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What this talk is about?

Two issues to be discussed:

1) Stochastic / bi-stochastic dynamics
in the space of quantum measurements,

2) Distances between quantum pure states
induced by the quantum transport problem,
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1. Setting the scene: A) classical discrete dynamics

A) Classical states: n-point probability vectors p,
p = (p1, . . . , pn) such that pi ≥ 0,

∑n
i=1 pi = 1.

discrete classical dynamics: p′ = Tp, p′i =
∑

j Tijpj
stochastic transition matrix, Tij ≥ 0 and

∑n
i=1 Tij = 1.

In particular, for bistochastic dynamics,
Bij ≥ 0 and

∑n
i=1 Bij = 1 =

∑n
j=1 Bij

the majorization relation (for ordered vectors) holds:
p′ = Bp ≺ p ⇔

∑k
i=1 p

′
i ≤

∑k
i=1 pi for any k = 1 . . . n − 1

This implies that the Shannon entropy does not decrease, H(p′) ≥ H(p).

The set Bn ⊂ R(n−1)2
of bistochastic matrices of order n forms the

Birkhoff polytope = convex hull of all n! permutation matrices.
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1. Setting the scene: B) quantum discrete dynamics

B) Quantum states: density matrices ρ, of order n,
ρ = ρ∗ ≥ 0 normalized as Trρ = 1.

discrete quantum dynamics: ρ′ = Φ(ρ) =
∑M

i=1 KiρK
†
i

where stochastic map satisfies trace preserving condition,∑M
i=1 K

†
i Ki = I

In particular, for a bistochastic operation ΨB satisfying the dual
unitality condition,

∑M
i=1 KiK

†
i = I

the majorization relation for density matrices (and spectra λ) holds:
ρ′ = ΨB(ρ) ≺ ρ ⇔ λ(ρ′) ≺ λ(ρ)

This implies that the von Neumann entropy of a quantum state
does not decrease, S(ρ′) ≥ S(ρ).

For single-qubit case, n = 2 any bistochastic map is unitarily equivalent
to a Pauli channel (tetrahedron of rotations by 3 Pauli matrices and I).
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Otton Nikodym & Stefan Banach,

talking at a bench in Planty Garden, Cracow, summer 1916
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1. Novel part: C) quantum supermaps

C) Quantum supermap Γ
Discrete dynamics Φ′ = Γ(Φ) in the space of quantum maps of order d
can be represented as a dynamics in the set of M Kraus operators,

{K ′1, . . .K ′M} = Γ({K1, . . .KM}).

Denote an effect by Ei = K †i Ki ≥ 0

Preservation of trace implies that a collection of effects,
E = (E1, . . . ,EM), satisfies the identity resolution,

∑M
i=1 Ei = Id .

The set E of all such block-vectors E can be called a ‘quantum simplex’
as it reduces to the standard M-point probability simplex for d = 1.

A particular class of supermaps: discrete dynamics in the set E
of effects: induced by sequential block product E ′ = T ∗ E ,
so that E ′i =

∑M
j=1

√
EjTij

√
Ej (Gudder, Nagy 2001; Leifer 2007),

where block-wise stochastic matrix T with positive definite
block-entries, Tij ≥ 0, satisfies a column-wise condition,

∑M
i=1 Tij = I.
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Block-wise stochastic dynamics

For any two block matrices A, B of size nd with n2 positive blocks,
Bij = B∗ij ≥ 0 od order d , define block-wise product A ∗ B,

(A ∗ B)ik :=
(∑

j

√
Bjk Aij

√
Bjk

)
.

Then a quantum sequential measurement
(effects Pj come first, then, depending on the output, effects Sij)
can be described by a single measurement with effects Qj ,

where Q = S ∗ P.
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Block-wise bistochastic matrices

Consider block-wise matrix Bn,d with n2 semi-positive blocks, Bij ≥ 0,
which satisfy columnwise and row-wise conditions,∑n

i=1 Bij = I =
∑n

j=1 Bij .

