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Prelude: ‘Ballistic’ problems

• M is a complete, connected Riemannian manifold

• X :M→ TM is a given vector field on M

• xT ∈M is a given point

• By a ballistic geodesic problem we mean finding a curve γt that
minimizes

min
γ̇0=X(γ0), γT=xT

∫ T

0
〈γ̇t , γ̇t〉γt dt (1)

• That is, we know the final position and the initial velocity of an
unknown geodesic (mixed boundary condition: inhomogeneous
Neumann at t = 0, Dirichlet at t = T ).

Problems reminiscent of optimal transport IPAM, UCLA, May 2025 2 / 39



• If X = gradΦ for some Φ :M→R, the ballistic problem (1) is formally
equivalent to the Hopf-Lax formula

min
x0∈M

Φ(x0) +
1
2
dist2(x0,xT ), (2)

where dist is the Riemannian distance on M

• What ma�ers here is the minimizer x0 that determines the starting
point of the unknown geodesic and not the optimal value

• Formula (2) makes sense if we have no manifold structure but just a
metric space, not necessarily connected

• It appears in de Giorgi’s minimizing movement scheme — aka JKO
scheme — in the infinite-dimensional and/or metric geometric context
(in particular, in the context of optimal transport)
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• Similar problems are referred to as marginal entropy-transport
problems (Liero-Mielke-Savaré, Invent. Math. ’18)

• This is also related to the mean-field games in the spirit of Lasry-Lions

• In order to formulate ‘ballistic optimal transport’ (with quadratic cost),
let us start with the quadratic Hamilton-Jacobi equation

∂tψ+
1
2
|∇ψ|2 = 0,(t,x) ∈ [0,T ]×Ω

• Here, for simplicity, Ω is the periodic box T
d

• Rescaling if needed, we can assume T = 1 and |Ω|= 1

• Fix the initial data ψ(0,x) = ψ0(x)
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A ‘ballistic’ problem in the Wasserstein space

• Now set v = ∇ψ to recast the Cauchy problem in the form

∂tv +
1
2
∇ tr(v ⊗ v) = 0, v(0) = ∇ψ0 (3)

• Following Brenier (CMP ’18), let us consider the problem of finding a
weak solution to (3) that would minimize the time average of the
kinetic energy

1
2

"
(0,T )×Ω

|v |2(t,x)dx dt

• This problem might not always admit a solution, but leads to a dual
variational problem
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• The dual problem, at least formally, reads

−
∫
Ω

ψ0(x)ρ(0,x)dx − 1
2

∫ T

0

∫
Ω

ρ−1q · qdx dt→ sup (4)

subject to the constraints

∂tρ+ divq = 0, dρ(T ) = dρ1 := dx , ρ ≥ 0 (5)

• Define the functional

Ψ (ρ) :=

∫
Ω

ψ0dρ

on the 2-Wasserstein space (P (Ω),W2) of probability measures on Ω

• Multiplying by −1, we rewrite (4), (5) in the ballistic/Hopf-Lax form

min
ρ0∈P (Ω)

Ψ (ρ0) +
1
2
W 2

2 (ρ0,ρ1) (6)
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One-dimensional case

• For d = 1 (that is, x ∈ T1) system (3) is a conservation law, or, more
precisely, the inviscid Burgers equation:

∂tv +
1
2
∂x(v2) = 0, v(0) = ∂xψ0 (7)

• Brenier showed that any entropy solution to (7) — possibly
discontinuous — can be retrieved from the dual formulation (4), (5).
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The incompressible Euler system

• The incompressible Euler system reads

∂tv + div(v ⊗ v) +∇p = 0,

div v = 0,

v(0,x) = v0(x).

• The unknowns are v : [0,T ]×Ω→R
d and p : [0,T ]×Ω→R.

• The (kinetic) energy 1
2

∫
Ω
|v |2(t,x)dx is formally conserved along the

flow.

