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Classical transport plans

A transport plan ω between probability spaces (X , µ) and (Y , ν) is a

probability measure on X × Y such that

ω(U × Y ) = µ(U) and ω(X × V ) = ν(V ).

A standard measure theoretic result from probability theory says that∫
X×Y

1U ⊗ 1V dω = ω(U × V ) =

∫
Y

Eω(1U)1V dν

for a uniquely determined Markov operator or channel Eω. This extends

to ∫
X×Y

a⊗ b dω =

∫
X×Y

a(x)b(y) dω(x , y) =

∫
Y

Eω(a)b dν

also written more compactly as

ω(a⊗ b) = ν(Eω(a)b)

where a and b are complex-valued functions on X and Y respectively.
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Classical transport plans: channels

As mentioned, in

ω(a⊗ b) = ν(Eω(a)b)

Eω is a channel between appropriate ∗-algebras (observable algebras) of

complex-valued measurable functions on X and Y respectively, say

Eω : A → B.

In particular,∫
Y

Eω(a)dν =

∫
X

a dµ, i.e., ν (Eω(a)) = µ(a)

in the same compact notation for integrals.

Conversely, any such channel defines a transport through the formula

above. That is:

We can represent transport plans as these channels.
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Classical transport plans: an interpretation

Think of the transport plan ω as dynamics, or a process, taking an

observable a of the first system, to an observable Eω(a) of the second

system,

a 7→ Eω(a)

(a Heisenberg picture).

Then one could think of

ν(Eω(a)b)

as a measure of correlation between a after transport, and an observable

b of the second system.

That is, we can think of the transport plan ω itself in these terms, since

ω(a⊗ b) = ν(Eω(a)b).

This interpretation will be employed heuristically when we discuss cost

later on.
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Classical transport plans: the diagonal or identity plan

A transport plan ω can also be written as

ω(a⊗ b) = ν(Eω(a)b) =

∫
Y

Eω(a)b dν =

∫
Y×Y

Eω(a)⊗ b dδν

where the diagonal measure δν associated to ν is defined by

δν(V1 × V2) = ν(V1 ∩ V2)

for all V1,V2 ⊂ Y . It is clearly a transport plan between (Y , ν) and itself,

the diagonal plan, which we can view as the identity transport plan,

Eδν = idB .

A transport plan ω can thus always be written in terms of δν and the

representing channel Eω. In our compact notation:

ω(a⊗ b) = δν(Eω(a)⊗ b).

Hence δν is a basic transport plan from which all others between (X , µ)

and (Y , ν) can be built using Eω.
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Classical transport plans: abstract diagonal plans

In integral form, the definition δν(V1 × V2) = ν(V1 ∩ V2) of δν , reads∫
Y×Y

b1 ⊗ b2 dδν =

∫
Y

b1b2 dν i.e., δν(b1 ⊗ b2) = ν(b1b2)

where (b1 ⊗ b2) (y1, y2) = b1(y1)b2(y2) and (b1b2) (y) = b1(y)b2(y).

This still works on an abstract abelian ∗-algebra B: Define

δν(b1 ⊗ b2) = ν(b1b2), for all b1, b2 ∈ B,

with ν a positive linear functional on B, meaning ν(b∗b) ≥ 0.

I.e., δν = ν ◦ϖ,

where

ϖ : B ⊗ B → B

extends the product of B. Since B is abelian, ϖ is a ∗-homomorphism (it

preserves all structure), ensuring positivity of δν : For any c ∈ B ⊗ B,

δν(c
∗c) = ν(ϖ(c)∗ϖ(c)) ≥ 0.
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Quantum transport plans

Consider possibly noncommutative observable algebras

A and B

and states (positive normalized linear functionals) µ and ν on them.

For example A = Mm and B = Mn ,

then µ(a) = Tr(ρµa) and ν(b) = Tr(ρνb)

in terms of density matrices.

