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Notation

Mn is the algebra of n × n complex matrices.

trn = (1/n) Trn is the normalized trace.

∥X∥trn = trn(X 2)1/2 is the normalized Hilbert-Schmidt norm.

⟨X ,Y ⟩trn = trn(X ∗Y ).

(Mn)sa is the subspace of self-adjoint matrices.

Lebesgue measure on (Mn)sa is defined through an isometric
transformation of (Mn)sa to Rn2 (i.e. by fixing an orthonormal basis).
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Matrix models: Single variable case

Let f : R → R such that f grows sufficiently fast at ∞. Let µ
(n)
f be the

probability measure on (Mn)sa given by

dµ
(n)
f (x) =

1

Z (n)
e−n2 trn(f (x)) dx .

In terms of eigenvalues, n2 trn(f (x)) = n
∑n

j=1 f (λj), so this is similar to
an n-particle approximation of a Gibbs state in statistical mechanics.

Let X (n) be a random element of (Mn)sa with distribution µ
(n)
f . The

probability measure µ
(n)
f is invariant under unitary conjugation, or

UX (n)U∗ ∼ X (n).

The empirical spectral distribution of X (n) is (1/n)
∑n

j=1 δλj
. This is a

probability distribution on R which is also random.
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Matrix models: Single variable case

How does the empirical spectral distribution of X (n) behave as n → ∞?

Theorem [8]

Suppose that the functional

P(R) ∋ µ 7→
∫∫

R2

log |s − t| dµ(s) dµ(t) −
∫
R
f (t) dµ(t)

has a unique maximizer (which often happens. . . ). Then almost surely the
empirical spectral distribution of X (n) weakly converges to µ as n → ∞.

Example: If f0(x) = (1/2)x2, then µ is Wigner’s semicircle law
dµ(x) = (1/2π)1[−2,2](x)

√
4 − x2 dx [37].
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Remarks

1 The maximizer µ is a version of a Gibbs law, where the role of
entropy is played by the logarithmic energy [6].

2 In fact, the logarithmic energy of µ describes the large-n behavior of

the classical differential entropy (−
∫
ρ log ρ) for µ

(n)
f [34].

3 This logarithmic energy also describes the large deviations theory for
the empirical spectral distribution.

Main motivation for us: What happens in the non-self-adjoint and the
multi-matrix setting?
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Unitarily invariant functions

What are the correct functions to replace trn(f (x))?
We focus on the polynomial case first.

Theorem (Specht, Jing [28])

Let X1, . . . , Xm and Y1, . . . , Ym ∈ Mn. Suppose that
trn(p(X1, . . . ,Xm)) = trn(p(Y1, . . . ,Ym)) for all ∗-polynomials p. Then
there exists a unitary U such that Yj = UXjU

∗ for j = 1, . . . , m.

Theorem (Procesi [31])

Let f : Mm
n → C be a polynomial function of the real and imaginary parts

of the matrix entries. Suppose f (UX1U
∗, . . . ,UXmU

∗) = f (X1, . . . ,Xm)
for unitaries U. Then f is a trace polynomial, that is, f is in the algebra
generated by functions of the form trn(p(X1, . . . ,Xm)) for ∗-polynomials p.
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Non-commutative polynomials

C⟨t1, . . . , tm⟩ denotes the algebra of non-commutative polynomials in
formal variables t1, . . . , tm, i.e.

C⟨t1, . . . , tm⟩ = Span(ti1 . . . tiℓ : i1, . . . , iℓ ∈ [m]).

C∗⟨t1, . . . , tm⟩ denotes the algebra of non-commutative
∗-polynomials, or C⟨t1, . . . , tm, t∗1 , . . . , t∗m⟩. We have a ∗-operation
satisfying (p∗)∗ = p and (pq)∗ = q∗p∗ and (ti )

∗ = t∗i .

The algebra of trace polynomials is the space of linear combinations
of expressions of the form tr(p1) . . . tr(pk).

Each of these algebraic objects can be evaluated on some matrices
(x1, . . . , xm) by plugging in xj for tj , x

∗
j for t∗j , and trn for tr.
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Multi-matrix models

Let V be a real-valued trace polynomial, and consider µ
(n)
V ∈ P(Mm

n )
given by

dµ
(n)
V (x) =

1

Z
(n)
V

e−n2V (x) dx ,

and let X(n) = (X
(n)
1 , . . . ,X

(n)
m ) be a random variable in Mm

n with

distribution µ
(n)
V .

