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Classical optimal transport Static formulation

The classical (Monge-Kantorovich) optimal transport
problem

one has to transport goods (bread) from producers (bakeries) to
costumers (convenience stores)
the distribution of producers is described by a Borel probability
measure µ on the underlying (Polish) metric space X : dµ(x) ≈ the
capacity of production at x
the distribution of costumers is described by another Borel probability
measure ν: dν(y) ≈ the demand at y
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Classical optimal transport Static formulation

The classical (Monge-Kantorovich) optimal transport
problem

goal: find a transport plan from µ to ν that minimizes the cost
what is a transport plan?

Monge: it is a measurable map from T : X → X such that T#µ = ν
Kantorovich: it is a probability measure π on X × X with
π|1 = µ, π|2 = ν and dπ(x , y) ≈ the amount of goods to be transferred
from x to y
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Classical optimal transport Static formulation

The classical (Monge-Kantorovich) optimal transport
problem

what is the transport cost?
denote by c(x , y) the cost of transporting a unit of goods from x to y
(c is ≥ 0, l.s.c., typically symmetric, etc.)
then the cost of the transport plan π is

Cπ =

∫
X 2

c(x , y)dπ(x , y) = ⟨c , π⟩

and the minimal cost of the transport µ→ ν given the cost function
c(x , y) is

Wc (µ, ν) = inf
π∈Π(µ,ν)

Cπ

where Π (µ, ν) =
{
π ∈ P

(
X 2) ∣∣π|1 = µ, π|2 = ν

}
this is a linear optimization task on a convex domain no matter what
c(x , y) is!
Dániel Virosztek Optimal transport by quantum channels 6 / 37



Classical optimal transport Static formulation

The classical (Monge-Kantorovich) optimal transport
problem

what is c(x , y)?
in many cases (from economics/real life) c(x , y) is a subadditive
function of the distance, say, c(x , y) = d(x , y)p for some 0 < p < 1

Figure: Zgonc, B., Tekavcic, M., Jakcic, M., The impact of distance on
mode choice in freight transport. Eur. Transp. Res. Rev. 11 (2019), 10.
Dániel Virosztek Optimal transport by quantum channels 7 / 37



Classical optimal transport Dynamic formulation

What if you are short on fuel?

... and you want to minimize the time-average of the kinetic energy?1

A[ρ, v ] =

∫ 1

0

∫
X
ρt(x) ∥vt(x)∥2 dxdt,

where {ρt , vt}t∈[0,1] is a weak solution of the linear transport equation
∂ρt
∂t +∇x · (ρtvt) = 0 with initial and final conditions ρ0 = µ, ρ1 = ν

1J.-D. Benamou, Y. Breiner, A computational fluid mechanics solution to the
Monge-Kantorovich mass transfer problem, Numer. Math. 84 (2000), 375–393.
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Classical optimal transport Dynamic formulation

Dynamical interpretation and connections to fluid mechanics

in general, which (ρt)t∈[0,1] flow minimizes the kinetic energy?

answered by Benamou and Breiner in 2000:
consider the (static) OT problem with the quadratic cost
c(x , y) = d(x , y)2

denote by π the optimal transport plan
let γ(x,y) : [0, 1] ∋ t 7→ γ(x,y)(t) ∈ X be the unique geodesic
connecting x and y
let e(t) : (x , y) 7→ γ(x,y)(t) be the evaluation at time t
the minimizer is the displacement interpolation given by

ρt = e(t)#π

and the minimal energy is∫
X2

(
d(x , y)

1

)2

dπ(x , y) = d2
W2

(µ, ν)
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Classical optimal transport Wasserstein spaces

Wasserstein spaces and OT for probabilists

for a Polish space (X , ρ) and a parameter 0 < p <∞ the
p-Wasserstein space is

Wp(X ) =

{
µ ∈ P(X )

∣∣∣∣ ∫
X
ρ(x , x̂)p dµ(x) <∞ for some x̂ ∈ X

}
endowed with the p-Wasserstein distance

dWp (µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
X 2
ρ(x , y)p dπ(x , y)

)min
{

1
p
,1
}

the probabilistic interpretation of the OT problem:

E c(X ,Y ) → min subject to law(X ) = µ, law(Y ) = ν

example: if c(x , y) = ∥x − y∥2 , then E ∥X − Y ∥2 → min is
equivalent to E ⟨X , Y ⟩ → max
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Concepts of optimal transport in quantum mechanics

Basics of non-commutative optimal transport

several different approaches (a far-from-complete list):
Biane and Voiculescu (free probability)
Carlen and Maas (dynamical interpretation)
Caglioti, Golse, Mouhot, and Paul (static interpretation)
De Palma and Trevisan (quantum channels)
Życzkowski and Słomczyński (semi-classical approach)

most relevant approaches for us are that of
Caglioti-Golse-Mouhot-Paul2 and De Palma-Trevisan3

2F. Golse, C. Mouhot and T. Paul, On the mean-field and classical limits of quantum
mechanics, Commun. Math. Phys., 343 (2016), 165–205.

3G. De Palma and D. Trevisan, Quantum optimal transport with quantum channels,
Ann. Henri Poincaré 22 (2021), 3199–3234.
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Concepts of optimal transport in quantum mechanics

Basics of non-commutative optimal transport

classical mechanics: the state of a particle moving in Rd is described
by a probability measure µ on the phase space Rd × Rd which is the
collection of all possible values of the position and momentum
variables q, p ∈ Rd

so the classical quadratic OT distance of the states µ, ν ∈ P
(
R2d) is

d2
W2

(µ, ν) = inf
law(Q1,P1)=µ, law(Q2,P2)=ν

{
E ∥(Q1,P1)− (Q2,P2)∥2

}
quantum mechanics: a state of the same system is described by a
wave function ψ ∈ L2 (Rd

)
of unit norm, or more generally, by a

normalized, positive, trace-class operator ρ on H = L2 (Rd
)

measurable physical quantities ↔ (possibly unbounded) self-adjoint
operators on H
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Concepts of optimal transport in quantum mechanics

Basics of non-commutative optimal transport

Born’s rule: when measuring an observable quantity A = A∗ ∈ Lin(H)
on a quantum system being in the state ρ ∈ S (H) , the probability of
the outcome lying in an interval [a, b] ⊂ R is trH (ρEA ([a, b])) , where
EA is the spectral measure of A — the unique POVM satisfying
A =

∫
R λdEA(λ)

a quantum state encapsulates several classical probability distributions,
each corresponding to a physical quantity we are interested in
let A = {A1, . . . ,AK} be a finite collection of observable quantities,
let us fix the initial state ρ and the final state ω
let Xk (resp. Yk) denote the random variable obtained by measuring
Ak in ρ (resp. ω), that is, P (Xk ∈ [a, b]) = trH (ρEk ([a, b])) (resp.
P (Yk ∈ [a, b]) = trH (ω Ek ([a, b])))
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Concepts of optimal transport in quantum mechanics

QOT via quantum channels

transport plans by quantum channels?
the classical correspondence between Markov maps and couplings: if
ξ1, ξ2, . . . is a discrete-time Markov process (time-homogeneous) on a
finite state space driven by the Markov kernel
K (x , y) := P (ξn+1 = y |ξn = x) and µ = law(ξn), then π defined by
π(x , y) := µ({x})K (x , y) is a coupling of µ = law(ξn) and
ν := law(ξn+1)

the idea of De Palma and Trevisan: take the Choi-Jamiolkowski
isomorphism of H → H quantum channels and states on H⊗H∗

given by

CH (H,H) ∋ Φ 7→ 1
N

N∑
j ,k=1

Φ (|ej⟩ ⟨ek |)⊗ |fj⟩ ⟨fk | ∈ S (H⊗H∗)
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Concepts of optimal transport in quantum mechanics

QOT via quantum channels

now take the canonical purification of S (H) ∋ ρ =
∑N

j=1 λj |ej⟩ ⟨ej |
on H⊗H∗ which is

||√ρ⟩⟩ =
N∑
j=1

√
λjej ⊗ fj ↔

↔ ||√ρ⟩⟩ ⟨⟨√ρ|| =
N∑

j ,k=1

√
λjλk (|ej⟩ ⟨ek |)⊗ (|fj⟩ ⟨fk |)