A transport plan ω between µ and ν is (naively) expected to be a state ω

on A⊗ B such that

ω(a⊗ 1B) = µ(a) and ω(1A ⊗ b) = ν(b)

in accordance with the classical case. The positivity requirement

ω(c†c) ≥ 0

leads to a complication which we need to address.
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Quantum transport plans: the trouble with diagonal plans

Taking our cue from the basic role of diagonal plans in the classical case,

we first attempt quantum diagonal plans to motivate certain structures

to be employed throughout.

For a positive linear functional ν on an abstract ∗-algebra B, i.e.,

ν(b∗b) ≥ 0, the same construction as in the classical case,

δν = ν ◦ϖ i.e., δν(b1 ⊗ b2) = ν(b1b2), for all b1, b2 ∈ B,

is immediately problematic for non-abelian B:

The product map

ϖ : B ⊗ B → B

is no longer a ∗-homomorphism, for example,

ϖ((a1 ⊗ a2)(b1 ⊗ b2)) = a1b1a2b2 ̸= a1a2b1b2 = ϖ(a1 ⊗ a2)ϖ(b1 ⊗ b2),

causing difficulty for the positivity of δν .
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Quantum transport plans: a strategy for diagonal plans

We aim to sidestep the lack of commutativity of B preventing the

product map ϖ from being a ∗-homomorphism.

Question: Can we represent the ∗-algebra B on a Hilbert space HB such

the algebra of linear operators on it contains both B and a “copy” B ′ of

it such that they commute? I.e.,

B,B ′ ⊂ L(HB) such that bb′ = b′b for all b ∈ B, b′ ∈ B ′.

If so, we can attempt to replace the abelian construction for ϖ by

ϖ : B ⊗ B ′ → L(HB) ,

defined as extending

ϖ(b ⊗ b′) = bb′

to the whole tensor product B⊗B ′. This ϖ is indeed a ∗-homomorphism.

Question: Will this allow a sensible and useful extension of diagonal plans

to the quantum (noncommutative) case?
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Quantum transport plans: standard forms

The theory of standard forms of von Neumann algebras provide an ideal

framework for this strategy. A von Neumann algebra B is a ∗-algebra of

bounded linear operators on a Hilbert space HB such that

B ′′ = B

where primes denote commutants in the algebra of bounded linear

operator L(HB) on HB . That is, B
′ consists of all operators commuting

with everything in B. Similarly for B ′′.

Examples include: L∞ spaces of measurable functions.

L(HB), in particular Mm.

A standard form of B is a Hilbert space representation HB precisely “big”

enough such that all physical states ν on B can be expressed in the form

ν(b) = ⟨Λν , bΛν⟩ = ⟨Λν |b|Λν⟩ for all b ∈ B ,

for some vector Λν in HB . For our purposes, standard forms always exist.
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Quantum transport plans: examples of standard forms

Classical. An elementary case is

B = diag(n) = B ′.

Indeed ν(b) = Tr(ρνb) = ⟨ρ1/2ν , bρ
1/2
ν ⟩

in the Hilbert–Schmidt inner product, that is HB = Cn and Λν = ρ
1/2
ν .

Quantum. For the von Neumann algebra Mn, set

B = Mn ⊗ In

acting on ψ ∈ HB = Mn by (b ⊗ In)ψ = bψ.

Then

B ′ = In ⊗Mn ,

acting as (In ⊗ b)ψ = ψbT .

Now ν(b ⊗ In) = Tr(ρνb) = ⟨ρ1/2ν , bρ
1/2
ν ⟩ for b ∈ Mn .

Here Λν = ρ
1/2
ν ∈ Mn

∼= Cn ⊗ Cn is the purification of ν.
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Quantum transport plans: definition of a diagonal plan

Combining the product map

ϖ : B ⊗ B ′ → L(HB) ,

in the standard form with the representation

ν(b) = ⟨Λν , bΛν⟩

of ν, we obtain a state (positivity guaranteed) on B ⊗ B ′ as

δν = ⟨Λν , ϖ(·)Λν⟩ ,

i.e., it is the extension of

δν(b ⊗ b′) = ⟨Λν , bb
′Λν⟩ for b ∈ B, b′ ∈ B ′.