It froms a blockwise bistochastic matrix, also called block bistochastic
Benoist, Nechita (2017) and quantum magic square,
De les Coves, Netzer, Valentiner-Branth (2023),
which for d = 1 it reduces to standard bistochastic matrix.

Simple example: n = 2, d = 2 of a block bistochastic matrix

B2,2 =

[
A I− A

I− A A

]

where 0 ≤ A ≤ I.

KŻ (IF UJ/CFT PAN ) Transformations of quantum measurements May 1, 2025 8 / 42



Birkhoff polytope and beyond

Classical case: bistochastic matrices (1946):
the set Bn = Bn,1 of bistochastic matrices, forms the Birkhoff polytope,

convex hull of all n! permutation matrices Πj , so B =
∑

j ajΠj .

Quantum case: block-wise bistochastic matrices – an attempt to
generalize Birkhoff. A convex combination of extended permutations Πi ,

B =
∑

j ajΠj ⊗ Ej ,
∑

j Ej = Id ,
∑

j aj = 1
is called semi-classical (SC). Observation of De les Coves et. al (2023):
a) for any d the set B2,d of block-wise bistochastic matrices is equal to
SC, (Birkhoff-like statement).
b) for any n ≥ 3 and d ≥ 2 the set Bn,d is

larger than the semi-classical set SC.

Examplary cros-section of the set B3,2

determined by the center Aij = I2/3,
B = I6, and non-SC matrix C (extreme
point) composed of 9 blocks of rank one.

SC matrices plotted in blue.
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Bistochastic matrices: Dynamical characterisation

Classical case (1952)
Ostrowski characterization of the set Bn of bistochastic matrices

Square matrix B of order n with non-negative entries is bistochastic iff
majorization relation, Bp ≺ p, holds for any n-point probability vector p.

Quantum case (2024)
Definition. A vector P of effects, Pi ≥ 0 and

∑n
i=1 Pi = I,

is called sortable if its effects can be sorted as I ≥ P1 ≥ Pn ≥ 0.

Quantum analog of Ostrowski characterization of the set Bn,d

of block-wise bistochastic matrices:

Block-wise matrix B of order n with positive blocks Bij ≥ 0 is
block-wise bistochastic iff block majorization relation

Q = B ∗ P ≺ P ⇔
∑k

j=1 Qj ≤
∑k

j=1 Pj

holds for k = 1, . . . n and any sortable vector P of n positive blocks Pj

suming to identity, A. Rico, K.Ż, J. Phys. A (2024)
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a comparison: classical – quantum
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Wawel castle in Cracow
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D.& K. Ciesielscy theorem
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D.& K. Ciesielscy theorem: For any ε > 0 there exist η > 0 such that
with probability 1− ε the bench Banach talked to Nikodym in 1916 was
localized in η-neighbourhood of the red arrow.
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Quantum Signatures of Chaos: Fritz Haake, 1941 – 2019

Four editions (1991 – 2018) of the key reference on quantum chaos
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Quantum Signatures of Chaos:

How to define a quantum analogue of the Lyapunov exponent ?

but DHS(ρ, σ) = DHS(UρU†,UσU†).
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Are all ‘reasonable’ distances between quantum states unitarily invariant,
D(ρ, σ) = D(UρU†,UσU†) ?

a counter example: the Monge distance

defined between the corresponding Q-functions, Qi (α) = 〈α|ρi |α〉,
DM(ρ1, ρ2) = DM

(
Q1(α),Q2(α)

)
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Monge problem (1781)

An optimal scheme of translocation of soil between the initial shape
Q1(x1, x2) and the final one Q2(x1, x2) gives the Monge distance

between both probability distributions, DM(Q1,Q2).