• Brenier (CMP ’18) suggested to search for the solutions of the
incompressible Euler that minimize the averaged kinetic energy.
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• Up to regularity issues, the dual problem reads

−
∫
Ω

U0(x) : G(0,x)dx − 1
2

∫ T

0

∫
Ω

G−1q · qdx dt→ sup (8)

subject to the constraints

∂tG + (∇+∇T )(Pq) = 0, G(T ) = I. (9)

Here P is the Leray-Helmholtz projector, U0 is any matrix-valued
function such that

P(divU0) = v0

(such U0 exists if div v0 = 0 and v0 has zero mean on the periodic box).
Here and below I is the identity matrix of appropriate size.
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Interim conclusions

• Ballistic problems can emerge from dual formulation of Cauchy
problems for PDEs

• If we extend this framework to systems of PDEs beyond the quadratic
HJ case, the associated scalar measure ρ is typically replaced with a
non-negative-definite matrix-valued measure G.

• Such dual problems are expected to carry information about the
physically relavant solutions to the original systems of PDEs
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Related work

• Brenier and Moyano (PTRSA ’22): dual multi-stream formulation of the
Euler-Poisson system

• V. (ARMA ’22) developed Brenier’s approach by finding structures in
nonlinear quadratic PDEs that permit to set up similar dual problems
(and prove existence, consistency, weak-strong uniqueness, absence of
duality gap etc.) in a systematic way

• Mirebeau and Stampfli ’25: discretization, convergence, and numerical
implementation of the dual ballistic formulation of the quadratic
porous medium equation and Burgers’ equation
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Related work

• A similar duality scheme has been (rather independently) proposed by
Acharya (QAM ’23), and subsequently developed by him and several
collaborators (including Zarnescu, Stro�olini, Pego et al.) in a vast
series of recent papers

• A notable feature in Acharya’s construction of the dual problem is a
‘base state’ that can be regarded as an ‘initial guess’ for the solution of
the original PDE

• From this point of view, the ‘base states’ in Brenier’s framework are
identically zero
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In search of a selection principle

• Cauchy problems for systems of nonlinear evolutionary PDEs can have
infinitely many weak solutions

• Convex integration (De Lellis, Székelyhidi et al.)

• No universal selection principle for weak solutions

• Many of such problems possess a physically relevant quantity (e.g., a
Hamiltonian, energy or entropy) that should be formally conserved
along the flow, but this may fail for weak solutions

• For physically relevant weak solutions, such quantity — herea�er we
refer to it as the total entropy — is generally expected to remain
below or equal to its initial value

• The wording comes from the theory of conservation laws and might be
confusing. For example, smooth solutions of the heat equation
dissipate the Boltzmann entropy, so this entropy is never conserved. In
this talk the ‘total entropy’ is a formally conserved quantity
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Extremal principles in natural sciences

• Prigogine’s principle (aka minimum entropy production principle, 1945,
thermodynamics and beyond, open systems)

• Ziegler’s principle (aka maximum entropy production principle, 1963,
originally for nonequilibrium thermodynamics, closed systems)

• Related principles in physics, information theory, chemistry and
biology: Onsager, Gyarmati, Berthelot, Swenson, Lotka, Enskog,
Kohler, Haken, Paltridge, Malkus, Veronis, Jaynes et al.

• Such principles can be employed both for derivation of physically
relevant systems of PDEs and for selection of physically relevant
solutions
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A more mathematical approach: Dafermos’ principle

• Dafermos’ principle (1973): physically relevant solutions dissipate the
total entropy earlier and faster than the irrelevant ones (cf. Ziegler’s
principle)

• Typically, the total entropy is conserved for smooth solutions but can
dissipate for weak solutions due to shocks etc.

• It is important that the criterion acts locally near the ‘bifurcation’
moment of time, i.e., before a certain moment the total entropies of a
‘good’ and a ‘bad’ solution are equal (this stage is optional and the
discrepancy can already occur at the initial moment of time), but
shortly a�er that moment the total entropy of a ‘bad’ solution becomes
larger than the total entropy of a ‘good’ solution; however, it is
permi�ed that, as time elapses, the total entropy of a ‘bad’ solution
returns to being smaller than or equal to the one of a ‘good’ solution
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Dafermos’ principle

• Appropriateness of Dafermos’ principle was examined for various
PDEs: Dafermos, Hsiao, Feireisl, Chiodaroli, Kreml, Cieślak, Jamróz et
al.

