On the Ricci curvature lower bounds for quantum Markov semigroups

Haonan Zhang (University of South Carolina)

joint with Melchior Wirth (Leipzig University) and Florentin Münch (Leipzig University)

Non-commutative Optimal Transport/Dynamics of Density Operators, IPAM, April 28-May 2, 2025

Ricci curvature lower bounds beyond Riemannian manifolds

Bakry-Émery '85, Lott-Sturm-Villani '06, '09

On a complete Riemannian manifold M, TFAE

- ▶ Ric > *K*
- ▶ Bakry–Émery criterion for (minus) Laplace–Beltrami ∆

$$\Gamma_2(f) \ge K\Gamma(f)$$

or equivalently the gradient estimates $(P_t = e^{t\Delta})$

$$\Gamma P_t f \le e^{-2Kt} P_t \Gamma f$$

► *K*-convexity of the (relative) entropy *S* along 2-Wasserstein geodesics.

Γ -calculus

 $P_t = e^{-tL}$: a symmetric diffusion Markov semigroup on $L^2(\Omega, \mu)$:

ightharpoonup carré du champ Γ :

$$2\Gamma(f,g) = fL(g) + L(f)g - L(fg), \qquad \Gamma(f) := \Gamma(f,f)$$

Γ-calculus

 $P_t = e^{-tL}$: a symmetric diffusion Markov semigroup on $L^2(\Omega, \mu)$:

ightharpoonup carré du champ Γ :

$$2\Gamma(f,g) = fL(g) + L(f)g - L(fg), \qquad \Gamma(f) := \Gamma(f,f)$$

ightharpoonup iterated carré du champ Γ_2 :

$$2\Gamma_2(f,g) = \Gamma(f,L(g)) + \Gamma(L(f),g) - L\Gamma(f,g), \qquad \Gamma_2(f) := \Gamma_2(f,f)$$

Γ -calculus

 $P_t = e^{-tL}$: a symmetric diffusion Markov semigroup on $L^2(\Omega, \mu)$:

carré du champ Γ:

$$2\Gamma(f,g) = fL(g) + L(f)g - L(fg), \qquad \Gamma(f) := \Gamma(f,f)$$

▶ iterated carré du champ Γ_2 :

$$2\Gamma_2(f,g) = \Gamma(f,L(g)) + \Gamma(L(f),g) - L\Gamma(f,g), \qquad \Gamma_2(f) := \Gamma_2(f,f)$$

b diffusion property=chain rule: for nice ψ and f

$$-L(\psi \circ f) = -\psi'(f)L(f) + \psi''(f)\Gamma(f).$$

Γ -calculus

 $P_t = e^{-tL}$: a symmetric diffusion Markov semigroup on $L^2(\Omega, \mu)$:

ightharpoonup carré du champ Γ :

$$2\Gamma(f,g) = fL(g) + L(f)g - L(fg), \qquad \Gamma(f) := \Gamma(f,f)$$

▶ iterated carré du champ Γ_2 :

$$2\Gamma_2(f,g) = \Gamma(f,L(g)) + \Gamma(L(f),g) - L\Gamma(f,g), \qquad \Gamma_2(f) := \Gamma_2(f,f)$$

b diffusion property=chain rule: for nice ψ and f

$$-L(\psi \circ f) = -\psi'(f)L(f) + \psi''(f)\Gamma(f).$$

Example: For the Ornstein–Uhlenbeck semigroup $P_t=e^{t(\Delta-x\nabla)}$ on $(\mathbb{R}^n,\mathrm{d}\gamma)$

$$\Gamma(f,g) = \nabla f \cdot \nabla g, \qquad \Gamma_2(f) = |\nabla f|^2 + |\nabla \nabla f|^2.$$

2-Wasserstein metric

2-Wasserstein metric W_2 on $\mathsf{Prob}(\mathbb{R}^n)$

Static definition VS Dynamical formulation: Benamou-Brenier '00

$$\begin{split} &W_2(\mu_0, \mu_1)^2 \\ &= \inf_{\pi \in \Pi(\mu_0, \mu_1)} \int_{\mathbb{R}^n \times \mathbb{R}^n} |x - y|^2 d\pi(x, y) \\ &= \inf_{A, \mu} \left\{ \int_0^1 \int |A_t(x)|^2 \mu_t(x) dx dt : \dot{\mu}_t + \nabla \cdot (\mu_t A_t) = 0, \mu_t|_{t=0, 1} = \mu_{0, 1} \right\}. \end{split}$$

Jordan-Kinderlehrer-Otto '98...

Heat flow is the gradient flow of the entropy w.r.t. W_2 .