we minimize the total work against friction,
(vertical component is neglected!)
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1D problem – solution of T. Salvemini
Sul calcolo degli indici di concordanza... (1943)

For any two 1D probability distributions Q1(t) and Q2(t),
represented by their cummulative distributions, Fi (x) =

∫ x
−∞Qi (t) dt,

their Monge distance reads,
DM(Q1,Q2) =

∫ +∞
−∞ |F1(x)− F2(x)| dx .
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Monge metric & quantum states: a) infinite space

natural choice: harmonic oscillator coherent states |α〉 for α ∈ C
Monge distance between any two coherent states satisfies classical
property :

DM(|α〉, |β〉) = |α− β|

2D problems with radial symmetry ⇒ 1D solution of Salvemini works!

Fock states |n〉 with n = 0, 1, 2 . . . with DHS(|i〉, |j〉) =
√

2 = const
DM(|0〉, |1〉) << DM(|1〉, |100〉) (as desired)

thermal states |n̄〉 with mean number of photons equal to n̄
DM(|n̄〉, |m̄〉) ≈ |

√
n −
√
m|.
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Wawel Castle in Cracow
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Plate commemorating the discussion between
Stefan Banach and Otton Nikodym (Kraków, summer 1916)
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transport problem – Kantorovich formulation (1939)
Mathematical Methods in the Organization and Planning of Production

Transport plan

A transport plan is a measure ω on X × Y such that

ω(A× Y ) = µ(A), ω(X × B) = ν(B), for any A ⊂ X , B ⊂ Y .

Kantorovich optimal transport problem (1942)

Denote by Γ(µ, ν) the set of all transference plans for fixed µ, ν.

Find γ, which realises inf
γ∈Γ(µ,ν)

∫
X×Y

c(x , y)dγ(x , y).

Wasserstein p–distances (1969)

Let Y = X and take c to be a distance function. Then, for any p ≥ 1,

Wc,p(µ, ν) :=

(
inf

γ∈Γ(µ,ν)

∫
X×Y

c(x , y)pdγ(x , y)

)1/p

is a distance on P(X ) ' S(C(X )).
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Discrete optimal transport

Take an N point set X = Y = {xi}Ni=1.

Consider two probability vectors pA, pB of length N,
which can be seen as classical states pA, pB ∈ P(X ).

A transport plan PAB ∈ Γcl(pA, pB) is a classical state P(X × X ).

PAB is identified with the probability vector P̃AB of length N2.

Define a diagonal coupling matrix ρABµν := P̃AB
µ δµν , for

µ, ν = 1, . . . ,N2.

Take a distance function d on X and define a matrix Eij := d(xi , xj).

Recast E into a vector Ẽ of length N2.

Define a diagonal cost matrix C cl
µν := Ẽµδµν .

The classical optimal transport problem then reads

T cl
C (pA, pB) := min

PAB∈Γcl (pA,pB)
TrC clρAB .
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Quantum optimal transport – idea

Kantorovich formulation of transport problem for:

a) continuous 1D probabilities pA(x) and pB(y)
coupled by a joint distribution P(x , y);

b) two N-point classical states pA, pB ∈ ∆N coupled by a joint state
PAB ∈ Γcl ⊂ ∆N2 with adjusted marginals;

c) two quantum states ρA, ρB ∈ ΩN coupled by a bipartite state
ρAB ∈ ΓQ ⊂ ΩN2 such that TrA ρ

AB = ρB and TrB ρ
AB = ρA.
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Quantum optimal transport – brief history

Monge problem for Husimi distributions of quantum states.
K. Ż., H. Wiedemann, W. S lomczyński, Vist. Astrronom. 37, 153 (1993).
K. Ż., W. S lomczyński, J. Phys. A 31, 9095 (1998).
K. Ż., W. S lomczyński, J. Phys. A 34, 6689 (2001).

