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What this talk is about?

Two issues to be discussed:
1) Stochastic / bi-stochastic dynamics
in the space of quantum measurements,

2) Distances between quantum pure states
induced by the quantum transport problem,
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1. Setting the scene: A) classical discrete dynamics

A) Classical states: n-point probability vectors p,
p=(p1,...,pn) such that p; >0, Y7, p;=1.

discrete classical dynamics: p' = Tp, p; =3 T;p;
stochastic transition matrix, Tj; > 0and >, T;j = 1.

In particular, for bistochastic dynamics,
Bj>0and } 1, Bj=1=37",B;
the majorization relation (for ordered vectors) holds:

pP=Bp<p & Z,’-;lp,’-Sfo:lp,- forany k=1...n—1
This implies that the Shannon entropy does not decrease, H(p') > H(p).

The set B, C R("~1)? of bistochastic matrices of order n forms the
Birkhoff polytope = convex hull of all n! permutation matrices.
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1. Setting the scene: B) quantum discrete dynamics

B) Quantum states: density matrices p, of order n,
p = p* > 0 normalized as Trp = 1.

discrete quantum dynamics: p' = ®(p) = Z,’\il K,-pK,.T
where stochastic map satisfies trace preserving condition,
SHL KK =1

In particular, for a bistochastic operation Vg satisfying the dual
unitality condition, Z,Ai1 K,-K,.T =1
the majorization relation for density matrices (and spectra \) holds:
pPr=Ve(p)<p < Ap)=Ap)
This implies that the von Neumann entropy of a quantum state
does not decrease, S(p') > S(p).

For single-qubit case, n = 2 any bistochastic map is unitarily equivalent
to a Pauli channel (tetrahedron of rotations by 3 Pauli matrices and I).
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‘ﬁ:lmm S

Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916
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1. Novel part: C) quantum supermaps

C) Quantum supermap I
Discrete dynamics ¢’ = I'(®) in the space of quantum maps of order d
can be represented as a dynamics in the set of M Kraus operators,

(KL, ... Ki,} = T({Ku,... Ku}).

Denote an effect by E; = K,-TK,- >0

Preservation of trace implies that a collection of effects,

E = (Ey,...,En), satisfies the identity resolution, "M F; = 1,.

The set £ of all such block-vectors E can be called a ‘quantum simplex’
as it reduces to the standard M-point probability simplex for d = 1.

A particular class of supermaps: discrete dynamics in the set £

of effects: induced by sequential block product E/ = T x E,

so that E/ = ZJ’V:'l VEiTijr/E; (Gudder, Nagy 2001; Leifer 2007),
where block-wise stochastic matrix T with positive definite
block-entries, Tj; > 0, satisfies a column-wise condition, Z,Ail T; =1
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Block-wise stochastic dynamics

For any two block matrices A, B of size nd with n? positive blocks,
Bjj = B > 0 od order d, define block-wise product A x B,

(A% B)y = (ZJ- VB A \/B_jk>.

Then a quantum sequential measurement

(effects P; come first, then, depending on the output, effects Sj;)
can be described by a single measurement with effects Q;,

P} {Sij}s
AN :
Tl s

|
I ‘ p(i)=%,p i)
(@

1
p - o Qv

i where Q@ = S *x P.
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Block-wise bistochastic matrices

Consider block-wise matrix B, 4 with n? semi-positive blocks, Bj >0,
which satisfy columnwise and row-wise conditions,

27:1 Bj=1= Zj:l Bj.

It froms a blockwise bistochastic matrix, also called block bistochastic
Benoist, Nechita (2017) and quantum magic square,

De les Coves, Netzer, Valentiner-Branth (2023),

which for d =1 it reduces to standard bistochastic matrix.

Simple example: n =2, d = 2 of a block bistochastic matrix

A I-A Q, l<t<?
B2z = []I—A A } )

where 0 < A <.

KZ (IF UJ/CFT PAN ) Transformations of quantum measurements May 1, 2025 8 /42



Birkhoff polytope and beyond

Classical case: bistochastic matrices (1946):
the set B, = Bj,1 of bistochastic matrices, forms the Birkhoff polytope,
convex hull of all n! permutation matrices 1;, so B = ZJ- a;l;.