... and ΠΦ :=
(
Φ⊗ IdB(H∗

) (∣∣∣∣√ρ〉〉 〈〈√ρ∣∣∣∣)
straightforward calculation shows that trH∗ΠΦ = Φ(ρ) and
trHΠΦ = ρT

the other direction: given a quantum coupling π ∈ C (ρ, ω) the map

X 7→ trH∗

((
IH ⊗

(
ρ−

1
2Xρ−

1
2

)T)
· π
)

is a quantum channel that sends ρ to ω
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Concepts of optimal transport in quantum mechanics

QOT via quantum channels

the set of couplings of ρ and ω is defined by

C (ρ, ω) =
{
Π ∈ S (H⊗H∗)

∣∣∣ trH∗Π = ω, trHΠ = ρT
}

that is, a coupling of ρ and ω is a state Π on H⊗H∗ such that

trH⊗H∗ [(A⊗ IH∗) Π] = trH[ωA]

and
trH⊗H∗

[(
IH ⊗ BT

)
Π
]
= trH∗ [ρTBT ] = trH[ρB]

for all bounded A,B ∈ Lin(H)sa

compare to: π ∈ P(X 2) is a coupling of µ ∈ P(X ) and ν ∈ P(X ) iff∫∫
X 2 f (x)dπ(x , y) =

∫
X f (x)dµ(x) and∫∫

X 2 g(y)dπ(x , y) =
∫
X g(y)dν(y) for every f , g ∈ Cb(X )
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Concepts of optimal transport in quantum mechanics

QOT via quantum channels

Let Π ∈ C(ρ, ω) and Yk and Xk denote the real random variables we
obtain by measuring Ak on the H part and AT

k on the H∗ of the kth
copy, respectively
by Born’s rule on quantum measurement, the (infinitesimal)
probabilities describing the possible outcomes of the measurements are
given for every k by

dP(A)
(Π) (Xk = xk ,Yk = yk) = trH⊗H∗

[
Π
(
dEk(yk)⊗ dET

k (xk)
)]
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Concepts of optimal transport in quantum mechanics

QOT via quantum channels

by the independence of the measurements on different copies, the joint
law P(A)

(Π) of the RK -valued random vectors X = (X1, . . . ,XK ) and
Y = (Y1, . . .YK ) is given by

dP(A)
(Π) (x1, . . . , xK , y1, . . . , yK ) =

K∏
k=1

trH⊗H∗

[
Π
(
dEk(yk)⊗ dET

k (xk)
)]

= tr(H⊗H∗)⊗K

[
Π⊗K

(
dE1(y1)⊗ dET

1 (x1)⊗ · · · ⊗ dEK (yK )⊗ dET
K (xK )

)]
given a non-negative classical transport cost c : RK × RK → R+, our
goal is to minimize

S(H⊗H∗) ∋ Π 7→ E(A)
(Π) [c(X ,Y )]

=

∫∫
RK×RK

c(x1, . . . , xK , y1, . . . , yK )dP
(A)
(Π) (x1, . . . , xK , y1, . . . , yK )

Dániel Virosztek Optimal transport by quantum channels 18 / 37



Concepts of optimal transport in quantum mechanics

QOT via quantum channels

we4 define the positive and possibly unbounded quantum cost
operator C (A)

c by

C
(A)
c :=

∫∫
RK×RK

c(x1, . . . , xK , y1, . . . , yK )×

×dE1(y1)⊗ dET
1 (x1)⊗ · · · ⊗ dEK (yK )⊗ dET

K (xK )

and propose the following quantum optimal transport problem:

minimize Π 7→ tr(H⊗H∗)⊗K

[
Π⊗KC

(A)
c

]
where Π runs over the set of all couplings of ρ and ω

4Bunth-Pitrik-Titkos-Virosztek, Wasserstein distances and divergences of order p by
quantum channels, arXiv:2501.08066
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Concepts of optimal transport in quantum mechanics

Quantum Wasserstein distances and divergences of order p

Proposition (Existence of optimal plans)

Let c : RK × RK → R be a non-negative and lower semi-continuous
function, let A be a finite collection of observables on H, and ρ, ω ∈ S (H)
given marginals. Then there exists an optimal solution Π0 ∈ C(ρ, ω) of the
optimization problem

minimize Π 7→ tr(H⊗H∗)⊗K

[
Π⊗KC

(A)
c

]
proof: a compactness/tightness argument like in the classical case
important special case:

c(x1, . . . , xK , y1, . . . , yK ) =
(∑K

k=1 |xk − yk |q
) p

q where p > 0 and
q ≥ 1
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Concepts of optimal transport in quantum mechanics