Markov chains on finite sets

 $\mathcal{K}: \mathcal{X} \times \mathcal{X} \to [0,\infty)$ an irreducible Markov kernel on a finite set \mathcal{X} and $\pi:$ unique stationary probability measure on \mathcal{X} . Assume the detailed balance

$$\mathcal{K}(x,y)\pi(x) = \mathcal{K}(y,x)\pi(y), \qquad x,y \in \mathcal{X}.$$

Define the inner products

$$\langle \psi_1, \psi_2 \rangle_{\pi} = \sum_x \psi_1(x)\psi_2(x)\pi(x), \qquad \psi_1, \psi_2 : \mathcal{X} \to \mathbb{R},$$

and

$$\langle \Psi_1, \Psi_2 \rangle_{\pi} = \frac{1}{2} \sum_{x,y} \Psi_1(x,y) \Psi_2(x,y) \mathcal{K}(x,y) \pi(x), \qquad \Psi_1, \Psi_2 : \mathcal{X} \times \mathcal{X} \to \mathbb{R}.$$

Then the detailed balance conditions is equivalent to

$$\langle \Delta(\psi_1), \psi_2 \rangle_{\pi} = \langle \psi_1, \Delta(\psi_2) \rangle_{\pi}, \qquad \psi_1, \psi_2 : \mathcal{X} \to \mathbb{R},$$

where Δ is the Laplacian:

Laplacian and 1st order differential calculus

The Laplacian ($\rightsquigarrow P_t = e^{t\Delta}$)

$$\Delta(\psi)(x) := \sum_{y:y \sim x} \mathcal{K}(x,y) \left(\psi(y) - \psi(x) \right)$$

satisfies

$$\Delta = \nabla \cdot \nabla = \mathcal{K} - \mathsf{id}$$

with the discrete gradient

$$\nabla \psi(x,y) = \psi(y) - \psi(x), \qquad \psi: \mathcal{X} \to \mathbb{R},$$

and the discrete divergence

$$\nabla \cdot \Psi(x) = \frac{1}{2} \sum_{y \in \mathcal{X}} (\Psi(x, y) - \Psi(y, x)) \mathcal{K}(x, y), \qquad \Psi : \mathcal{X} \times \mathcal{X} \to \mathbb{R}.$$

We have the integration by parts

$$\langle \nabla \psi, \Psi \rangle_{\pi} = -\langle \psi, \nabla \cdot \Psi \rangle_{\pi}.$$

Ricci curvature lower bounds beyond continuous spaces

For any probability density ρ on (\mathcal{X}, π) define

$$|\Psi|_{\rho}^{2} := \frac{1}{2} \sum_{x,y} |\Psi(x,y)|^{2} \hat{\rho}(x,y) \mathcal{K}(x,y) \pi(x), \qquad \hat{\rho}(x,y) = \int_{0}^{1} \rho(x)^{s} \rho(y)^{1-s} \mathrm{d}s$$

$$\operatorname{Ent}_{\pi}(\rho) := \sum_{x} \pi(x) \rho(x) \log \rho(x).$$

Bakry–Émery approach	Lott-Sturm-Villani (entropic) approach
$2\Gamma(f,g) := \Delta(fg) - f\Delta(g) - g\Delta(f),$ $2\Gamma_2(f,g) := \Delta\Gamma(f,g) - \Gamma(f,\Delta g) + \Gamma(\Delta f,g)$	$\mathcal{W}_2(\rho_0, \rho_1)^2 := \inf_{\psi, \rho} \left\{ \int_0^1 \nabla \psi_t _{\rho_t}^2 dt : \dot{\rho}_t + \nabla \cdot (\hat{\rho}_t \nabla \psi_t), \rho_{t=0,1} = \rho_{0,1} \right\}$
$\Gamma_2 \geq K\Gamma$	K -convexity of Ent_{π} along \mathcal{W}_2 geodesics
$\langle \nabla P_t \psi, (\rho \otimes 1) \nabla P_t \psi \rangle_{\pi} \le e^{-2Kt} \langle \nabla \psi, (P_t \rho \otimes 1) \nabla \psi \rangle_{\pi}$	$ \nabla P_t \psi _{\rho}^2 \le e^{-2Kt} \nabla \psi _{P_t \rho}^2$

Lin-Yau '10, Maas '11, Erbar-Maas '12, Mielke '13...and other variants...

Examples

Simple random walk on \mathbb{Z}_N

The simple random walk on $\mathbb{Z}_N = \mathbb{Z}/N\mathbb{Z}$ has the kernel

$$\mathcal{K}(m, m-1) = \mathcal{K}(m, m+1) = \frac{1}{2}.$$

It is known to have entropic Ricci curvature lower bound 0 (Erbar–Maas '12).

Examples

Simple random walk on \mathbb{Z}_N

The simple random walk on $\mathbb{Z}_N = \mathbb{Z}/N\mathbb{Z}$ has the kernel

$$\mathcal{K}(m, m-1) = \mathcal{K}(m, m+1) = \frac{1}{2}.$$

It is known to have entropic Ricci curvature lower bound 0 (Erbar–Maas '12).

