribution(state) into
another?

* In the noncommutative setting, states are
density operators(positive with trace 1) on
a Hilbert space.

* Monge-Kantorovich transportation cost
T(p,o)= inf Tr(CII
(po) = I f (CII)
¢'(p,0): a subset of couplings of p,o.
C': a cost operator.

T(p,o)= sup |Tr(pA)— Tr(cB)|
(A,B)eB.

B. < B(H) x B(H): a suitably chosen dual pairs
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Quantum 0y —] o HAL

Environment(

H
simulation ancila] 0) —aH _HA
Count(U) = min{l > 1

U = uqug -+ - uy,u; € S},
* Given an initial “easy” state and a

target state, what is the minimal A quantum circuit of width w and depth d
number of unitary operators to [ it =
qubit 2 — [ 1-qubit gate
transform one to another? qubit 3 F
. . % qubit 4 . .
= qubit 6 I
3 .
* Arealistic case is the set S consists of £ :E:; N Mmeasurement
e each unitaVy %U@ﬁ gdly a few qubits qubitwe m L
— qubit w I
J

\

Circuit depth d

Depth(U) =min{l > 1:U =V;--- WV, V; = X U;,U; is k — local}.
J



Lower bound on quantum simulation: a summary

* Commutator (Triangle inequality) bound e Schmidt-rank: lower bound on depth
* Geometric (Nielsen) approach: Geodesic * Lieb-Robinson velocity(continuous setting)
length. and light cone argument(discrete setting)

* Volume and covering arguments
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* Volume and covering arguments

This work!



* We show that the minimal number of gates

or depth for a quantum simulation task can
Connection be lower bounded by the transportation

cost, with the dual picture given by Connes
1989, Rieffel 2003.

The key ingredient is the commutator |A, B| := AB — BA, and the Lipschitz
semil-norm

[14]]]s := sup s, Alllop (1)

SE

The transportation cost from p to o is defined by

Ws(p,o) =  sup  Tr(pA) — Te(c A) (2)
[[Allls<1,A=AT



Count(U) :=min{l > 1: U = wjug - - uj,u; € S}.

Exercise 1 [[U, ]|l op

Count(U) > 7
SUPyes | [, ][ op

x € B(H).

It is a well-known commutator triangle inequality. Suppose U = wuq - - - uy,
using the Leibniz rule for commutators, |AB,C| = A|B,C]| + [A,C]B, and
triangle inequalities,

up[ug—1 - ut, x| |op + ||[ur, T]ui—1 - - urlop

Ilwy -,z op < |
< iy - - @lop + s 2] op

< Z H[uipx]Hop < Sup H[Ui,x]nop-
i=1 ¢



I Exercise 2

Depth(U) =min{l>1:U =V;---V,,V;

For any Pe S,V = ®j U;, we have

I[P, VT2 V][0

I

IN

<

VPV, 2] op

U, PU], %] |op, Uj is k — local
U, PU], z — tri(z) ® 1,/2%] | op
P, U] (z — tr(2) @ 1 /2%)Uj] | op

PUJT(x —tri(z) ® Hk/zk)Uj | op
© —trk( ) ® 11 /2% op

2k Y (z = PoaPe)|op
PrLeSy

2 sup ||[Pg,x]|op < Qk%UP I[P, x]|op

PkeSk

(2k)Depth(U) >

Sup pess I[P U'aU]

= ®),;Uj;,U;j is k — local}.

Suppose S is the set of 1-local Pauli operators.

lor Ve B(H).

=

suppes | ]| op

S} is the set of k-local Pauli operators.

I[P lap < b sup [P, lop

Apply the inequality [ times,

I[P (Vi Vi) (V7 -

Vi) lllop
< (2k)" sup [P, 2] op-
PeS



TW() * Motivated by the previous calculations, we introdt
the following quantities for quantum circuits, or mr

quantities generally, quantum channels.

Costg(P) := sup |D* () — x| op, (1)
r=xT|||z|||s<1

Lipg(®) := sup  |[|®*(x)]||s- (2)

z=z1,|[|z][|s<1

The first quantity, called transportation cost of channels(also named as Lipschitz cost), provides a

lower bound on the volume(number of unitary operators). The second quantity, called Lipschitz
constant, provides a lower bound on the depth.



Wasserstein
metric

The first quantity is the maximal cost
from any state to ®. The second

guantity is the contraction coefficient
under the Wasserstein metric.

Costg(®) := sup Ws(p, ®(p)),

P

Lipg(®) := sup
pFo

Ws(®(p), ()

Ws(pv 0)



Limitations on simulation of Lindblad dynamics

Strong quantum Church-Turing thesis:
Every quantum mechanical computational
process can be simulated efficiently in the

. Lo , Quantum Circuit
unitary circuit model of quantum computation.