Quantum Wasserstein distances and divergences of order p

in this case,

C
(A)
p,q =

∫∫
RK×RK

(
K∑

k=1

|xk − yk |q
) p

q K⊗
k=1

dEk(yk)⊗ dET
k (xk)

=

(
K∑

k=1

(∣∣∣Ak ⊗ ITH − IH ⊗ AT
k

∣∣∣q)(k))
p
q

even more special: q = p → for p > 0 we define

CA,p :=
K∑

k=1

∫∫
R2

|x − y |p dEk(y)⊗dET
k (x) =

K∑
k=1

∣∣∣Ak ⊗ IT − I ⊗ AT
k

∣∣∣p
the p-Wasserstein distance of ρ and ω w.r.t. A = {A1, . . . ,AK} is

DA,p (ρ, ω) :=

(
inf

Π∈C(ρ,ω)
{trH⊗H∗ [ΠCA,p]}

)min
{

1
p
,1
}
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Concepts of optimal transport in quantum mechanics

Quantum Wasserstein distances and divergences of order p

the quadratic quantum Wasserstein divergences suggested by De
Palma and Trevisan are defined by

dA,2(ρ, ω) :=

√
D2
A,2(ρ, ω)−

1
2

(
D2
A,2(ρ, ρ) + D2

A,2(ω, ω)
)

and conjectured to be genuine metrics on quantum state spaces
therefore we define5 the (A, p)-Wasserstein divergence of ρ and ω by

dA,p (ρ, ω) =

(
D

max{p,1}
A,p (ρ, ω)− 1

2

(
D

max{p,1}
A,p (ρ, ρ) + D

max{p,1}
A,p (ω, ω)

))min
{

1
p
,1
}

5Bunth-Pitrik-Titkos-Virosztek, Wasserstein distances and divergences of order p by
quantum channels, arXiv:2501.08066
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Metric properties of quantum Wasserstein divergences

Quantum Wasserstein divergences: back to quadratic

quadratic cost operators are of the form

C =
k∑

j=1

(
Aj ⊗ IH∗ − IH ⊗ AT

j

)2

the corresponding quadratic quantum Wasserstein distance is defined
by

DC (ρ, ω)2 = inf
Π∈C(ρ,ω)

{trH⊗H∗ (ΠC )} =

= inf
Φ∈CPTP(ρ,ω)


k∑

j=1

trH
(
(ρ+ ω)A2

j − 2
√
ρAj

√
ρΦ† (Aj)

)
the fact that the self-distance DC (ρ, ρ) is realized by the identity
channel for every ρ ∈ S(H) together implies that d2

C (ρ, ω) =

= inf
Φ∈CPTP(ρ,ω)


k∑

j=1

trH
((

ρ1/2Aj

)2
+
(
ω1/2Aj

)2
− 2ρ1/2Ajρ

1/2Φ† (Aj)

)
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Metric properties of quantum Wasserstein divergences

Triangle inequality for quantum Wasserstein divergences

Theorem (Bunth-Pitrik-Titkos-Virosztek, Phys. Rev. A, 2024)

The triangle inequality

dC (τ, ρ) + dC (ρ, ω) ≥ dC (τ, ω)

holds for any τ, ω ∈ S(H), any ρ ∈ P1(H), and any quadratic cost C .

since ρ is pure, we have

d2
C (τ, ρ) =

N∑
j=1

(
tr(τ1/2Aj)

2 + tr(ρ1/2Aj)
2 − 2(trρAj)(trτAj)

)
and

d2
C (ρ, ω) =

N∑
j=1

(
tr(ρ1/2Aj)

2 + tr(ω1/2Aj)
2 − 2(trωAj)(trρAj)

)
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Metric properties of quantum Wasserstein divergences

Triangle inequality for quantum Wasserstein divergences

by relaxing the infimum in the definition of QOT distance to the
tensor product coupling,

d2
C (τ, ω) ≤

N∑
j=1

(
tr(τ1/2Aj)

2 + tr(ω1/2Aj)
2 − 2(trωAj)(trτAj)