Simple random walk on discrete hypercubes

The simple random walk on $\{0,1\}^n$ has the kernel

$$\mathcal{K}(x, x^{\oplus j}) = \frac{1}{n}, \qquad 1 \le j \le n$$

where $x^{\oplus j}$ means flipping the j-th coordinate of x. It is known to have entropic Ricci curvature lower bound $\frac{2}{n}$ (Erbar–Maas '12).

Quantum Markov semigroups

 $(P_t)_{t\geq 0}$ over $M_n(\mathbb{C})$ is a quantum Markov semigroup (QMS) if

- $ightharpoonup P_0 = \operatorname{id}$ and $P_s P_t = P_{s+t}$ for all $s, t \geq 0$
- $ightharpoonup P_t$ is unital completely positive
- $ightharpoonup P_t(x) o x, t o 0 \text{ for all } x \in M_n(\mathbb{C})$

The generator

$$\mathcal{L}(x) := \lim_{t \to 0} \frac{x - P_t(x)}{t}.$$

Quantum Markov semigroups

 $(P_t)_{t\geq 0}$ over $M_n(\mathbb{C})$ is a quantum Markov semigroup (QMS) if

- $ightharpoonup P_0 = \operatorname{id}$ and $P_s P_t = P_{s+t}$ for all $s,t \geq 0$
- $ightharpoonup P_t$ is unital completely positive
- $ightharpoonup P_t(x) \to x, t \to 0 \text{ for all } x \in M_n(\mathbb{C})$

The generator

$$\mathcal{L}(x) := \lim_{t \to 0} \frac{x - P_t(x)}{t}.$$

Example: dephasing semigroup

Let σ be a density matrix in $M_n(\mathbb{C})$ and E a conditional expectation such that

$$\operatorname{Tr}[E(A)\sigma] = \operatorname{Tr}[A\sigma], \qquad A \in M_n(\mathbb{C}).$$

The dephasing semigroup $P_t = e^{-t\mathcal{L}}$:

$$P_t(A) = e^{-t}A + (1 - e^{-t})E(A), \qquad \mathcal{L}(A) = A - E(A).$$

When $\sigma = 1$, one has the depolarizing semigroup

$$P_t(a) = e^{-t}a + (1 - e^{-t})\frac{1}{n}\mathsf{Tr}(a)\mathbf{1}, \qquad \mathcal{L}(A) = A - \frac{1}{n}\mathsf{Tr}(a)\mathbf{1}.$$

Recall the detailed balance condition in the discrete setting

$$\mathcal{K}(x,y)\pi(x) = \mathcal{K}(y,x)\pi(y), \qquad x,y \in \mathcal{X}$$

is equivalent to

$$\langle \Delta(\psi_1), \psi_2 \rangle_{\pi} = \langle \psi_1, \Delta(\psi_2) \rangle_{\pi}, \qquad \psi_1, \psi_2 : \mathcal{X} \to \mathbb{R}.$$

Recall the detailed balance condition in the discrete setting

$$\mathcal{K}(x,y)\pi(x) = \mathcal{K}(y,x)\pi(y), \qquad x,y \in \mathcal{X}$$

is equivalent to

$$\langle \Delta(\psi_1), \psi_2 \rangle_{\pi} = \langle \psi_1, \Delta(\psi_2) \rangle_{\pi}, \qquad \psi_1, \psi_2 : \mathcal{X} \to \mathbb{R}.$$

In the quantum setting: For a fixed faithful state σ we say $(P_t)=(e^{-t\mathcal{L}})$ is

► GNS(Gelfand–Naimark–Segal)-symmetric if for all *A*, *B*

$$\operatorname{Tr}[\mathcal{L}(A)^*B\sigma] = \operatorname{Tr}[A^*\mathcal{L}(B)\sigma].$$

Recall the detailed balance condition in the discrete setting

$$\mathcal{K}(x,y)\pi(x) = \mathcal{K}(y,x)\pi(y), \qquad x,y \in \mathcal{X}$$

is equivalent to

$$\langle \Delta(\psi_1), \psi_2 \rangle_{\pi} = \langle \psi_1, \Delta(\psi_2) \rangle_{\pi}, \qquad \psi_1, \psi_2 : \mathcal{X} \to \mathbb{R}.$$

In the quantum setting: For a fixed faithful state σ we say $(P_t) = (e^{-t\mathcal{L}})$ is

► GNS(Gelfand–Naimark–Segal)-symmetric if for all *A*, *B*

$$\operatorname{Tr}[\mathcal{L}(A)^*B\sigma] = \operatorname{Tr}[A^*\mathcal{L}(B)\sigma].$$