Central idea: The state δν is defined on

B ⊗ B ′

rather than on B ⊗ B.
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Quantum transport plans: the diagonal as a transport plan

In the standard representation we have

δν(b ⊗ 1B′) = ⟨Λν , bΛν⟩ = ν(b)

and

δν(1B ⊗ b′) = ⟨Λν , b
′Λν⟩ = ν′(b′)

in terms of the state ν′ on B ′ defined by the last equality, or equivalently

by

ν′ = ν ◦ jB ,

where the ∗-anti-isomorphism (from modular or Tomita-Takesaki theory)

jB : B ′ → B

preserves all structure, except that it swaps products. In this sense B ′ is

a “mirror image” of B, rather than an exact copy.

We need to develop the theory to verify that this is a viable approach.
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Quantum transport plans: example of a diagonal plan

Let’s return to our example in standard form,

B = Mn ⊗ In and B ′ = In ⊗Mn ,

where for b ⊗ In ∈ B,

ν(b ⊗ In) = ⟨ρ1/2ν , bρ1/2ν ⟩ .

As before by the bimodule structure (and slight abuse of the tensor

product notation on the left), we have

δν(b ⊗ b′) = ⟨ρ1/2ν , bρ1/2ν b′T ⟩ = Tr(ρ1/2ν bρ1/2ν b′T )

for b ⊗ In ∈ B and In ⊗ b′ ∈ B ′.

For diagonal b, b′ and ρν we indeed recover the classical diagonal plan

δν(b ⊗ b′) = Tr(ρνbb
′) =

n∑
i=1

νiaibi .
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Quantum transport plans: general transport plans

Consider two von Neumann algebras (always in standard form from now

on) with states:

(A, µ) and (B, ν) ,

as well as a (quantum) channel, or u.c.p. map,

E : A → B such that ν ◦ E = µ .

Then, paralleling the classical case, the state ω on A⊗ B ′ defined by

ω = δν ◦ (E ⊗ idB′) , i .e., ω(a⊗ b′) = ⟨Λν ,E (a)b
′Λν⟩ ,

is a transport plan in the sense (similar to δν) that

ω(a⊗ 1B′) = µ(a) and ω(1A ⊗ b′) = ν′(b′)

Since ν ◦ E = µ, however, we view this as a transport plan between µ

and ν.
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Quantum transport plans: general transport plans

Taking this at face value, namely the channel point of view

ν ◦ E = µ

connecting µ and ν, not ν′, we introduce:

Definition

A transport plan between µ and ν is a state on

A⊗ B ′

such that

ω(a⊗ 1B′) = µ(a) and ω(1A ⊗ b′) = ν′(b′)

We write this symbolically as

(A, µ)ω (B, ν) .
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Quantum transport plans: transport plans as channels

Given any transport plan ω between µ and ν, that is

(A, µ)ω (B, ν) .

with µ and ν henceforth faithful, one can show that there is a uniquely

determined channel

Eω : A → B

satisfying

ω = δν ◦ (Eω ⊗ idB′) , i .e., ω(a⊗ b′) = ⟨Λν ,Eω(a)b
′Λν⟩ .

Then µ(a) = ω(a⊗ 1B′) = ⟨Λν ,Eω(a)Λν⟩ = ν ◦ Eω(a) .

As a convention in this Heisenberg picture of Eω : A → B in terms of

observable algebras, I’ll speak as if

ω is a transport plan from A to B,

despite ν ◦ Eω = µ.
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Reversing transport plans

A priori our transport plans are directed, also from the channel point of

view. We need to be sure we understand this properly, by reversing them.

Classically this is simple enough. The reverse of ω is simply given by the

transport plan defined as

ω′(V × U) = ω(U × V ) for all U ⊂ X ,V ⊂ Y .