)
the triangle inequality is equivalent to

2dC (τ, ρ)dC (ρ, ω) ≥ d2
C (τ, ω)−

(
d2
C (τ, ρ) + d2

C (ρ, ω)
)

if X and Y are self-adjoint, X ≥ 0, and trX = 1, then by the
Cauchy-Schwartz for the HS-inner product on X 1/2 and X 1/4YX 1/4

we have tr(X 1/2Y )2 ≥ (trXY )2
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Metric properties of quantum Wasserstein divergences

Triangle inequality for quantum Wasserstein divergences

hence we get the following upper bound for the RHS of

RHS ≤
N∑
j=1

(
tr(τ1/2Aj)

2 + tr(ω1/2Aj)
2 − 2(trωAj)(trτAj)

)
−

−
N∑
j=1

(
tr(τ1/2Aj)

2 + tr(ρ1/2Aj)
2 − 2(trρAj)(trτAj)

)
−

−
N∑
j=1

(
tr(ρ1/2Aj)

2 + tr(ω1/2Aj)
2 − 2(trωAj)(trρAj)

)
≤

≤
N∑
j=1

2(trρAj − trωAj)(trτAj − trρAj) (1)
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Metric properties of quantum Wasserstein divergences

Triangle inequality for quantum Wasserstein divergences

now a Cauchy-Schwartz for the Euclidean space RN tells us that
N∑
j=1

2(trρAj − trωAj)(trτAj − trρAj) ≤

≤ 2

 N∑
j=1

(trρAj − trωAj)
2

1/2(
N∑

k=1

(trτAk − trρAk)
2

)1/2

≤

2

 N∑
j=1

(
tr(ρ1/2Aj)

2 + tr(ω1/2Aj)
2 − 2(trωAj)(trρAj)

)1/2

×

×

(
N∑

k=1

(
tr(τ1/2Ak)

2 + tr(ρ1/2Ak)
2 − 2(trρAk)(trτAk)

))1/2

=

= 2dC (ρ, ω)dC (τ, ρ)

where we used again the HS-Cauchy-Schwartz tr(X 1/2Aj)
2 ≥ (trXAj)

2 for
X = ρ, τ, ω
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Wasserstein isometries on quantum bits Symmetric cost

A Wigner-type result for qubits

Definition (Quantum Wasserstein isometry)

A map Φ : S (H) → S (H) is called a quantum Wasserstein isometry with
respect to the cost operator C if DC (Φ (ρ) ,Φ (ω)) = DC (ρ, ω) for all
ρ, ω ∈ S (H) .

the Pauli operators are given by

σ1 =

[
0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
we consider the cost operator which is symmetric in the sense that it
involves all the Pauli operators

Csym :=
3∑

j=1

(
σj ⊗ IH∗ − IH ⊗ σTj

)2
=


4 0 0 −4
0 8 0 0
0 0 8 0
−4 0 0 4
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Wasserstein isometries on quantum bits Symmetric cost

A Wigner-type result for qubits

Theorem (Gehér-Pitrik-Titkos-Virosztek, J. Math. Anal. Appl. (2023))

Let Φ : S (H) → S (H) be a quantum Wasserstein isometry with respect
to the cost operator Csym. That is, assume that

Dsym (Φ (ρ) ,Φ (ω)) = Dsym (ρ, ω) (ρ, ω ∈ S (H)) .

Then there exist a unitary or anti-unitary operator U acting on H = C2

such that
Φ (ρ) = UρU∗ (ρ ∈ S (H)) .

Conversely, any map of the above form is a quantum Wasserstein isometry
with respect to Csym.
In other words, the isometry group of the quantum Wasserstein space
defined by the cost operator Csym coincides with the orthogonal group
O(3) by the Bloch representation.
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Wasserstein isometries on quantum bits Clock and shift cost

Isometries for the clock and shift cost

we turn to the case when the cost operator involves the qubit “clock"
and “shift" operators
these are intimately related to the finite dimensional approximations of
the position and momentum operators in quantum mechanics
as the qubit “clock" operator is σ3 and the “shift" is σ1, let us define
the corresponding cost operator Cxz by

Cxz :=
∑
j=1,3

(
σj ⊗ IH∗ − IH ⊗ σTj

)2
=

= 4I − 2
∑
j=1,3

σj ⊗ σTj =


2 0 0 −2
0 6 −2 0
0 −2 6 0
−2 0 0 2
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Wasserstein isometries on quantum bits Clock and shift cost