Goals:

When does f (X(n)) converge almost surely for trace polynomials f ?

What kind of object describes the limit?

What is the large-n behavior of the entropy h(µV (n))?

What is the large-n behavior of the Wasserstein distance
dW (µ

V
(n)
0

, µ
V

(n)
1

)?
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Non-commutative laws

For a single matrix, the values of trn(f (x)) are described by the empirical
spectral distribution, which is just a measure, but in the multi-matrix
setting we cannot use a classical measure because the polynomials are
non-commutative.

Definition (Non-commutative laws)

Let Σm,R be the set of linear functionals µ : C∗⟨t1, . . . , tm⟩ → C satisfying

1 µ(1) = 1.

2 µ(p∗p) ≥ 0.

3 µ(pq) = µ(qp).

4 |µ(tδ1i1 , . . . , t
δℓ
iℓ

)| ≤ Rℓ where δj ∈ {1, ∗}.

We see Σm,R as a non-commutative analog of P(D×m
R ).
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Non-commutative probability spaces

Definition

A tracial von Neumann algebra is a pair (M, τ) where M ⊆ B(H) is a
von Neumann algebras (closed under +, ·, ∗, and limits in weak operator
topology) and τ : M → C is a linear map satisfing

τ(1) = 1

τ(ab) = τ(ba) for all a, b ∈ A.

τ(a∗a) ≥ 0.

τ(a∗a) = 0 implies a = 0.

The elements of M represent “bounded random variables” that don’t
commute under multiplication.

Example 1: The matrix algebra (Mn, trn)

Example 2: M = L∞(Ω,P) and τ(f ) =
∫
f dP.
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NC probability spaces and laws

If (M, τ) is a tracial von Neumann algebra, and x = x = (x1, . . . , xm) is in
M and R > maxj∥xj∥, then there is a non-commutative law law(x) given
by

law(x)(p) = τ(p(x)),

where p(x) ∈ M is the evaluation of p on x.

Conversely, every non-commutative law can be realized in this way, using a
version of the GNS construction.

We equip Σm,R with the weak-∗ topology, that is, µi → µ if and only if
µi (p) → µ(p) for all p. This makes it a compact Hausdorff space (and in
fact metrizable).
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Free Wasserstein distance (Biane–Voiculescu)

Wasserstein distance (Biane-Voiculescu 2001 [4])

Given two non-commutative laws µ and ν, the free Wasserstein distance
dW ,free(µ, ν) is the infimum of ∥x− y∥L2(M,τ)d over all tracial von
Neumann algebras (M, τ) and elements x = (x1, . . . , xm) and
y = (y1, . . . , ym) with law(x) = µ and law(y) = ν.

Warnings: [14]

1 Σm,R is not separable with respect to dW ,free. (See also [30].)

2 The Wasserstein distance gives a strictly stronger topology on Σm,R

than the weak-∗ topology.

3 Due to MIP* = RE [27], the laws Σm,R,fd coming from
finite-dimensional M are not weak-∗ dense in Σm,R .

4 The Wasserstein closure of Σm,R,fd is laws which come from amenable
tracial von Neumann algebras, which is much smaller than the weak-∗
closure of Σm,R,fd.
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Free entropy

Voiculescu defined several versions of entropy for non-commutative laws.
Here I focus on χ which is defined via matrix approximations [35]. Rather
than giving a definition, here is a useful characterization.

Proposition (J. 2022 [32])

Let X(n) be some sequence of random matrix tuples satisfying that

law(X(n)) → µ weak-∗ almost surely and P(∥X (n)
j ∥ ≥ C + δ) ≤ e−cn2δ.

Then

χ(µ) ≥ lim sup
n→∞

[
1

n2
h(X(n)) + 2m log n

]
.

Moreover, equality is achieved for some sequence of random matrix
models.

Warning: We don’t know whether taking lim inf instead of lim sup gives a
different answer.
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Back to the multi-matrix models

Consider again the random matrix models

dµ
(n)
V (x) =

1

Z
(n)
V

e−n2V (x) dx ,

If there is a unique NC law maximizing χ(µ) − (µ,V ) and if the
lim sup is actually a limit, law(X(n)) converges almost surely to µ.

This happens if V is strongly convex and satisfies suitable growth
bounds at ∞. [18, 21, 26]

If law(X(n)) converges almost surely to µ, then [21]

χ(µ) = lim sup
n→∞

[
1

n2
h(X(n)) + 2m log n

]
.
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Wasserstein distance and random matrices

Proposition (J.–Li–Shlyakhtenko [26])

If V0 is quadratic and V1 is a small perturbation of it, then

dW (µ
(n)
V0
, µ

(n)
V1

) → dW ,free(µ, ν). The optimal transport map was
constructed earlier by Guionnet and Shlyakhtenko [19]; see also [13], [10].