In our noncommutative setup, there is an obvious deviation from this

simple picture:

For (A, µ)ω (B, ν) the corresponding argument above leads to

ω′(b′ ⊗ a) = ω(a⊗ b′)

which may seem suspicious: ω′ is a state on B ′ ⊗ A, not on B ⊗ A′.

Nevertheless, for any state ω on A⊗ B ′, we have

(A, µ)ω (B, ν) ⇐⇒ (B ′, ν′)ω′ (A′, µ′) .
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Reversing transport plans: a course correction

The maps

jA : L(HA) → L(HA) and jB : L(HB) → L(HB)

from earlier (which indeed extend as shown here) can easily convert the

state ω′ on B ′ ⊗ A to the required B ⊗ A′ form by defining the state

ωσ = ω′ ◦ (jB ⊗ jA) .

on B ⊗ A′, since jB(B) = B ′ and jA(A
′) = A.

Then

(A, µ)ω (B, ν) ⇐⇒ (B, ν)ωσ (A, µ) .

Thus, ω and ωσ appear to be sensible reverses of one another.

But don’t discount ω′ just yet.
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Reversing transport plans: in terms of channels

We have (A, µ)ω (B, ν) corresponding to Eω : A → B

(B ′, ν)ω′ (A′, µ) corresponding to Eω′ : B ′ → A′

(B, ν)ωσ (A, µ) corresponding to Eωσ : B → A

The latter two channels can be viewed as duals of Eω defined by

E ′
ω = Eω′ and Eσ

ω = Eωσ

The dual Eσ
ω arose in other contexts and goes by many names:

In quantum information it is the Petz recovery map.

In quantum detailed balance it is the KMS dual or standard dual.

Petz simply called it the dual in his early work (1984).

At its inception in Accardi and Cecchini (1982), it was called the bidual,

in reference to the formula

Eσ
ω = jA ◦ E ′

ω ◦ jB

in terms of E ′
ω, which in turn we’ll refer to as the AC-dual.
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Reversing transport plans: intuition about classical duals

The duals E ′
ω and Eσ

ω are clearly related to reversing Eω .

In the classical case jA = id and jB = id, hence

Eσ
ω = E ′

ω .

As an example, consider an n ×m transition matrix and two probability

distributions

τ = [ τrs ], µ = [µ1 · · ·µm ] and ν = [ ν1 · · · νn ] , with ντ = µ .

The reverse τ ′ of τ as a transition matrix, is required to satisfy

µsτ
′
sr = νrτrs .

Exercise: When viewing τ as representing a transport plan, this τ ′ is

indeed exactly the AC-dual (thus also KMS-dual) of τ .
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Reversing transport plans: intuition about quantum duals

In the quantum case the duals E ′
ω : B ′ → A′ and Eσ

ω : B → A

are distinct.

In our standard example, A = Mm ⊗ Im and B = Mn ⊗ In

A′ = Im ⊗Mm and B ′ = In ⊗Mn ,

we can identify the Mm’s in A and A′, etc, and write

Eω : Mm → Mn and E ′
ω : Mn → Mm .

One can then argue that E ′
ω is in fact the reverse of Eω in a conceptually

and physically sensible way, due to the simple swapping of Mm and Mn in

the definition of ω′. (Duvenhage, Oerder, van den Heuvel, 2024.)

For example, a standard form of quantum detailed balance for a quantum

channel τ : Mn → Mn , can be expressed as τ ′ = τ in exact analogy to

classical detailed balance in a Markov chain.

Nevertheless, Eσ
ω fits better in the grand transport scheme of things,

including in relation to cost, as will be seen later on.
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Transport plans between systems

By a system we mean a triple

(A, α, µ) with a channel α : A → A such that µ ◦ α = µ ,

that is, the state µ is stationary under the dynamics α. This is motivated

in part by the original goal of this work related to deviation from

quantum detailed balance.