Quantum case: block-wise bistochastic matrices — an attempt to
generalize Birkhoff. A convex combination of extended permutations I1;,
B=>,aN®E, > ,E=1, > ;a=1

is called semi-classical (SC). Observation of De les Coves et. al (2023):

a) for any d the set B, 4 of block-wise bistochastic matrices is equal to

SC, (Birkhoff-like statement).

b) for any n > 3 and d > 2 the set B, 4 is y
larger than the semi-classical set SC. 05+

~

Examplary cros-section of the set B3>

determined by the center Aj; = 15/3,

B = I, and non-SC matrix C (extreme 05 |

point) composed of 9 blocks of rank one.
SC matrices plotted in blue.
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Bistochastic matrices: Dynamical characterisation

Classical case (1952)
Ostrowski characterization of the set B,, of bistochastic matrices

Square matrix B of order n with non-negative entries is bistochastic iff
majorization relation, Bp < p, holds for any n-point probability vector p.

Quantum case (2024)
Definition. A vector P of effects, P; > 0 and > 7, P; =1,
is called sortable if its effects can be sorted as I > Py > P, > 0.

Quantum analog of Ostrowski characterization of the set B, 4
of block-wise bistochastic matrices:

Block-wise matrix B of order n with positive blocks Bj; > 0 is

block-wise bistochastic iff block majorization relation
Q=B*P<P < Zj'(:lQJSZ_;(:l’DJ'

holds for k = 1,...n and any sortable vector P of n positive blocks P;

suming to identity, A. Rico, K.Z, J. Phys. A (2024)
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n-point probability simplex A,

Set of quantum measurements A, 4

Probability vector
p=I(p1,.. .,p,,)r [SWAYE
pi=0, ;'i:]pj =1
Stochastic matrix

S= (S| yoo -,Sli) e A"
8= (SIJ‘ .. -13,-1_;) e A,
Transformations within
Ay Sp=q

qi = Ef:] SiPj

Allowed transformations

p —S> q € A, always possible.

Bistochastic
B = (by)

Blockwise probability vector (POVM) [13]
P=(Pi,...P) €A,

P; =0, Eji!:l Pi=1y4

Blockwise stochastic matrix

S = (51,. . .,Sn} c A”,dxn

SJ.' = (SU= .. .,Snj) < An‘d
Transformations within A, 4

S«P=0

O = E}':l '\/FJ'S"J' P

Allowed transformations

P—s} 0 € A, 4 <= Jointly measurable

Blockwise bistochastic [14, 21]
B = (By)

b2 05 3 obij=3b;=1
Sortability Nonincreasing order,
Izpiz...z2p.z20
Majorization for all p € A,
p~q=2DBp:

Ef:[pf 2 zleq}'

Bjz0; X Bj=3_ Bj=1a
Sortability Sortable subset,
1z2P=2...2P, 20

Majorization for P € sortable C A, 4
P~Q=BxP:

Zle Pz Ej:] Qi

a comparison: classical — quantum
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Wawel castle in Cracow
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D.& K. Ciesielscy theorem: For any e > 0 there exist > 0 such that
with probability 1 — € the bench Banach talked to Nikodym in 1916 was
localized in n-neighbourhood of the red arrow.
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Quantum Signatures of Chaos: Fritz Haake, 1941 — 2019
Four editions (1991 — 2018) of the key reference on quantum chaos

- -

Quantum
Signatures

Quantum §
Signatures :

of Chaos

f Chaos

KZ (IF UJ/CFT PAN ) Transformations of quantum measurements May 1, 2025 15 / 42



Quantum Signatures of Chaos:

How to define a quantum analogue of the Lyapunov exponent ?
t

1) et but Dys(p, o) = Dus(UpUT, UaUT).
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Quantum Signatures of Chaos:

How to define a quantum analogue of the Lyapunov exponent ?
t

18] foe® but Dps(p,0) = Dus(UpUt, UsUT).
Ann. Physik 1 (1992) 531-539
At ths‘basis of our study lies a generalization of the Lyapunov exponent, Annalen
b R e paii v APt .
@ Teem———y, 3 der Physik
2 A= ’1_121 A@), A1) = d]‘hﬂ_{o Tln <W) , Johann Ambrosius Barth 1992

sty g = WhHiCh distance d ?
Lyapunov exponents from quantum dynamics

Harald Wiedemann, and Karol Zyczkowski*

Vistas in Astronomy, Vol. 37, pp. 153-156..1993 00B3-6656/93 $24.00
Printed in Great Britain. All rights reservex @ 1993 Pergamon Press Ltd