It is not well-understood what happens to dW (µ
(n)
V0
, µ

(n)
V1

) as n → ∞ when
V0 and V1 are not convex.

We know at least that MIP* = RE provides an obstruction [14]. The
optimal coupling for the limit (if it exists) sometimes does not admit f.d.
approximations. So we can consider modifying dW ,free to restrict to
couplings in tracial von Neumann algebras that admit f.d. approximations.
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A fool’s hope

Coming at this topic näıvely, we want for something like this to be true:

Conjecture

For non-commutative laws µ and ν, there are random matrix models X(n)

and Y(n) such that

1 law(X(n)) → µ and law(Y(n)) → ν in probability.

2 dW (X(n),Y(n)) → dW ,free(µ, ν) (where we restrict to couplings with
f.d. approximations).

3 n−2h(X(n)) + 2m log n → χ(µ) and n−2h(Y(n)) + 2m log n → χ(ν).

Note that (1) and (2) alone or (1) and (3) alone can be arranged.

Consequence: Suppose (X ,Y ) is a free optimal couplings of (µ, ν) and
µt is the law of (1 − t)X + tY , so that µt is a geodesic with respect to
dW ,free. If the above conjecture is true, then t 7→ χ(µt) would be concave
as a consequence of McCann’s result for classical entropy [29].
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A fool’s hope

THE CONJECTURE IS FALSE! [25] In fact, it is false even if we only
demand that X(n) has asymptotically the correct entropy as n → ∞, and
not Y(n).

I will skip the details and focus on the phenomenon that this
counterexample derives from: The entropy of the random matrix models
does not behave well under marginals.

Consider a non-commutative law µ of (X1,X2) where X1 is a free circular
element (limit of non-self-adjoint Gaussian matrix), τ(X2) = 0, ∥X2∥ ≤ 1,
∥X2∥2 ≥ 1/2 and ∥[X1,X2]∥2 ≤ ε for a small ε.

If (X
(n)
1 ,X

(n)
2 ) is any random matrix model with law(X(n)) → law(X) in

probability, then

lim sup
n→∞

[n−2h(X
(n)
1 ) + m log n] < χ(X1).
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A fool’s hope

The reason is the following: For A ∈ Mn, let

φ(n)(A) = inf
∥B∥≤1

[∥[A,B]∥2 + | trn(B)| + max(0, 1/2 − ∥B∥2)] .

Then {A : φ(n)(A) < ε} has very small volume as ε→ 0, and therefore,

the probability distribution of X
(n)
1 must have small entropy [36].

The volume is estimated as follows: If φ(n)(A) < ε, find some B that
achieves the infimum. The formula demands that B is bounded away from
multiples of the identity. There is some projection P in the ∗-algebra
generated by B with [A,P] small and trn(P), 1 − trn(P) bounded away
from zero, so A is “almost block diagonal” with respect to P.

For each P, the block diagonal matrices have small volume compared to
all matrices. And results of Szarek [33] allow us to estimate the cardinality
of an ε-dense set of P’s.
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Defeating the dragon is hard, but you have to try.

From Nowe Ateny, first Polish-language encyclopedia (1745–1746).
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Monge–Kantorovich duality?

Coming back to the main question of how to unify free entropy, free
Wasserstein distance, and random matrix models, a key question is how to
adapt MK duality to play well with the class of trace-polynomial functions.

Classical Monge Kantorovich duality

Let µ and ν be probability measures on Rm with finite second moment.
Then there exist convex functions φ,ψ : Rm → (−∞,∞] such that
φ(x) + ψ(y) ≥ ⟨x , y⟩ and when (X ,Y ) is an optimal coupling of (µ, ν) we
have

Eφ(X ) + Eψ(Y ) = E⟨X ,Y ⟩.

Moreover, ψ can be taken to be the Legendre transform of φ, that is,

ψ(y) = sup
x

[⟨x , y⟩ − φ(x)].
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Monge–Kantorovich duality?

Now suppose φ is a real-valued trace polynomial function of m variables.
For each von Neumann algebra M, we can define a function

ψM(y) = sup
x∈Mm

[
Re⟨x , y⟩ − φM(x)

]
.

