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Ricci curvature lower bounds beyond Riemannian manifolds

Bakry—Emery ’85, Lott—Sturm-Villani 06, 09
On a complete Riemannian manifold M, TFAE
» Ric> K
» Bakry—Emery criterion for (minus) Laplace—Beltrami A
I2(f) > KT(f)
or equivalently the gradient estimates (P, = ¢'?)
TP f<e ! 'prf

» K-convexity of the (relative) entropy S along 2-Wasserstein geodesics.



I"-calculus

P, = e~ *F: a symmetric diffusion Markov semigroup on L?(€, p1):
» carré du champ T':

2U(f,9) = fL(9) + L(f)g — L(fg),  T(f)=T(f. f)
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I"-calculus

P, = e~ *F: a symmetric diffusion Markov semigroup on L?(€, p1):
» carré du champ T':

2U(f,9) = fL(9) + L(f)g — L(fg),  T(f)=T(f. f)

» iterated carré du champ T's:

20a2(f,9) = T(f, L(9) + T(L(f), 9) — LT(f,9),  T2(f) :=Ta(f, f)

» diffusion property=chain rule: for nice ¢» and f
—L(po f) = =" (F)L(f) + 4" (HT(S)-
Example: For the Ornstein—Uhlenbeck semigroup P; = ¢!(2~*Y) on (R™, dy)

T(f,9)=Vf-Vg, Tao(f)=|VI*+|VVSF



2-Wasserstein metric

2-Wasserstein metric W5 on Prob(R™)

Static definition VS Dynamical formulation: Benamou—Brenier 00

Wa (o, p1)*

= inf z — y|2dn x,
it / o le—yln(ay)

1
=inf {/ /\At(x)\th(:v)dxdt 5 /:Lt + V- (NtAt) S O7 /Jt‘t:O,l = NO,I}'
0

A,p

Jordan—Kinderlehrer—Otto '98...
Heat flow is the gradient flow of the entropy w.r.t. W5.



Markov chains on finite sets

K:X x X — [0,00) an irreducible Markov kernel on a finite set X and 7 :
unique stationary probability measure on X. Assume the detailed balance

K(z,y)r(z) = K(y, z)n(y), =z,y€X.
Define the inner products

(1, 92)r = > _i(@)a(x)m(z), P19 X SR,

and

1
(U1,V2)r = 5 Z‘1/1($,y)\112(x,y)l€(a:,y)ﬂ'(x), U, Uyt X x X — R.

T,y

Then the detailed balance conditions is equivalent to

(A1), 2)w = (b1, A(¥2)) x, P1, 92 1 X = R,

where A is the Laplacian:



Laplacian and 1st order differential calculus

The Laplacian (~ P = e?)
AW)(z) = Y K(x,y) (%(y) — ()

satisfies
A=V -V=K-—id,

with the discrete gradient
and the discrete divergence
1
yeX

We have the integration by parts

<v¢a \I/>7\' = *(1/’: V- \Ij>7f



Ricci curvature lower bounds beyond continuous spaces
For any probability density p on (X, 7) define

vy :=%Z\\I/(ﬂmy)IQﬁ(x,y)/C(%y)fr(x), ﬁ(w,y)=/0 p(x)*p(y)' ~"ds

T,y

Entx(p) := Y 7(x)p(x) log p(z).

x

Bakry—Emery approach Lott—Sturm—Villani (entropic) approach
20(f,9) == Alfg) ~ B(g) — 9A(), Wa(po, )? = infi, { fy (V03,0 :
2T2(f, 9) == AL(f,g) = T(f,Ag) + T(Af, g) bt + V- (5eVe), pr=o,1 = po,1}
Ty > KT K-convexity of Ent, along W, geodesics
(VP (p @ 1)VP)» < e 2KUVp, (Pp @ 1)Vi)x VP2 < e 25 Vy|3,,

Lin—Yau ’10, Maas ’'11, Erbar—-Maas 12, Mielke ’'13...and other variants...



Examples

Simple random walk on Z
The simple random walk on Zx = Z/NZ has the kernel

Kim,m—-1)=K(m,m+1) = %

It is known to have entropic Ricci curvature lower bound 0 (Erbar—Maas '12).



Examples

Simple random walk on Z
The simple random walk on Zx = Z/NZ has the kernel

Kim,m—-1)=K(m,m+1) = %

It is known to have entropic Ricci curvature lower bound 0 (Erbar—Maas '12).

Simple random walk on discrete hypercubes

The simple random walk on {0, 1}" has the kernel

K(@,2¥)==, 1<j<n
n

where 2%/ means flipping the j-th coordinate of . It is known to have
entropic Ricci curvature lower bound 2 (Erbar-Maas '12).