HOW TO GENERALIZE THE LAPUNOV EXPONENT
FOR QUANTUM MECHANICS Monge distance

Karol iycz.kowski, *+ Harald Wiedemannt between both
and Wojciech Stomczyfiskit Q - functions
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Are all ‘reasonable’ distances between quantum states unitarily invariant,
D(p,0) = D(UpUt, UsUT) ?
a counter example: the Monge distance

J. Phys. A: Math. Gen. 31 (1998) 9095-9104. Printed in the UK PIL: 50303-4470(98)93137-7
P,
The Monge distance between quantum states

Karol Zyczkowski§ and Wojeciech Stomezynskii||

InsTITUTE OF PHysics PUBLISHING Jourmar oF Puysics A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 34 (2001) 66896722 PIL: SO305-4470(0 1) 1R0B0-7

The Monge metric on the sphere and geometry of
quantum states

Karol Zyczkowski'? and Wojciech Stomezyrniski®

defined between the corresponding Q-functions, Q;(a) = («|pi|a),
Dum(p1, p2) = Dy (Qi(a), ()
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Monge problem (1781)
An optimal scheme of translocation of soil between the initial shape

Q1(x1, x2) and the final one Q2(x1, x2) gives the Monge distance
between both probability distributions, Dy(Q1, Q2).

T
4AQ Q|("L-“z} - taxl_le

Figure 1. Monge transport problem: how to move a pile of sand {1(x1. x3) to a new location
Q2(x1, x2) minimizing the work done?
we minimize the total work against friction,

(vertical component is neglected!)
May 1, 2025 18 / 42

Transformations of quantum measurements

KZ (IF UJ/CFT PAN )



1D problem — solution of T. Salvemini

Sul calcolo degli indici di concordanza... (1943)

For any two 1D probability distributions Q1(t) and Qa(t),
represented by their cummulative distributions, Fi(x) = [*_ Qi(t) dt,

1.0
Q; a)
0.5
I X
I‘Fi b)
0.5
0.0
L5

their Monge distance reads,
Du(Q1, @) = [*3|Fi(x) — Fa(x)| dx.
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Monge metric & quantum states: a) infinite space

natural choice: harmonic oscillator coherent states |a) for a € C

Monge distance between any two coherent states satisfies classical
property : AQ

4(;>> Tl

Du(le), 18)) = | = 8]
2D problems with radial symmetry = 1D solution of Salvemini works!

Fock states |n) with n =0,1,2... with Dpys(]i),|j)) = V2 = const
Dum(]0), 1)) << Dpm(]1),]100)) (as desired)

thermal states |7) with mean number of photons equal to 7

Du(|f),[m)) =~ [v/n—+/m.
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Wawel Castle in Cracow
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Plate commemorating the discussion between
Stefan Banach and Otton Nikodym (Krakéw, summer 1916)

LETNIM WIECZOREM 1916 ROKU DWAJ MEODZI KRAKOWIANIE,

STEFAN BANACH I OTTON NIKODYM,
NA EAWCE NA PLANTAGH ROZMAWTALT O MATEM ATYCE.

DO DYSKUSJI WEACZYE SIf PRZECHODZACY OBOK MATEMATYK,

DR HUGO STEINHAUS.
TAKZOSTAE ODKRYTY NIEZW‘(KL{’ MATEMATYCZNY TALENT STEFANA BANACHA,

JEDNEGO Z NAJWYBITNIE[SZYCH POLSKICH UCZONYCH.
®

OTTON NIKODYM || =3 sy STEFAN BANACH

IN CONVERSATION ABOUE MATHEMATICS.
[t THIS BENCH MEMORISES THEIR FAMOUS MEETING WITH HUGO STEINHAUS IN THE .
| 3
{ PLANTY GARDEN IN SUMMER 1916.

= wace
22 / 42
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transport problem — Kantorovich formulation (1939)

Mathematical Methods in the Organization and Planning of Production

Transport plan

A transport plan is a measure w on X X Y such that
w(AXY) =pu(A), w(X x B)=v(B), forany AC X, BCY.

Kantorovich optimal transport problem (1942)

Denote by (1, /) the set of all transference plans for fixed pu, v.