• Numerical applications: Klein (2023, 2024)

• For systems of conservation laws, there exist other selection principles
due to Kruzhkov, Lax, Liu et al.

• Dafermos’ principle complies with the above criteria for scalar
conservation laws (n = 1) and for several other models.

• Notably, Dafermos’ principle needs just one physically relevant
entropy (that is formally conserved) and its applicabilty is not
restricted to conservation laws or first-order PDEs.
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Back to the duality scheme: non-quadratic examples

• It was clear from the very beginning (Brenier, Acharya) that the
nonlinearity in a PDE does not need to be quadratic in order to
implement the duality construction

• However, the majority of rigorous results for this kind of problems
has until recently been obtained for quadratic nonlinearities

• Of course, for many relevant systems the nonlinearity fails to be
quadratic

• This is the case for systems of conservation laws and for various
nonlinear dispersive equations, including the defocusing NLS
equation

i∂tΨ = −∆Ψ + f (|Ψ |2)Ψ

• The unknown is Ψ : [0,T ]×Ω→C. Here f : R→R is a given
increasing nonlinear function
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Representative non-quadratic examples

• The following famous system of conservation laws describes motion of
compressible barotropic fluids:

∂tq + div

(
q⊗ q
ρ

)
+∇(P(ρ)) = 0,

∂tρ+ divq = 0,

q(0) = q0, ρ(0) = ρ0.

• The unknowns are (q,ρ) : [0,T ]×Ω→R
d ×R+

• Here P : R+→R+ is the pressure function (which is o�en assumed to
be convex)
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A general framework

Our aim is to provide a systematic framework for capturing various aspects
of the duality scheme across a broad class of systems of PDEs, including
non-quadratic ones. For this purpose, we consider the following abstract
problem

∂tv = L(F(v)), v(0, ·) = v0.

Here v0 :Ω→R
n, n ∈N, is the initial datum, v : [0,T ]×Ω→R

n is an
unknown vector function,

F : Rn→R
N×N
s

is a prescribed C2-smooth matrix function with some convexity and
positivity properties to be discussed below (if time permits), and L is a
vector-valued di�erential operator with constant coe�icients

L(Ξ)i =
ν∑
j=0

N∑
l,m=1

∑
|α|=j

bilmα∂αΞlm, i = 1, . . . ,n,

where α is a generic multiindex and Ξ(x) ∈RN×N
s .
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Entropy

Define the ‘entropy’ function for our problem by

K : Rn→R, K(v) :=
1
2

tr(F(v)− F(0)).

Assume that K is strictly convex (but not necessarily uniformly convex). We
will also require some extra technical assumptions in order to work with the
anisotropic Orlicz space LK(Ω;Rn). (Roughly speaking, that Orlicz space
consists of functions v :Ω→R

n such that K(v(x)) is integrable on Ω.)
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‘Legendre map’

To any given v ∈Rn we associate the ‘sharp’ vector

v# := ∇K(v),

where the gradient ∇ is taken w.r.t. v . Note that 0# = 0 because ∇K(0) = 0.
Since K is strictly convex, the map

∇K : v 7→ v#

is C1-smooth and injective. Moreover,

v = ∇K∗(v#)

for any v# ∈ ∇K(Rn) = R
n.
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Λ-convexity

We will require some convexity of the matrix function F. The classical
notion of convexity of matrix-valued functions is the Loewner convexity,
namely, F : Rn→R

N×N
s is Loewner convex if F : P is a convex function for

any matrix P ∈RN×N
+ . This is too restrictive for our purposes, so we will

merely assume that F is Λ-convex in the following more relaxed sense. Let
u :Ω→R

n be an arbitrary smooth function, and let L∗ be the di�erential
operator adjoint to L. Let Λ ⊂R