Quantum Markov semigroups
(P:)¢>0 over M, (C) is a quantum Markov semigroup (QMS) if

» Py =idand PsP, = Psy, forall s,t >0

» P, is unital completely positive

» Pi(z) = z,t = 0forallz € M,(C)
The generator



Quantum Markov semigroups
(P:)¢>0 over M, (C) is a quantum Markov semigroup (QMS) if

» Py =idand PsP, = Psy, forall s,t >0

» P, is unital completely positive

» Pi(z) = z,t — 0forallz € M,(C)
The generator

Example: dephasing semigroup

Let o be a density matrix in M,,(C) and E a conditional expectation such that
Tr[E(A)o] = Tr[Ad], A € M,(C).

The dephasing semigroup P; = e t*:

Pi(A)=e A4+ (1 —e HE(A), L(A) = A — E(A).

When o = 1, one has the depolarizing semigroup

Pa) = e tat (1 - e*f)%Tr(a)L L(A) = A %Tr(a)l.



Detailed balance condition
Recall the detailed balance condition in the discrete setting

Kz, y)n(z) = K(y,2)n(y), xyeX
is equivalent to

<A(w1)7¢2>ﬂ = <7/)1,A(7/12)>7r, 1,[)1,1/22 X — R,
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Detailed balance condition
Recall the detailed balance condition in the discrete setting

K(z,y)r(z) = K(y,z)n(y), x,y€X
is equivalent to
(A1), Y2)e = (1, A(W2))m, V1,2 : X 2 R

In the quantum setting: For a fixed faithful state o we say (P;) = (e %) is
» GNS(Gelfand—Naimark—Segal)-symmetric if for all A, B

Tr[C(A)* Bo] = TH{A*L(B)o).

» KMS(Kubo-Martin-Schwinger)-symmetric if for all A, B

TL(A) 0'/?Bo'/?] = [A* /2 L(B)o"/?).

» BKM(Bogoliubov-Kubo-Mori)-symmetric if for all A, B

/1 Tr[L(A) 0°Bo'~®]ds = /1 Tr[A*o*L(B)o'*]ds.



Structure of QMS generators with GNS symmetry

Theorem: Alicki '76

A linear operator £ on M, (C) generates a QMS that is GNS-symmetric with

respect to o iff there exist non-zero {V;}¢_, C M, (C) and {w;}4—, C Rs.t.
(@) Tr(Vj Vi) =0forj # k,

b) Tr(V;) =0forl1 <j <d,

c) forevery j € {1,...,d} there exists j* € {1,...,d} such that V;" = V=,
d) oVjo= !t =e iV},

e) the operator £ acts as

(
(
(
(

LA) =" e (Vi [V;, A+ [A,V1V;), A€ Mq(C).

Jj=1



Structure of QMS generators with GNS symmetry

Theorem: Alicki '76

A linear operator £ on M, (C) generates a QMS that is GNS-symmetric with
respect to o iff there exist non-zero {V;}¢_, C M, (C) and {w;}4—, C Rs.t.

(@) Tr(Vj Vi) =0forj # k,
(b) Tr(V;) =0forl <j<d,
(c) for every Jj€{1,...,d} there exists j* € {1,...,d} such that V;" = Vjx,
(d) oVjo™! —e“ﬂ@
(e) the operator £ acts as
d
L(A) = e (V7 [Vi, A+ [A,VTV;), A€ Ma(C).
j=1

In particular, when o = 1, one may write (Tr[T (A)B*] = Tr[AT(B*)])

LA)=0"0(A) = > Vi, [V, All= > al9;(A

1<5<d 1<j5<d



Ricci curvature lower bound for quantum Markov semigroups
For any density matrix p € M,,(C)

~ 1 S —S8 Tr
pA ::/ p"Ap'7ds,  D(pllo) = —lp(logp —log o)),
0

(P,) = e~ **: GNS-symmetric with respect to o. For simplicity: o = 1.

Bakry—Emery approach Lott—Sturm-Villani approach
20 (a, b) := a* Lb+ (La)*b — L(a"b), Wal(po, p1)? == inf ., {j;; (Ay, prAddt -
2Ty (a, b) := I'(a, £b) 4+ '(La,b) — LT (a,b) pe=0" (51 Ar), pr=o.1 = po.1}
Ty > KT K-convexity of D(-||o) along W, geodesics
(OPya, pdPia) < e *K%(da, Pipda) fol (OPsa, p*(OPa)p'~*)ds < e 2Kt fnl (9a, (Pip)*da(Pyp)'~*)ds
call it BE(K, co0) call it Ric > K
easier to compute has interesting applications e.g. exponential decay of relative entropy