Find 7, which realises  inf / c(x,y)dv(x,y).
Vel (pv) Jxx Y

Wasserstein p—distances (1969)
Let Y = X and take c to be a distance function. Then, for any p > 1,
1/p
Wepl) = inf [ cleyrartan)
YEM(1v) X x Y
is a distance on P(X) =~ S(C(X)).

A\
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Discrete optimal transport

Take an N point set X = Y = {x;},

e Consider two probability vectors p?, p? of length N,

which can be seen as classical states p*, pB € P(X).

o A transport plan PAB € I(pA pB) is a classical state P(X x X).
e PAB is identified with the probability vector PAB of length N2.

Define a diagonal coupling matrix pAB = PAB(SW, for
wv=1,..., N2

Take a distance function d on X and define a matrix Ej; := d(x;, x;).
Recast E into a vector E of length N2,

Define a diagonal cost matrix CS, := E,6,,.

The classical optimal transport problem then reads

cd( A By._ - cd _AB
TE(p", p°) = pABEFJII(r;A’pB) Tr C“p™".
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Quantum optimal transport — idea

Kantorovich formulation of transport problem for:

R

f:(,x) ’

a) continuous 1D probabilities pa(x) and pg(y)
coupled by a joint distribution P(x,y);

b) two N-point classical states p”, p? € Ay coupled by a joint state
PAB ¢ 1< © Ape with adjusted marginals;

c) two quantum states p*, pB € Qu coupled by a bipartite state
pAB € TR C Qpe such that Tra p”B = pB and Trg pB = pA.
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Quantum optimal transport — brief hist

@ Monge problem for Husimi distributions of quantum states.

e K. Z H. Wiedemann, W. Stomczyriski, Vist. Astrronom. 37, 153 (1993).
e K.Z., W. Stomczyfiski, J. Phys. A 31, 9095 (1998).
o K. Z., W. Stomczynski, J. Phys. A 34, 6689 (2001).

e Dynamical formulation [Benamou—Brenier (2000)].

o E.A. Carlen, J. Maas, Comm. Math. Phys. 331, 887 (2014).
o N. Datta, C. Rouzé, Ann. H. Poincaré 21, 2115 (2020).
o K. lkeda, Quantum Inform. Process. 19, 25 (2020).

@ Direct generalisations using quantum couplings

F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343, 165 (2016).
M.H. Reira, Bachelor’s Thesis Universitat Autdnoma de Barcelona (2018).
N. Yu, L. Zhou, S. Ying, M. Ying, arXiv:1803.02673 (2018).
S. Chakrabarti, Y. Huang, T. Li, S. Feizi, X. Wu, arXiv:1911.00111 (2019).
G. De Palma, D. Trevisan, arXiv:1911.00803 (2019).
E. Caglioti, F. Golse, T. Paul, J. Stat. Phys., 181, 149 (2020).
G. De Palma, M. Marvian, D. Trevisan, S. Lloyd, IEEE Trans. Inf. Theor. (2021)
R. Duvenhage, J. Operator Theory (2022).
Friedland, Eckstein, Cole, K. Z. Phys. Rev. Lett. (2022)
several other recent papers, (2022-2025)
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Quantum optimal transport — definition

Qn :={peB(C")| p=p', p>0, Trp=1}
density matrices of order N.

Fix two states p”, p& € Qu.

Consider a coupling matrix (or “quantum transport plan”)
"B € Qppe, such that Tra pB = pB and Trg pAB = pA.
Denote by F?(p”, pB) C Qp2 the set of all coupling matrices.

o Note that p ® pB € TQ(pA, pB).

Take a quantum cost matrix C = C' € B(CV*N).

The quantum optimal transport problem defined by the minimum

TS A By = min Tr Cp"B.
clo%e7) pABErQ(pA,pP) ’

How to select a suitable cost matrix C?
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Quantum cost matrix C®: diag(C®) = C¢.

Motivations:

e semi-classical limit of QM (oo dim) [Golse, Mouhot, Paul, Caglioti]
@ quantum transport plans <> quantum channels

[De Palma, Trevisan (2019)]
e Hamming distance [De Palma, Marvian, Trevisan, Lloyd (2019)]

Our motivation: (coherification of the diagonal classical cost matrix C)

@ Find cost matrices, which yield an analogue of Wasserstein distances.