N×N
s be the smallest linear subspace of

R
N×N
s independent of u and containing I such that L∗(u(x)) ∈Λ, x ∈Ω. We

say that F is Λ-convex if F : P is a convex function for any P ∈Λ∩RN×N
+ . Of

course, any Loewner convex matrix function is Λ-convex, but not vice versa.
Notably, it follows from the Λ-convexity of F that K is convex.
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Λ-order

We will also require some positivity of the matrix function F. For this
purpose, we will use the less restrictive Λ-order instead of the Loewner
order. Namely, denote

R
N×N
Λ = {Ξ ∈RN×N

s | Ξ : P ≥ 0, ∀P ∈Λ∩RN×N
+ }.

We will assume that
F(Rn) ⊂R

N×N
Λ .

For A,B ∈RN×N
s , we write B≤A when A−B ∈RN×N

Λ
.
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�adratic nonlinearities are not ruled out

The quadratic matrix function

F(v) = v ⊗ v

and the corresponding entropy

K(v) =
1
2
|v |2

obviously satisfy our assumptions for any subspace Λ ⊂R
n×n
s . Note that in

this case N = n and v# = v . This applies to the incompressible Euler, ideal
incompressible MHD, the Muskat problem, Camassa-Holm, equations of
ideal convection, incompressible isotropic elastic fluids and many other
examples.
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Conservativity

We will focus on the situation when L satisfies the “formal conservativity
condition”

(F(v),L∗(v#)) = 0 (10)

provided v# :Ω→R
n is a smooth. Here and below we use the shortcut

(U,V ) :=

∫
Ω

U(x) : V (x)dx .

This formally yields that the total entropy

K(t) :=

∫
Ω

K(v(t))dx

is conserved along the solutions to our problem ∂tv = L(F(v)).
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Example: defocusing NLS

We will discuss the NLS (but similar results are true for the NLKG and a
nonlinear “defocusing” variant of KdV):

i∂tΨ = −∆Ψ + |Ψ |2qΨ , Ψ (0) = Ψ0,

where q ≥ 1
2 is a given constant. The unknown is Ψ : [0,T ]×Ω→C.

We first change the variable ψ := Ψ e−it to rewrite this in the form

i∂tψ = −∆ψ+ |ψ|2qψ+ψ, ψ(0) = Ψ0.

We now let a =Reψ,b = Imψ,δ = ∇a,β = ∇b. Then the system becomes

∂ta = −divβ+ (a2 + b2)qb+ b,

∂tb = divδ − (a2 + b2)qa− a,
∂tδ = −∆β+∇((a2 + b2)qb+ b),

∂tβ = ∆δ −∇((a2 + b2)qa− a).
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We let
n = 2d + 2,N = 2d + 4,

v = (a,b,δ,β),

v̄ = (1,a,b,δ,β,(a2 + b2)q),

K(v) =
1
2

(
|δ|2 + |β|2 + a2 + b2 +

1
q + 1

(a2 + b2)q+1
)

︸                                                            ︷︷                                                            ︸
anisotropic entropy

,

F(v) = εv̄ ⊗ v̄ +
( 2
N
K(v) + 1

)
e1 ⊗ e1 +

(
−εa2 +

2
N
K(v)

)
e2 ⊗ e2

+
(
−εb2 +

2
N
K(v)

)
e3 ⊗ e3 +

d∑
m=1

(
−ε|δm|2 +

2
N
K(v)

)
e3+m ⊗ e3+m

+
d∑

m=1

(
−ε|βm|2 +

2
N
K(v)

)
e3+d+m⊗e3+d+m+

(
−ε(a2 + b2)2q +

2
N
K(v)

)
eN⊗eN ,

where ε = ε(q,d) > 0 is fixed but su�iciently small.
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To represent the NLS in our absract form, define the operator L as follows:

L



a11 a12 a13 A14 A15 a16
a12 a22 a23 A24 A25 a26
a13 a23 a33 A34 A35 a36
A>14 A>24 A>34 A44 A45 A46
A>15 A>25 A>35 A>45 A55 A56
a16 a26 a36 A>46 A>56 a66


= ε−1


−divA15 + a36 + a13

divA14 − a26 − a12
−∆A15 +∇(a36 + a13)

∆A14 −∇(a26 + a12)

 .
It can easily be shown that Λ consists of the elements of the form

a11 a12 a13 A14 A15 0
a12 a11 0 0 0 a26
a13 0 a11 0 0 a36
A>14 0> 0> a11I 0 0
A>15 0 0 0 a11I 0
0 a26 a36 0 0 a11


.