Is the function ψ a nice function that can be uniformly approximated by
trace polynomials?

No, in fact, ψM(y) can depend on more than just law(y). Sometimes, you

can embed M into a larger algebra M̃ such that ψM̃(y) > ψM(y). (You
can find examples even just with M and M̃ finite-dimensional.)
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A paradox

Let f (x , y) be a trace polynomial that is real-valued, and let

ψM(x) = sup
∥y∥≤1

f M(x , y).

If we fix n, then ψMn is a function that is invariant under simultaneous
unitary conjugation.

We can therefore approximate it by polynomial functions of the matrix
entries that are invariant under unitary conjugation. So by Procesi’s result,
ψMn can be approximated by trace polynomials.

However, the approximation is not uniform in n. It becomes harder and
harder to approximate it by trace polynomials as n → ∞.
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Lack of quantifier elimination

Theorem (Farah [11])

Let (M, τ) be a II1 factor (tracial von Neumann algebra with trivial center
that is infinite-dimensional). Then (M, τ) does not have quantifier
elimination. Therefore, more concretely, there exist some trace
polynomials φ(x1, . . . , xm, y) such that

ψM(x1, . . . , xm) = sup
∥y∥≤1

φM(x1, . . . , xm, y)

cannot be approximated by trace polynomials uniformly on the operator
norm ball of M.

Remark: If (M, τ) = (L∞[0, 1],
∫

(·)), then you can approximate such a
sup formula with quantifier-free formulas [3].

Remark: Another result of Farah–J.–Pi shows that for many (M, τ), if you
have a sup-inf formula, it cannot be approximated by inf-formulas [12].
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Formulas

If we want a vector space of scalar functions of non-commuting variables
that are closed under partial suprema and infima, we are led inexorably to
the formulas from the model theory of metric structures [2].

These are like formulas from first-order logic but with the predicates
having real values rather than true/false values, and the quantifiers being
sup and inf over given domains.

For tracial von Neumann algebras, such a formula in prenex form would be

φ(x) = sup
∥z1∥≤1

inf
∥z2∥≤1

. . . sup
∥z2k−1∥≤1

inf
∥z2k∥≤1

f (x, z),

where f is a real-valued trace polynomial and x = (x1, . . . , xm) and
z = (z1, . . . , z2k).
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Definable predicates and types

Evaluation of formulas: Such a formula can be evaluated or interpreted
in any tracial von Neumann algebra (M, τ) by plugging in a particular
(x1, . . . , xm) from M and evaluating the suprema and infima over the unit
ball of M. This evaluation is denoted φM(x).

Definable predicates: The space of definable predicates is the completion
of the vector space of formulas with respect to uniform convergence on
operator norm balls (that is uniform for all M).

Types: Now consider the analog of non-commutative laws but using
formulas rather than only polynomials. The type of a tuple x is the map
tpM(x) from formulas to R given by φ 7→ φM(x). The space of types Sm is
equipped with the weak-∗ topology.
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Challenges

When attempting to apply this framework to random matrices, we run into
a basic question.

Open Question

Consider formulas φ with no free variables, e.g.

φ = sup
∥z1∥≤1

inf
∥z2∥≤1

. . . sup
∥z2k−1∥≤1

inf
∥z2k∥≤1

f (z).

Then does limn→∞ φMn exist for all φ?

Remark: The question in fact has a negative answer if some of the
suprema and infima are over the unit ball in Mn and some in the unit ball
of diagonal matrices. This follows after some argument from the work of
Alekseev and Thom on the analogous question for permutation groups
rather than matrix algebras [1].
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Uncomputability

There is no hope of numerical computation for these objects with error
guarantees. This is a consequence of the MIP* = RE paper [27].

Theorem (Goldbring–Hart [16])

There is no algorithm that, given a real-valued trace polynomial f with
coefficients in Q[i ] and k ∈ N, outputs a rational number r such that∣∣∣∣ lim

n→∞
inf

∥z1∥,...,∥zk∥≤1
f Mn(z) − r

∣∣∣∣ < 1

k
.

(The limit as n → ∞ does exist when we only have inf’s and no sup’s.)

Matrix algebras really are amazing creatures, as I have said before. You
can learn all there is to know about their ways in a month, and yet after a
hundred years, they can still surprise you in a pinch. [J.R.R. Tolkien]
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Wasserstein distance for types

For two types µ, ν ∈ Sm, define dW ,tp(µ, ν) as the infimum of ∥x− y∥2
over x and y with types µ and ν in any tracial von Neumann algebra.