Projective cost matrix C® — — singlet state

Take a computational basis {\/)}fvzl and set [¢;) = %(U,j} — j, ).

j>i=1

The same idea explored in: Reira (2018); Yu, Zhou, Ying, Ying (2018)
and Chakrabarti, Huang, Li, Feizi, Wu (2019):
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Properties of the quantum optimal transport cost

TOp", pP) = pin, T COPE. W, = (TOYP, W =W, =VTQ

The optimal quantum transport cost T on N-level systems is
@ convex,
@ symmetric,
@ non-negative,
o TQ(pA, pB) =0 if and only if p* = pB,
o TQ(pA, pB) = TQ(UpAUT, UpBUT) for any U € U(N).

v

For any p > 1, W, is a unitarily invariant semidistance on Qpn.
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Bounds on quantum optimal transport,
Fidelity F(p*, pB) i= (Tr ‘\//?\/pBDz.

Quantum distances:

v1—F, root infidelity,

| =
B:=4/2 (1 ﬁ) Bures distance.
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Bounds on quantum optimal transport,

Fidelity F(p*, pB) i= (Tr \\/,?\/,79\)2. s

—

Quantum distances: g1 W,
s )
2 Y
. . . o e K
| :=+v1-F, root infidelity, pa Ry
1 z s
4 DR
B:=4/2 (1 - ﬁ) Bures distance. Ry

Theorem: bounds for W = v T® ? =
(based on [Yu, Zhou, Ying, Ying (2018)]) 0204 0608 L0y
comparison of distances for an

exemplary trajectory

For any p?, pP € Qn we have

LA B A By~ 1p(,A B
1" p7) = W(p”,p7) 2 5B(p", p°).
2 ) ’ 2 )
v2 P = 1+ 15/0)(0l,
Left ineqality is saturated pB =1 =) + t(|+)(+])
if pA or pB is pure.
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Transport metric for N > 2

Theorem 1. concerning N = 2 and the Bloch ball

For N = 2, W, satisfies the triangle inequality iff p > 2:
For any mixed states p”, pB, p¢ € Q, one has

Wo(p?, %) + Wo(p®, p€) = Wo(p*, p°).

Thus, W, for p > 2 forms a distance on the Bloch ball 5.

v

Theorem 2. concerning pure states of any N > 2 quantum system

Root optimal transport, W5 = 4/ Tg, related to the cost matrix

N
Q _ — —
CE =Y Eilvi)(¥j
j>i=1
corresponding to any classical Euclidean distance function Ej; = d(x;, x;)
for pure states of any N > 2 system satisfies the triangle inequality

and forms a Wasserstein distance (on the set of pure quantum states).
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distance for pure quantum states, N > 2

1. Monge distance defined by coherent states is not easy to compute...
hard optimization problem (even for two pure states)

2. For pure states the Wasserstein distance determined by any classical
Euclidean distance matrix Ej; = d(x;, x;) is given explicitely !
Example - N points on an (energy) line: E; = d(x;, x;) = |x;, Xj|

For a given Hamiltonian H with non-degenerate eigenvalues E; and
eigenvectors |i), so that H|i) = E;|i), we set Ejj = |E; — Ej| and obtain

N

WA(10), [0)) = > |E — EiI? [vhigj — diny[?

j>i=1
where the analyzed states are expanded in eigenbasis of Hamiltonian,

[¥) =225 4ili) and [6) = 32; ¢jli)-
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distance determined by a Hamiltonian H

1. Energy distance for any two eigenstates of H are equal to the energy
difference

W(l7), 1)) = [Ei = Ej (x+)

2. For any to pure states [¢)) and |¢) their Energy distance
satisfies the bounds
(8l HIo) — (8l HIp) [P < W2(|0), [v)) < [{@IH|®) — (0[H|#)|>+2(A% + AF)
where the variance read Aé = (¢|H?|p) — (¢|H|p)?.
which for two eigenstates (Ay = Ai = 0) implies Eq. (**).

Example: 1D Hydrogen atom, H = p?/2m — e?/r and its eigenstates |n):
any standard distance D, (trace, HS, Bures) imply equilateral triangle,

D, (|0),]1)) = Dx(|1),]100)) = D«(]0), |100)) for all eigenstates,

while the energy (Wasserstein) distance reveals the energy difference:
W(0),[1)) << W(|1),]100)) < Dx(0),[100)).
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Trace distance & Energy distance

For eigenstates of H the energy distance is equal to the number of
resonant photons absorbed during the transition

Wi, j>)=|E, -F +
\ J

Ulx)

2 ] E3
F &
E 3
trace 1 F 1
0 ' distance Wasserstein

In such a case the trace distance between orthogonal states forms an
equilateral triangle, Dy (|1),|3)) = D« (]1),]2)) = D¢ (]2), |3)),
while the Energy distance forms a metric line’

W(l1),[3)) = W(I1),]2)) + W([2),3)).
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Quantization of a classical distance: a general approach

Consider a set of N points x; e R™, k=1,..., N.
Denote distances between them by dj; = d(x;, X;), also not Euclidean !