Isometries for the clock and shift cost

Theorem (Gehér-Pitrik-Titkos-Virosztek, J. Math. Anal. Appl. (2023))

If ψ ∈ G × K ∼= O(2)× C2 and ξ ∈ F(P1(H)\PR
1 (H))

{−1,1} , then the map

Φ = ψ ◦ ξ belongs to the semigroup Isom
(
W(xz)

2 (S (H))
)
. On the other

hand, if Φ ∈ Isom
(
W(xz)

2 (S (H))
)
, then there exists a unique

ψ ∈ G ∼= O(2) and a unique ξ ∈ F(S(H)\SR(H))
{−1,1} such that Φ = ψ ◦ ξ. In

other words,

(O(2)× C2)⋉φ1 F
(P1(H)\PR

1 (H))
{−1,1} ⊆ Isom

(
W(xz)

2 (S (H))
)

and
Isom

(
W(xz)

2 (S (H))
)
⊆ O(2)⋉φ2 F

(S(H)\SR(H))
{−1,1} .
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Wasserstein isometries on quantum bits Single-observable cost

Isometries for a single-observable transport cost

Theorem (Simon-Virosztek, Linear Algebra Appl. (2025))

Let Dz denote the quantum Wasserstein distance defined by the cost
operator Cz =

(
σz ⊗ IH∗ − I ⊗ σTz

)
, and let Φ : S(C2) → S(C2) be a

map. Then the following are equivalent.

1 The map Φ is a quantum Wasserstein isometry with respect to Dz ,
that is, Dz(Φ(ρ),Φ(ω)) = Dz(ρ, ω) for all ρ, ω ∈ S(C2).

2 The map Φ leaves the Euclidean length of the Bloch vector of a state
invariant, that is,

∣∣bΦ(ρ)

∣∣ = |bρ| for all ρ ∈ S(C2), and either(
bΦ(ρ)

)
3 = (bρ)3 for all ρ ∈ S(C2), or

(
bΦ(ρ)

)
3 = − (bρ)3 for all

ρ ∈ S(C2).
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Wasserstein isometries on quantum bits Single-observable cost

Future work

metric properties of quadratic QW divergences: remove the
assumption of one of the states being pure
p-Wasserstein divergences:

proper definition
metric properties

data processing inequality for quantum Wasserstein divergences
isometries of quantum state spaces with respect to QW distances and
divergences
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The definiteness of quantum Wasserstein divergences

the key ingredient is the monotonicity version of Lieb’s concavity
theorem implying that

trH
(
ω1/2Ajω

1/2Aj

)
= trH

(
Φ(ρ)1/2AjΦ(ρ)

1/2Aj

)
≥

≥ trH
(
ρ1/2Φ†(Aj)ρ

1/2Φ†(Aj)
)

consequently,

trH
((

ρ1/2Aj

)2
+
(
ω1/2Aj

)2
− 2ρ1/2Ajρ

1/2Φ† (Aj)

)
≥

≥
∥∥∥ρ1/4

(
Aj − Φ†(Aj)

)
ρ1/4

∥∥∥2

HS
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QOT via quantum couplings

quantum couplings are defined as

C (ρ, ω) = {π ∈ S (H⊗H) | tr2π = ρ, tr1π = ω} ,

cost operators

C =
M∑
j=1

(Aj ⊗ I − I ⊗ Aj)
2

where Aj ∈ Lsa (H) .

optimal transport cost:

D2
C (ρ, ω) = inf

π∈C(ρ,ω)
trπC
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QOT via quantum couplings

note that even if H = L2 (R) ,M = 1, and A1 = Q (position op.), the
quantum optimal transport problem is essentially different from the
classical one: for pure states |φ⟩ ⟨φ| and |ζ⟩ ⟨ζ| we have

D2
Q (|φ⟩ ⟨φ| , |ζ⟩ ⟨ζ|) =

∫
R×R

|x − y |2 |φ(x)|2 |ζ(y)|2 dydx

which is the quadratic transport cost of the classical probability
measures ρ̃(dx) = |φ(x)|2 dx and ω̃(dy) = |ζ(y)|2 dy with the trivial
transport plan ρ̃⊗ ω̃ which is typically far from being optimal
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