Given a second system (B, β, ν), we are interested in similar structure or

properties in α and β. An approach to this question of much value in

classical and noncommutative ergodic theory via joinings, in essence has

been to consider the condition

Eω ◦ α = β ◦ Eω

given that (A, µ)ω (B, ν). Equivalently,

ω(α(a)⊗ b′) = ω(a⊗ β′(b′))

which is closer to the usual joining condition in ergodic theory.
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Transport plans between systems: the definition

Formalizing this discussion, we state an extension of the definition of

transport plans between states:

Definition

Given (A, µ)ω (B, ν), we call ω a transport plan from (A, α, µ) to

(B, β, ν), and write

(A, α, µ)ω (B, β, ν) ,

if

ω(α(a)⊗ b′) = ω(a⊗ β′(b′))

or equivalently,

Eω ◦ α = β ◦ Eω .

This can alternatively be viewed as a restriction on the allowed transport

plans between states.
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Transport plans between systems: lack of symmetry

Unlike

(A, µ)ω (B, ν) ⇐⇒ (B, ν)ωσ (A, µ) ,

we don’t have equivalence between

(A, α, µ)ω (B, β, ν) and (B, β, ν)ωσ (A, α, µ) .

Illustration. Let (B, β, ν) be a trivial 1-point system. Then:

(A, α, µ)ω (B, β, ν) merely says that µ ◦ α = µ .

(B, β, ν)ωσ (A, α, µ) is equivalent to α(1A) = 1A .

If we ultimately want to ensure symmetry of Wasserstein distance

between systems, we’ll need to require both

(A, α, µ)ω (B, β, ν) and (B, β, ν)ωσ (A, α, µ) .

That is, we’ll restrict the allowed transport plans to those for which the

reverse is also a transport plan.
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Cost

Finally the bottom line: there will be a cost attached to a transport plan.

Returning to the classical case for the moment, recall that

ω(a⊗ b) = ν(Eω(a)b)

for a transport plan ω between its two marginals µ and ν.

As an illustrative example, specialize this to

ω(a∗ ⊗ a) = ν(Eω(a)
∗a) ,

where we now consider transport within the same space X .

Think of ν(Eω(a)
∗a) as a measure of correlation between Eω(a) and a.

We expect higher correlation to correspond to lower cost.

That is: if Eω does less, then ω costs less.
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Cost: symmetry of correlation

Let’s accept the correlation view of cost, even in the quantum case.

Expressing cost in our general setup in terms of correlations

ν(Eω(a)b) or ν(bEω(a)) ,

we should expect sufficient symmetry of correlation under reversal to lead

to symmetry of Wasserstein distance. Plausibly we could require

ν(Eω(a)b) = µ(aEσ
ω (b)) .

Interestingly, this requirement can be shown to be equivalent to the

transport condition

(A, σµ, µ)ω (B, σν , ν)

between systems, in terms of the modular dynamics σµ and σν .

Example. In finite dimensions,

σµ
t (a⊗ Im) = (ρitµ a ρ

−it
µ )⊗ Im for a ∈ Mm and t ∈ R.
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Cost: the classical quadratic case

The cost of a transport plan ω is built as the sum of terms of the form

Qa,b(ω) =

∫
X×Y

|a⊗ 1Y − 1X ⊗ b|2 dω ,

where a⊗ 1Y (x , y) = a(x)1Y (y) = a(x) and 1X ⊗ b(x , y) = b(y).

Example. For X ,Y ⊂ Rd , ai (x) = xi , and bi (y) = yi , for some i ,

Qai ,bi (ω) =

∫
X×Y

|xi − yi |2 dω(x , y) .

In general,

Qa,b(ω) = µ(a∗a) + ν(b∗b)− ν(Eω(a
∗)b)− ν(b∗Eω(a))

as is easily verified, in line with our view of higher correlation

corresponding to lower cost.
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Cost: the quantum quadratic case

In the quantum case we use exactly the same form

Qa,b(ω) = µ(a∗a) + ν(b∗b)− ν(Eω(a
∗)b)− ν(b∗Eω(a))

where we’ve written a∗ = a† as is usual in ∗-algebraic notation (to have a

unified framework and notation).