Dynamical formulation [Benamou–Brenier (2000)].
E.A. Carlen, J. Maas, Comm. Math. Phys. 331, 887 (2014).
N. Datta, C. Rouzé, Ann. H. Poincaré 21, 2115 (2020).
K. Ikeda, Quantum Inform. Process. 19, 25 (2020).

Direct generalisations using quantum couplings
F. Golse, C. Mouhot, T. Paul, Commun. Math. Phys. 343, 165 (2016).
M.H. Reira, Bachelor’s Thesis Universitat Autònoma de Barcelona (2018).
N. Yu, L. Zhou, S. Ying, M. Ying, arXiv:1803.02673 (2018).
S. Chakrabarti, Y. Huang, T. Li, S. Feizi, X. Wu, arXiv:1911.00111 (2019).
G. De Palma, D. Trevisan, arXiv:1911.00803 (2019).
E. Caglioti, F. Golse, T. Paul, J. Stat. Phys., 181, 149 (2020).
G. De Palma, M. Marvian, D. Trevisan, S. Lloyd, IEEE Trans. Inf. Theor. (2021)
R. Duvenhage, J. Operator Theory (2022).
Friedland, Eckstein, Cole, K. Ż. Phys. Rev. Lett. (2022)

several other recent papers, (2022-2025)
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Quantum optimal transport – definition

ΩN := {ρ ∈ B(CN) | ρ = ρ†, ρ ≥ 0, Tr ρ = 1}
density matrices of order N.

Fix two states ρA, ρB ∈ ΩN .

Consider a coupling matrix (or “quantum transport plan”)

ρAB ∈ ΩN2 , such that TrA ρ
AB = ρB and TrB ρ

AB = ρA.

Denote by ΓQ(ρA, ρB) ⊂ ΩN2 the set of all coupling matrices.

Note that ρA ⊗ ρB ∈ ΓQ(ρA, ρB).

Take a quantum cost matrix C = C † ∈ B(CN×N).

The quantum optimal transport problem defined by the minimum

TQ
C (ρA, ρB) := min

ρAB∈ΓQ(ρA,ρB)
TrCρAB .

How to select a suitable cost matrix C?
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Quantum cost matrix CQ : diag(CQ) = C cl .

Motivations:

semi-classical limit of QM (∞ dim) [Golse, Mouhot, Paul, Caglioti]
quantum transport plans ↔ quantum channels

[De Palma, Trevisan (2019)]
Hamming distance [De Palma, Marvian, Trevisan, Lloyd (2019)]

Our motivation: (coherification of the diagonal classical cost matrix C cl)

Find cost matrices, which yield an analogue of Wasserstein distances.

Projective cost matrix CQ – antisymmetric subspace – singlet state

Take a computational basis
{
|i〉
}N
i=1

and set |ψ−ij 〉 = 1√
2

(|i , j〉 − |j , i〉).

CQ =
N∑

j>i=1

|ψ−ij 〉〈ψ
−
ij | = 1

2

(
1N2 − SWAP

)
= (CQ)2.

The same idea explored in: Reira (2018); Yu, Zhou, Ying, Ying (2018)
and Chakrabarti, Huang, Li, Feizi, Wu (2019).
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Properties of the quantum optimal transport cost

TQ(ρA, ρB) := min
ρAB∈ΓQ

TrCQρAB , Wp :=
(
TQ
)1/p

, W := W2 =
√
TQ

Theorem

The optimal quantum transport cost TQ on N-level systems is

convex,

symmetric,

non-negative,

TQ(ρA, ρB) = 0 if and only if ρA = ρB ,

TQ
(
ρA, ρB

)
= TQ

(
UρAU†,UρBU†

)
for any U ∈ U(N).

Corollary

For any p ≥ 1, Wp is a unitarily invariant semidistance on ΩN .
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Bounds on quantum optimal transport, W =
√
TQ

Fidelity F (ρA, ρB) :=
(

Tr
∣∣√ρA√ρB ∣∣)2

.