Junge et al, Carlen—Maas... Goal: derive Ric > K from I'; > KT type computation



The intertwining condition

Ric > K would follow from an intertwining condition

6th = 67Ktptaj

The heat semigroup on (R", dz) 9; Py = P,0; Ric > 0

The Ornstein—Uhlenbeck semigroup on (R", dy) ;P =e ' P0; Ric > 1
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Ric >0

The Ornstein—Uhlenbeck semigroup on (R", dy) ;P =e ' P0;

Ric>1

The Bose Ornstein-Uhlenbeck 9, P, = e~ 5B/t p g,

Ric > sinh(3/2)




The intertwining condition

Ric > K would follow from an intertwining condition

6th = 67Ktptaj

The heat semigroup on (R", dz)

0; P = Pd;

Ric >0

The Ornstein—Uhlenbeck semigroup on (R", dy)

;P =e ' P0;

Ric>1

The Bose Ornstein-Uhlenbeck

9, P, = e Smh(B/Dt g,

Ric > sinh(3/2)

Simple random walk on Zy, N > 3

P, = P,

Ric > 0

Simple random walk on {0,1}"

opP, = P,0

2
Ric> 2

The intertwining condition can be relaxed (Minch-Wirth-Z. '24)



Idea of relaxing intertwining: Wirth—Z. 21

Say we want to prove Ric > K, and let us consider the gradient estimate form

1 1
/ (OP.a, p°(0Pa)p'*)ds < e K" / (9a, (Pip)*da(Pip)~*)ds
0 0

which we reformulate as
(0P, A(Ly, Rp)(0P,a)) < e=* " (9a, A(Lp,p, Rp,p)(0a)).

Here LA(X) = AKX, RB(X) — X B and A(Lme)(X) _ 01 pSXplisds.
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Idea of relaxing intertwining: Wirth—Z. 21

Say we want to prove Ric > K, and let us consider the gradient estimate form

1 1
/ (0P.a, p* (OP,a)p'~")ds < e / (a, (Pip)* da(P.p)'~*)ds
0 0
which we reformulate as
(0Pia, A(Ly, Ry)(0P:a)) < e~ ***(9a, A(Lp,p, Rp,p)(0a)).

Here LA(X) = AKX, RB(X) — X B and A(Lme)(X) _ 01 pSXplisds.
Assume 9P; = P,0: it becomes

(Pida, A(Ly, R,)(P,0a)) < e™**"(da, A(Lp,p, Rp,p)(0)).

Consider a stronger estimate that is equivalent to the operator inequality

St - _
P A(LP? RP)Pt <e 2KtA(LPtPﬂ RPtP)'

By nice properties of A, it suffices to show the “linearized"

5ty 5 - 5tp 5 - —
P'L,P,<e *'Lp,,  P'R,P, <e *Rp,,.



Idea of relaxing intertwining: (Minch—Wirth—Z. '24)
So far, we only assume 0P, = P,d, so P, is semi-flexible:
Piliangey = fixed:  P,d(a) = dP:(a)

while =
Pi|ran(gy+ = anything.
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So far, we only assume 0P, = P,d, so P, is semi-flexible:
Piliangey = fixed:  P,d(a) = dP:(a)

while B
Pi|ran(gy+ = anything.

But we need ﬁ\ran@l = something that yields

— t — _ — t — _
P'L,P,<e **'Lp,  PB'R,P,<e **Rp,,. (%)
Not so clear, so let’s consider the infinitesimal form:

oP, =P80 &  0L=L0O
and ((&|n) = 32, &mi for € = (&) and n = (1))

(*) &

((Cele) + (€l1) - £el)) = K sle).

N =



Idea of relaxing intertwining: (Minch—Wirth—Z. '24)
So far, we only assume 0P, = P,d, so P, is semi-flexible:
Piliangey = fixed:  P,d(a) = dP:(a)

while B
Pi|ran(gy+ = anything.

But we need P 9,1 = something that yields

o _ ot — _

P'L,P,<e **'Lp,  PB'R,P,<e **Rp,,. (%)
Not so clear, so let’s consider the infinitesimal form:

OP,=P0 &  9L=Ld
and ((&|n) :== 32, & i for € = (&) and n = (m:))
() e o (L9 + €88 - £€e)) > K(glo).

Now: choose a good £ ~ P, by optimizing X in

L :ran(d) @ ran(8)* — ran(d) @ ran(d)*,  da+ 1 dLa + .



Example: complete graph

Let X be a set of n points. Consider

For any ¢ € £2(X x X) with ¢ = 8f + n, our L is of the form
L¢ = OLf + 2Kn

where K > 1 + L is the Bakry—Emery curvature lower bound.



Example: complete graph

Let X be a set of n points. Consider

For any ¢ € £2(X x X) with ¢ = 8f + n, our L is of the form
L¢ = OLf + 2Kn
where K > 1 + L is the Bakry—Emery curvature lower bound.