An embedding ι : M → N of tracial von Neumann algebras is elementary if
for every formula φ, we have φN ◦ ι = φM .

Fact

Given a tracial von Neumann algebra M, there exists an elementary
embedding M → N such that for x, y ∈ Nm,

dW ,tp(tpN(x), tpM(y)) = inf
α∈Aut(N)

∥α(x) − y∥2.

Remark: For M = L∞[0, 1] and X, Y ∈ Mm (random variables taking
values in Cm), we have already that infα∈Aut(M)∥α(X) − Y∥L2 is the
Wasserstein distance.
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Monge-Kantorovich duality for types

Theorem (J. 2024 [24])

Let µ, ν ∈ Sm be types in tracial von Neumann algebras. Then there exist
convex definable predicates φ and ψ such that

φM(x) + ψM(y) ≥ Re⟨x, y⟩τ for all M, x, y,

with equality when (x, y) is an optimal coupling of (µ, ν).

Remark: Gangbo–J.–Nam–Shlyakhtenko [14] showed a MK duality for
non-commutative laws. The convex functions in this setting were
E -convex functions, defined as functions ϕM(x) that only depend on
law(x) and satisfy that if M ⊆ N and E : N → M is the conditional
expectation, then ϕM ◦ E ≤ ϕN .

These functions are not necessarily weak-∗ continuous functions of law(x),
but in the setting of types, we can arrange weak-∗ continuity.
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Free entropy for types

Free entropy χ for types can be defined similarly as for non-commutative
laws [23]. Because we don’t know if the limits exist as n → ∞, we take
limits with respect to an ultrafilter (something like a subsequential limit).

In this setting, we still don’t know if there χU is concave along
Wasserstein geodesics, but we can obtain 1-sided bounds.

Theorem (J. 2025 [25])

Let µ and ν be types. (For the below to be nontrivial, take types that are
realized in an ultraproduct

∏
n→U Mn.) Let (x, y) be an optimal coupling

of these types, and let µt be the type of (1 − t)x + ty. Then

χU (µt) ≥ max(χU (µ) + 2m log(1 − t), χU (ν) + 2m log t).
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Free entropy for types

The reason that this works is that a one-sided version of the earlier näıve
conjecture holds for types.

Proposition (J. 2025 [25])

For types µ and ν from
∏

n→U Mn, there are random matrix models X(n)

and Y(n) such that

1 tpMn(X(n)) → µ and tpMn(Y(n)) → ν weak-∗ in probability as n → U .

2 dW (X(n),Y(n)) → dW ,tp(µ, ν) as n → U .

3 n−2h(X(n)) + 2m log n → χU (µ) as n → U .

As seen above, the analogous statement for non-commutative laws is false.

The key point is that weak-∗ continuity of the functions (φ,ψ) in the MK
duality allows us to use them to build potentials V which produce the
desired random matrix models.
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Future work

Coming back to the question of the limiting behavior of entropy of µ
(n)
V ,

what we need is not only to be able to discuss the infimum of some trace
polynomial, but to study a stochastic optimization problem.

Proposition (special case of e.g. Boué–Dupuis [7])

Let f : Rm → R be a bounded function. Let Bt be a Brownian motion in
Rm with

− logE[e−f (B1)] = inf
α
E
[∫ 1

0
∥αt∥2 dt + f

(
B1 +

∫ 1

0
αt dt

)]
,

where α ranges over all control processes adapted to the given filtration
associated to the Brownian motion.
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Future work

Corollary

Let S
(n)
t be a normalized Brownian motion on Mm

n and f a real-valued
trace polynomial in resolvents of xj (for instance). Then

− 1

n2
log

1

Z (n)

∫
Mm

n

e−n2( 1
2
∥x∥22+f (x)) dx

= inf

[∫ 1

0
∥αt∥2 dt + f

(
S
(n)
1 +

∫ 1

0
αt dt

)]
where Z (n) is the normalizing constant for the Gaussian measure and αt

ranges over control processes in Mm
n .

This is closely related to the large-deviations rate function of
Biane–Capitaine–Guionnet motivated by Malliavin calculus [5].
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Future work

So understanding the large-n behavior of entropy for random matrix
models is equivalent to understanding the large-n behavior of these
stochastic control problems.

Joint with Gangbo, Nam, Palmer: Systematic study of free stochastic
control problems, which you will see later in this conference [15].

Ongoing/future work with various collaborators: Formulating types in
a setting with a filtration and stochastic processes. Limits of the matrix
versions.
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