Quantum distances:

I :=
√

1− F , root infidelity,

B :=

√
2
(

1−
√
F
)

Bures distance.

Theorem: bounds for W =
√
TQ

(based on [Yu, Zhou, Ying, Ying (2018)])

For any ρA, ρB ∈ ΩN we have

1√
2
I (ρA, ρB) ≥W (ρA, ρB) ≥ 1

2B(ρA, ρB).

Left ineqality is saturated
if ρA or ρB is pure.

comparison of distances for an
exemplary trajectory

ρA = 9
201+ 1

10 |0〉〈0|,
ρB = (1− t)ρA + t(|+〉〈+|)
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Transport metric for N ≥ 2

Theorem 1. concerning N = 2 and the Bloch ball

For N = 2, Wp satisfies the triangle inequality iff p ≥ 2:
For any mixed states ρA, ρB , ρC ∈ Ω2 one has

Wp(ρA, ρB) + Wp(ρB , ρC ) ≥Wp(ρA, ρC ).

Thus, Wp for p ≥ 2 forms a distance on the Bloch ball Ω2.

Theorem 2. concerning pure states of any N ≥ 2 quantum system

Root optimal transport, W2 =
√
TQ
E , related to the cost matrix

CQ
E =

N∑
j>i=1

Eij |ψ−ij 〉〈ψ
−
ij |

corresponding to any classical Euclidean distance function Eij = d(xi , xj)
for pure states of any N ≥ 2 system satisfies the triangle inequality
and forms a Wasserstein distance (on the set of pure quantum states).
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Energy distance for pure quantum states, N ≥ 2

1. Monge distance defined by coherent states is not easy to compute...
hard optimization problem (even for two pure states)

2. For pure states the Wasserstein distance determined by any classical
Euclidean distance matrix Eij = d(xi , xj) is given explicitely !

Example - N points on an (energy) line: Eij = d(xi , xj) = |xi , xj |

For a given Hamiltonian H with non-degenerate eigenvalues Ei and
eigenvectors |i〉, so that H|i〉 = Ei |i〉, we set Eij = |Ei − Ej | and obtain

W 2
H(|ψ〉, |φ〉) =

N∑
j>i=1

|Ei − Ej |2 |ψiφj − φiψj |2

where the analyzed states are expanded in eigenbasis of Hamiltonian,
|ψ〉 =

∑
i ψi |i〉 and |φ〉 =

∑
j φj |j〉.
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Energy distance determined by a Hamiltonian H

1. Energy distance for any two eigenstates of H are equal to the energy
difference

W (|i〉, |j〉) = |Ei − Ej | (∗∗)

2. For any to pure states |ψ〉 and |φ〉 their Energy distance
satisfies the bounds

|〈φ|H|φ〉−〈φ|H|φ〉|2 ≤W 2(|φ〉, |ψ〉) ≤ |〈φ|H|φ〉−〈φ|H|φ〉|2 +2(∆2
φ+∆2

ψ)

where the variance read ∆2
φ = 〈φ|H2|φ〉 − 〈φ|H|φ〉2.

which for two eigenstates (∆φ = ∆2
ψ = 0) implies Eq. (**).

Example: 1D Hydrogen atom, H = p2/2m− e2/r and its eigenstates |n〉:
any standard distance Dx (trace, HS, Bures) imply equilateral triangle,

Dx(|0〉, |1〉) = Dx(|1〉, |100〉) = Dx(|0〉, |100〉) for all eigenstates,

while the energy (Wasserstein) distance reveals the energy difference:
W (|0〉, |1〉) <<W (|1〉, |100〉) < Dx(|0〉, |100〉).
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Trace distance & Energy distance

For eigenstates of H the energy distance is equal to the number of
resonant photons absorbed during the transition

In such a case the trace distance between orthogonal states forms an
equilateral triangle, Dtr (|1〉, |3〉) = Dtr (|1〉, |2〉) = Dtr (|2〉, |3〉),

while the Energy distance forms a metric line’
W (|1〉, |3〉) = W (|1〉, |2〉) + W (|2〉, |3〉).
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Quantization of a classical distance: a general approach

Consider a set of N points xi ∈ Rm, k = 1, . . . ,N.
Denote distances between them by dij = d(xi , xj), also not Euclidean !