Moreover,

v# = (y ,z,δ,β) = (a+ (a2 + b2)qa,b+ (a2 + b2)qb,δ,β),

and all our assumptions, including the formal conservativity, can be verified.
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Weak solutions

Definition
A function v ∈ LK((0,T )×Ω;Rn) is a weak solution to the abstract problem

∂tv = L(F(v)), v(0, ·) = v0. (11)

if ∫ T

0
[(v − v0,E) + (F(v),B)] dt = 0

for all pairs (E ,B) ∈ LK∗((0,T )×Ω;Rn)× L∞((0,T )×Ω;RN×N
s ) meeting the

constraint ∫ T

0
[(B,∂tΨ ) + (E ,LΨ )] dt = 0 (12)

for all su�iciently smooth vector fields Ψ : [0,T ]→ XN×N
s , Ψ (0) = 0.
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Subsolutions

Definition
A pair of functions

(v ,M) ∈ LK((0,T )×Ω;Rn)× L1((0,T )×Ω;RN×N
s ), F(v)≤M, (13)

is a subsolution to (11) if it satisfies∫ T

0
[(v − v0,E) + (M,B)] dt = 0

for all pairs

(E ,B) ∈ LK∗((0,T )×Ω;Rn)× L∞((0,T )×Ω;RN×N
s )

meeting the constraint (12).

The corresponding entropy of a subsolution is of course 1
2 tr(M− F(0)).
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Strong solutions

Remarkably, the formal conservativity implies that we can (at least formally)
change the variables and rewrite our abstract problem (11) in terms of v#:

∂t(v
#)l + L∗(v#) : ∂lF(∇K∗(v#)) = 0, v#(0, ·) = v#0 (14)

Definition

Assume that v0 ∈ LK(Ω;Rn). A function v is a strong solution to our abstract
problem (11) if it is a weak solution,

∂t((T − t)v#) ∈ LK∗((0,T )×Ω;Rn),

(T − t)L∗(v#) ∈ L∞((0,T )×Ω;RN×N
s ),

and (14) holds a.e. in (0,T )×Ω and in Ω, resp.
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Strong solutions

• We can prove that the strong solutions are unique and conserve the
total entropy K(t)

• The proof employs the funny ‘Je�reys divergence’

J(t) := (u(t)− v(t),u#(t)− v#(t)).

• Both conservativity and uniqueness are not valid for weak solutions,
let alone for subsolutions
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Primal problem

Fix a positive weight function h(t) bounded away from 0 and∞ on [0,T ]
(a typical choice is h(t) = e−γt with large γ). The idea is to search for the
weak solution that minimizes∫ T

0
h(t)K(t)dt.

This leads to the saddle-point problem

I(v0,T ) = inf
v

sup
E ,B: (12)

∫ T

0

[
(v − v0,E) +

1
2

(F(v),hI + 2B)
]
dt. (15)

The infimum in (15) is taken over all v ∈ LK((0,T )×Ω;Rn), and the
supremum is taken over all pairs

(E ,B) ∈ LK∗((0,T )×Ω;Rn)× L∞((0,T )×Ω;RN×N
s )

meeting the linear constraint (12).
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Duality

It is actually relevant to minimize the weighted total entropy along the
larger class of subsolutions:

Ĩ(v0,T ) = inf
v ,M:F(v)≤M

sup
E ,B: (12)

∫ T

0

[
(v − v0,E) +

1
2

(M,hI + 2B)
]
dt. (16)

The infimum in (15) is taken over all v ∈ LK((0,T )×Ω;Rn) and
M ∈ L1((0,T )×Ω;RN×N