The full quadratic cost is of the form

d∑
i=1

Qki ,li (ω)

in terms of chosen “coordinate systems”, each of length d ,

k = (k1, ..., kd) , ki ∈ A and l = (l1, ..., ld) , li ∈ B.

Remark. When A = B and k = l , it generalizes the usual classical

quadratic cost when working on a bounded subset of Rd .

29



Cost: symmetry and zero cost

Symmetry. Imposing our “correlation symmetry” condition

(A, σµ, µ)ω (B, σν , ν) , or equivalently ν(Eω(a)b) = µ(aEσ
ω (b)) ,

we immediately find symmetry of the general cost term

Qa,b(ω) = µ(a∗a) + ν(b∗b)− ν(Eω(a
∗)b)− ν(b∗Eω(a)) = Qb,a(ω

σ) .

Since this holds for all a and b, it is strictly speaking more than we need,

but in the system context the condition (A, σµ, µ)ω (B, σν , ν) is very

natural.

Zero cost. For the case (A, µ) = (B, ν) the cost of the diagonal transport

plan (B, ν) δν (B, ν) is

Qb,b(δν) = 0

for each term in the cost, as Eδν = idB . This corresponds to the classical

Qbi ,bi (δν) =

∫
Y×Y

|xi − yi |2 dδν(x , y) =
∫
Y

|yi − yi |2 dν(y) = 0.
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Wasserstein distance between systems

First, we equip each system to be considered with its very own coordinate

system of length d , writing

A = (A, α, µ, k) and B = (B, β, ν, l)

for tuples k = (k1, ..., kd) and l = (l1, ..., ld) from A and B respectively.

Second, we define our set of transport plans

T (A,B)

from A to B to consist of all states ω on A⊗ B ′ satisfying the

requirements we have been developing:

(A, α, µ)ω (B, β, ν) , the basic transport plan requirement from A to B,

(B, β, ν)ωσ (A, α, µ) , the reverse is also a transport plan, from B to A,

(A, σµ, µ)ω (B, σν , ν) , ensuring equal cost in the two directions.
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Wasserstein distance between systems: the definition

Given our set T (A,B) as just described, we define

Wasserstein distance between systems A and B

W2(A,B) = inf
ω∈T (A,B)

IA,B(ω)
1/2

for quadratic cost of the form

IA,B(ω) =
d∑

i=1

Qki ,li (ω) .

Here, as before,

A = (A, α, µ, k) and B = (B, β, ν, l) ,

and

Qa,b(ω) = µ(a∗a) + ν(b∗b)− ν(Eω(a
∗)b)− ν(b∗Eω(a)) .
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The triangle inequality

In terms of the (cyclic) representation obtained from a transport plan,

IA,B(ω) =
∥∥πω

µ (k)Ω− πω
ν (l)Ω

∥∥2
⊕ω

.

This should already make the triangle inequality plausible. However, we

need a noncommutative substitute for the gluing lemma used in the

classical case. A natural bimodule structure on Hω given by,

aψb = πω(a⊗ jB(b))ψ for all ψ ∈ Hω

in our standard form setup, provides a relative tensor product Hω ⊗ν Hφ

of such bimodules to play the role of the gluing lemma, leading to

W2(A,C) ≤ W2(A,B) +W2(B,C) ,

using the above along with

AωB and BφC =⇒ Aω◦φC

in terms of ω ◦ φ given by Eω◦φ = Eφ ◦ Eω .
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Faithfulness

Classically, all coordinates of Rd need to be used to obtain faithfulness of

W2.

Analogously, in our general framework, we need to assume that the

coordinates generate the algebra. That is, for a system A:

Assume that k1, ..., kd generate the von Neumann algebra A.

In addition, assume that

{k∗
1 , ..., k

∗
d } = {k1, ..., kd}

that is the set of coordinates as a whole is self-adjoint.

If satisfied for all systems being considered, then:

W2(A,B) = 0 =⇒ A ∼= B .
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