Theorem: (Bistroń, Miller, 2025 to appear). For any chosen classical
distance matrix, dij = dji ≥ 0, the map acting on the space of pure
quantum states of size N,

D2
W (|ψ〉, |φ〉) :=

∑N
j>i=1 d

2
ij |ψiφj − φiψj |2,

satisfies the triangle inequality and induces a quantum distance
in the complex projective space CPN−1.

Here ψi and φj denote complex expansion coefficients,

|ψ〉 =
∑N

i=1 ψi |i〉 and |φ〉 =
∑N

j=1 φj |j〉.

Proof is based on a generalized Cauchy - Schwarz inequality
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generalized Cauchy - Schwarz inequality (complex case),
(coefficients ωijk can be negative!)

Rafa l Bistroń and Tomasz Miller (2025)
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Quantum Hamming distance

Consider two pure states of n-qubit system, |Ψ〉, |Φ〉 ∈ Hn
2 represented by

2n coeficients, ψi1...in and φj1...jn .

Find a true distance DH such that for any two states in the
computational basis, |Ψ〉 = |i1i2 . . . in〉 and |Ψ〉 = |j1j2 . . . jn〉
the distance DH(|Ψ〉, |Φ〉) is equal to the classical Hamming distance
dH(ik , jk) between the bit strings ik and jk ,
i.e. the minimal number of NOT gates to transform string ik into jk .

Related problem was studied by Chau (1999); De Palma, Marvian,
Trevisan, Lloyd (2019); Girolami, Anza, Phys Rev. Lett. (2021);
Grudka, Kurzyński, Sajna, Wójcik2, Phys. Rev. A (2024).

Our explicit solution (no optimization needed!) reads

D2
H(|ψ〉, |φ〉) :=

∑1
i1,...in=0 d

2
H(ik , jk) |ψikφkj − φikψjk |2,

and forms a true distance, as the triangle inequality holds.
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Quantum Hamming distance & applications

Random search procedure: we wish to get close to a given desired state
by minimization a distance to the goal: 4-qubit state

|GHZ4〉 = (|0000〉+ |1111〉)/
√

2.

Minimization of quantum Hamming distance converges much faster than
minimization of unitarily invariant Bures distance.
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Bench commemorating the discussion between
Otton Nikodym and Stefan Banach (Kraków, summer 1916)

Sculpture: Stefan Dousa Fot. Andrzej Kobos

opened in Planty Garden, Cracow, Oct. 14, 2016
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50 years after the discussion at the bench in Cracow,
in 1966, Otton Nikodym published the book

The Mathematical Apparatus for Quantum-Theories
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Concluding Remarks

Discrete dynamics in the space of quantum measurements can be
described by blockwise stochastic matrices and sequential product.

Blockwise bistochastic matrices lead to dynamics characterized by
operator majorization of sorted vectors of effects Ei = E ∗i ≥ 0.

A simple generalization of Birkhoff polytope is correct for the set
B2,d only. For a larger n ≥ 3 there exist non-semi-classical blockwise
bistochastic matrices outside this set.

Monge distance between two Husimi functions satisfy semiclassical
property: distance between coherent states is equal to the classical
distance between the points in the phase space they are localized.

Monge-Kantorovich-Wasserstein approach can be applied for any
two states of an arbitrary size N. For a cost matrix induced by any
classical distance it gives a true distance between any two pure states.

Examples include energy distance, applicable in quantum physics,
and quantum Hamming distance, useful for quantum search.
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