MiUnch—Wirth—Z. 24

This choice of L yields Ric > K via intertwining. In particular, Ric > % + %
recovering a result of Mielke ('13).



Example: dephasing semigroups

The dephasing semigroup P; = e~ ** on M, (C) with ET(0) = &
Pi(A)=e A+ (1 —e HE(A), L(A)=A-E(A).
Forany ¢ € L?(M,(C),o)®% with ¢ = A(A) + 5 with L rand, our £ is

L€ = OL(A) + 2K,
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Example: dephasing semigroups

The dephasing semigroup P; = e~ ** on M, (C) with ET(0) = &
P(A)=e "A+(1—e HE(A), L(A)=A-FEA).

Forany ¢ € L?(M,(C),o)®% with ¢ = A(A) + 5 with L rand, our £ is
L€ = OL(A) + 2K,

C(E)

where K > 1 + rom s the Bakry—Emery curvature lower bound. Here
C(E) is the Pimsner—Popa index

C(E) :=sup{C >0: CA < E(A),V positive A € M, (C)}.

Minch-Wirth—Z. '24

This £ yields Ric > K via intertwining. In particular, Ric > 1 + ()

TO(E)"



Example: depolarizing semigroups

The depolarizing semigroup P; = e~** on M,,(C) (with o = 1)
a@g:e4a+cL-aU%ﬁmn, qu:A_%ﬁmn.

In this case, our result reads

Munch-Wirth—Z. '24
The above intertwining gives Ric > § + —, improving previous estimate
Ric > 5 + 5 (..)-

This is the best that we can do using “intertwining", but



Example: depolarizing semigroups

The depolarizing semigroup P; = e~** on M,,(C) (with o = 1)
a@g:e4a+cL-aU%ﬁmn, qu:A_%ﬁmn.

In this case, our result reads

Mlnch-Wirth—Z. 24

The above intertwining gives Ric > § + —, improving previous estimate
Ric > 1+ & (...).

This is the best that we can do using “intertwining", but

Minch-Wirth—Z. 24

For depolarizing semigroup, one has Ric > 1 + L via direct but slightly
involved computations.



General picture: 1st order differential calculus

Theorem: Wirth 22

If £ generates a QMS on M, (C) that is GNS-symmetric with respect to o,
then there exists a finite-dimensional Hilbert C*-bimodule F over M, (C), a
strongly continuous group of isometries (V;) on F', an anti-linear operator
J: F — F and a derivation 9: M, (C) — F such that

(@) Vi(AEB) = 0" Ao~ (Vi&)o" Bo~ " forall A, B € M, (C), ¢ € F,

(b) J(AEB) = o'/?B 0~ Y2(J€)o /2 A*0c~ 2 forall A, B € M,,(C), € € F,
() 7((T€lTm)e) = 7((nl§)o) forall &, n € F,

(d) JVi =W J forall t € R,

(e) 8(c™Ac™") = V;,0(A) forall A € M,,(C), t € R,

(fy B(c'/?A*6=1/?) = JO(A) forall A € M, (C),

(@) F =1in{o(A)B| A,B € Mn(C)},

(h) T(A, B) = (8(A)|8(B)) for all A, B € M,,(C).

Alicki’s theorem: F' = M,,(C)? with ((A;)|(B;)) = > A5 B;,
(Vig); = ei'a"' g0, (J€); = o'2¢j-07 1/ and (94); = e~/ [V, A].



General picture: gradient estimate GE(K, co)

Let A be an operator mean function with f(t) = A(1,¢), e.g.

A(a,b):/o Vs ) =

Define
€13, = 7 [(E1F (V2] -
In Alicki’s picture:

d

104l = 37 (Vi A7 A2 Ly, e 2R, )15, 4]

Definition
We say that a GNS-symmetric QMS with first-order differential calculus
(F, (V&),J, 0) satisfies the gradient estimate GEx (K, co) if

IO (AR, < e > O s,

for all self-adjoint A € M,,(C), positive definite p € M,,(C) and ¢t > 0.



General picture: intertwining curvature lower bound

Theorem: Minch=Wirth—Z. '24

Suppose that a GNS-symmetric QMS (P;) has first-order differential calculus
(F,J,(V4),d). If there exists a linear operator £ on F such that

(a) £O=0L,
(b) LT = JL and
(c) forall¢ € F,

1/ = L
5 ((C£16) + €128) - £(élo) = K(ele),
then it satisfies GE4 (K, co) for every operator mean function A.

When (a)-(c) are satisfied, we say that (P;) with first-order differential
calculus (F, 7, (V4),0) has intertwining curvature bounded below by K.



Thank you very much!