Λ
), and the supremum is taken over all pairs (E ,B)

satisfying the same restrictions as above. The problem dual to (16) is

J̃ (v0,T ) = sup
E ,B : (12)︸    ︷︷    ︸

‘transport’ constraint

inf
v ,M:F(v)≤M

∫ T

0

(v − v0,E) +
1
2

(M, hI + 2B︸ ︷︷ ︸
matricial ‘density’

)

 dt,

where v ,M,E ,B are varying in the same function spaces as above.
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Consistency

Theorem

Denote H(t) :=
∫ T
t
h(s)ds. Let v be a strong solution to (11) satisfying

hI � −2H(t)L∗(v#) a.e. in (0,T )×Ω. (17)

Then I(v0,T ) = J̃ (v0,T ) = Ĩ(v0,T ). The pair (E+,B+) defined by

B+ = L∗a, E+ = ∂ta,

where
a = Hv#,

is a maximizer for the dual problem. Moreover, one can invert these formulas
and express v in terms of E+ as follows

v(t,x) = ∇K∗
(

1
H(t)

∫ T

t
(−E+)(s,x)ds

)
, t < T . (18)

Problems reminiscent of optimal transport IPAM, UCLA, May 2025 35 / 39



Limitation (17) can be overcome by adapting the weight h

At first glance, condition (17) indicates that the interval for the which the
consistency holds can be smaller than the interval [0,T ) on which the
strong solution exists. However, we can guarantee the consistency on any
interval [0,T1], T1 < T , by se�ing h(t) := exp(−γt) with su�iciently large γ .
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Application: a reinterpretation of Dafermos’ principle

Theorem
Let v0 ∈ LK(Ω;Rn) . Let v be a strong solution to (11) on the interval [0,T ] with
total entropy K(t) = K(0) =

∫
Ω
K(v0)dx, and let (u,M) be a weak solution on

[0,T ] with total entropy K̃(t). Then for any 0 ≤ t0 < t1 ≤ T it cannot
simultaneously be that K̃(t) ≤ K(t) for a.a. t ∈ (0, t1) and K̃(t) < K(t) for a.a.
t ∈ (t0, t1). Moreover, the same result is true if u is merely a subsolution. In
particular, it is impossible that K̃(t) < K(t) for a.a. t ∈ (0,ε), ε > 0.
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�adratic case and comparison with [Acharya et al.]

These results are new even for the quadratic case F(v) = v ⊗ v , and are
consequently applicable to the incompressible Euler. Another global in time
consistency result for the dual formulation of the incompressible Euler has
recently been obtained by Acharya, Stro�olini and Zarnescu. Nevertheless,
our results seem to be of a di�erent nature, and, furthermore, the two
a�itudes complement each other to a certain degree. Indeed, they prove
that if the strong solution v to the incompressible Euler coincides with the
‘base state’ ṽ , then the solution of the dual problem is identically zero. Thus,
in their case the information about the strong solution is contained not in
the solution of the dual problem but in the ‘base state’ only. Moreover, their
proof ignores the formal conservativity of the problem (and therefore can be
extended to the Navier-Stokes). In contrast, our ‘base state’ is zero, and the
information about the strong solution is contained in the solution of the
dual problem. This information can be retrieved by formula (18) that
strongly relies on the formal conservativity.
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Existence in the Orlicz se�ing

Theorem
Under a minor technical assumption, for any v0 ∈ LK(Ω;Rn) there exists a
maximizer (E ,B) for the dual problem, and

0 ≤ H(0)|Ω| trF(0)

2
≤ J̃ (v0,T ) <+∞.

In this se�ing formula

v#(t,x) := − 1
H(t)

∫ T

t
E(s,x)ds, v(t,x) := ∇K∗(v#(t,x))

provides an object that lies in the same class as the strong solutions and can
be viewed as a generalized solution to the original problem (cf. Brenier’s
shock-free substitutes of entropy solutions to Burgers’ equation).

Rmk. We also expect weak-strong uniqueness for the dual problem, but so
far we have only managed to prove it for quadratic nonlinearities.
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