Theorem: (Bistron, Miller, 2025 to appear). For any chosen classical
distance matrix, djj = dji > 0, the map acting on the space of pure
quantum states of size N,

Dy (1), 1) = 32111 d [idy — ditl?,

satisfies the triangle inequality and induces a quantum distance
in the complex projective space CPN-1.

Here 1); and ¢; denote complex expansion coefficients,

) = Sy i) and [¢) = SO L))

Proof is based on a generalized Cauchy - Schwarz inequality
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generalized Cauchy - Schwarz inequality (complex case),

(coefficients wjj can be negative!)

Theorem 1. Fizn > 3 and an orthonormal system {x,y,z} C C*, and define wijy. as

€Ly Ty Tp
Wik =T Vi Vi Uk |- (1)

Y I
Then for any symmetric matriz (Ay;) € M, (R)

Z AirA kWijk

ijk

< [ B, 5 A @

ijk ijk

Without loss of generality, we can assume that A; =0 for all i.

Rafat Bistron and Tomasz Miller (2025)
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Quantum Hamming distance

Consider two pure states of n-qubit system, |V), |®) € HJ represented by
2" coeficients, ;i and ¢ j,.

Find a true distance Dy such that for any two states in the
computational basis, |WV) = |i1fa...0y) and W) = |jija ... jn)

the distance Dy(|V), |®)) is equal to the classical Hamming distance
du(ik,jk) between the bit strings ix and ji,

i.e. the minimal number of NOT gates to transform string iy into ji.

Related problem was studied by Chau (1999); De Palma, Marvian,
Trevisan, Lloyd (2019); Girolami, Anza, Phys Rev. Lett. (2021);
Grudka, Kurzyriski, Sajna, Wéjcik?, Phys. Rev. A (2024).

Our explicit solution (no optimization needed!) reads

DI2—I(|1/)> |Q>) = Z}l,..i,,:o dl%l(lk./k) |wik¢kj - ¢ik77/)jk|27

and forms a true distance, as the triangle inequality holds.
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Quantum Hamming distance & applications

Random search procedure: we wish to get close to a given desired state
by minimization a distance to the goal: 4-qubit state
|GHZy) = (|0000) + |1111))/+/2.

Algebraic decay of averaged infidelity 1 — F' to the desired state |G H Zy) of 4 qubits

10

minimized Hamming distance

—=— minimized Bures distance

1-F S slope = -0.0021 =

1071 ~

S
slope = -0.0042 S~

1072

0 200 100 600 00 1000

T
Minimization of quantum Hamming distance converges much faster than
minimization of unitarily invariant Bures distance,
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Bench commemorating the discussion between
Otton Nikodym and Stefan Banach (Krakéw, summer 1916)

Sculpture: Stefan Dousa
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opened in Planty Garden, Cracow, Oct. 14, 2016

Fot. Andrzej Kobos
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50 years after the discussion at the bench in Cracow,

in 1966, Otton Nikodym published the book
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Concluding Remarks

@ Discrete dynamics in the space of quantum measurements can be
described by blockwise stochastic matrices and sequential product.

@ Blockwise bistochastic matrices lead to dynamics characterized by
operator majorization of sorted vectors of effects E; = E > 0.

@ A simple generalization of Birkhoff polytope is correct for the set
Ba 4 only. For a larger n > 3 there exist non-semi-classical blockwise
bistochastic matrices outside this set.

@ Monge distance between two Husimi functions satisfy semiclassical
property: distance between coherent states is equal to the classical
distance between the points in the phase space they are localized.

@ Monge-Kantorovich-Wasserstein approach can be applied for any
two states of an arbitrary size . For a cost matrix induced by any
classical distance it gives a true distance between any two pure states.

@ Examples include energy distance, applicable in quantum physics,
and quantum Hamming distance, useful for quantum search.
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