Lindbladian generator:

. = 1
L(p)= —i[H,p] +>_  Lv,(p) , Lv(p)=VpV! —5 (VIVp+pVTv).
W—/ 321 N—— \,—/ . ~ 7
coherent part dissipative part Jump No jump

Q: Given a set of accessible unitary circuits (gates), what is the minimum
number of gates (simulation cost) required to approximate an open
quantum system at a target time T?



Given a Hamiltonian on n-qubit
system, how do we design a
Lindbladian such that it
converges to the Gibbs state

Preparing Gibbs

. ~ exp(—8H)
State Vla pPB = Tr(exp(—BH))’ﬁ = (07 OO)
Lindbladians

|dea: design a Lindbladian
admitting the Gibbs state as the
unique fixed state. To ensure
mixing fast, we assume
symmetry property.



Gibbs state sampler: KMS and GNS symmetry

* There are two typical choices for the Gibbs sampler:

* GNS symmetry:
Tr(pgLp(X)Y) = Tr(pg X Ls(Y)).

* KMS symmetry:

Tr (p}'fﬁg (X)p;;/QY) = Tr (p;a/QXpé/Qﬁg(Y)) .



The issue with GNS Gibbs sampler

* GNS detailed balance is equivalent to the Lindbladian generator
commuting with the modular automorphism group:

o/ (X) = ngpEit.

* The jump operators must be the eigen-operators of the modular
automorphism group (see the remark in Carlen-Maas).

* Physically, it means the dissipation channel must “know about” the
entire spectrum of the Hamiltonian.

* By energy-time uncertainty principle, it requires exponential time to
implement.



Why KMS Gibbs sampler is a remedy

e Recall that a Lindbladian generator satisfies KMS-symmetry, if and

only if
L(X)=i[G,X]+) Ly,
J

G=—1i tanh(log(Aé/‘l)) (% Z VJTVJ)
J



KMS Gibbs sampler

* To design a KMS Gibbs sampler, we choose the jump operator as
00
Vi= | g0 explitit)o; exp(-itit)dr (1)
0

here o is the set of single Pauli gates
* The function is a nicely chosen function, usually Gaussian type.
* We choose the Hamiltonian part to make sure the Lindbladian is KMS

symmetric. Implementing this Lindbladian only needs Hamiltonian
evolution + energy-gap filters which have polynomially many circuits.



Theorem(Ding, Junge, Schleich, W.): Limitations
of this simulation algorithm

* Using the Hamiltonian and energy-gap filters, when the temperature is very
high, any simulation algorithm must incur a simulation cost satisfying

Cost(Ty) = ¢t (Amax(H) — Amin(H))

for small constant time t and universal constant ¢ > 0.
* Our method is restrictive to rapid mixing dynamics.

* When the temperature is very low, B. Kiani's talk in workshop | showed
that the mixing time is slow.

* Modified Log-Sobolev inequality is completely c%gen: find a non-GNS
and KMS-symmetric Lindbladian admitting the Gibbs state of a non-
commuting Hamiltonian as the fixed state, such that MLSI fails.

* An alternative approach for mixing time is

Lip(T}) < cexp(—At)



lower bound on
the depth of a
guantum channel

Suppose @ is a quantum channel
on B(X),_, H;) of layer L
O — .
¢

L

||

=1

Then for any resource set,
S < B(®i— Hi)
we have

I log (Lipgn (P))
log (maxi <<z, Lipgn (®r))




A concrete lower bound on the Lipschitz
constant by measurement on the output
state

* In n-qubit system with orthonormal basis

{|2)}sex, where X = {0,1}" and S™ < B(H).

. Initial state: p;,; output state: o = ®(p;n).

e Define Ua(x) — <¢$‘ g |w:r:>a rekX. (1)

* Note that in the literature, the orthonormal basis is chosen as the
computational basis. Here we do not assume that.



Main result(DJSW25+)

 |f @ is a circuit, then the Lipschitz constant of ® must satisfy

MINge A yeB ’f(aj) - f(y)‘
[10¢l]] s

Lipgn (®) =
1
(MU(A)_% + po(B)~

X

)

(W]

) v/ Poincs(pin)

. 2 2
forany A, B and f. Poincy(p) = |HO|S|1’1P <1tf(PO — tr(pO) )
ST <
* Note that if we choose the orthonormal basis as the computational basis, it
recovers the well-known Harrow-Lidar argument (well-spread property for

the output state).
* Answering a question during M. Marvian’s talk.
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