► KMS(Kubo-Martin-Schwinger)-symmetric if for all *A*, *B*

$$\operatorname{Tr}[\mathcal{L}(A)^*\sigma^{1/2}B\sigma^{1/2}] = \operatorname{Tr}[A^*\sigma^{1/2}\mathcal{L}(B)\sigma^{1/2}].$$

Recall the detailed balance condition in the discrete setting

$$\mathcal{K}(x,y)\pi(x) = \mathcal{K}(y,x)\pi(y), \qquad x,y \in \mathcal{X}$$

is equivalent to

$$\langle \Delta(\psi_1), \psi_2 \rangle_{\pi} = \langle \psi_1, \Delta(\psi_2) \rangle_{\pi}, \qquad \psi_1, \psi_2 : \mathcal{X} \to \mathbb{R}.$$

In the quantum setting: For a fixed faithful state σ we say $(P_t) = (e^{-t\mathcal{L}})$ is

► GNS(Gelfand–Naimark–Segal)-symmetric if for all *A*, *B*

$$Tr[\mathcal{L}(A)^*B\sigma] = Tr[A^*\mathcal{L}(B)\sigma].$$

► KMS(Kubo-Martin-Schwinger)-symmetric if for all *A*, *B*

$$\operatorname{Tr}[\mathcal{L}(A)^* \sigma^{1/2} B \sigma^{1/2}] = \operatorname{Tr}[A^* \sigma^{1/2} \mathcal{L}(B) \sigma^{1/2}].$$

▶ BKM(Bogoliubov-Kubo-Mori)-symmetric if for all *A*, *B*

$$\int_0^1 \text{Tr}[\mathcal{L}(A)^* \sigma^s B \sigma^{1-s}] ds = \int_0^1 \text{Tr}[A^* \sigma^s \mathcal{L}(B) \sigma^{1-s}] ds.$$

Structure of QMS generators with GNS symmetry

Theorem: Alicki '76

A linear operator $\mathcal L$ on $M_n(\mathbb C)$ generates a QMS that is GNS-symmetric with respect to σ iff there exist non-zero $\{V_j\}_{j=1}^d\subset M_n(\mathbb C)$ and $\{\omega_j\}_{j=1}^d\subset \mathbb R$ s.t.

- (a) $\operatorname{Tr}(V_j^* V_k) = 0$ for $j \neq k$,
- (b) $Tr(V_j) = 0 \text{ for } 1 \le j \le d$,
- (c) for every $j \in \{1, \dots, d\}$ there exists $j^* \in \{1, \dots, d\}$ such that $V_j^* = V_{j^*}$,
- (d) $\sigma V_j \sigma^{-1} = e^{-\omega_j} V_j$,
- (e) the operator \mathcal{L} acts as

$$\mathcal{L}(A) = \sum_{j=1}^{d} e^{-\omega_j/2} (V_j^*[V_j, A] + [A, V_j^*]V_j), \qquad A \in M_n(\mathbb{C}).$$

Structure of QMS generators with GNS symmetry

Theorem: Alicki '76

A linear operator $\mathcal L$ on $M_n(\mathbb C)$ generates a QMS that is GNS-symmetric with respect to σ iff there exist non-zero $\{V_j\}_{j=1}^d\subset M_n(\mathbb C)$ and $\{\omega_j\}_{j=1}^d\subset \mathbb R$ s.t.

- (a) $\operatorname{Tr}(V_i^*V_k) = 0$ for $j \neq k$,
- (b) $Tr(V_j) = 0 \text{ for } 1 \le j \le d$,
- (c) for every $j \in \{1, \dots, d\}$ there exists $j^* \in \{1, \dots, d\}$ such that $V_j^* = V_{j^*}$,
- (d) $\sigma V_j \sigma^{-1} = e^{-\omega_j} V_j$,
- (e) the operator \mathcal{L} acts as

$$\mathcal{L}(A) = \sum_{j=1}^{d} e^{-\omega_j/2} (V_j^*[V_j, A] + [A, V_j^*]V_j), \qquad A \in M_n(\mathbb{C}).$$

In particular, when $\sigma = 1$, one may write $(\text{Tr}[T^{\dagger}(A)B^*] = \text{Tr}[AT(B^*)])$

$$\mathcal{L}(A) = \partial^{\dagger} \partial(A) = \sum_{1 \leq j \leq d} [V_j^*, [V_j, A]] = \sum_{1 \leq j \leq d} \partial_j^{\dagger} \partial_j(A).$$

Ricci curvature lower bound for quantum Markov semigroups

For any density matrix $\rho \in M_n(\mathbb{C})$

$$\hat{\rho}A := \int_0^1 \rho^s A \rho^{1-s} \mathsf{d}s, \qquad D(\rho||\sigma) := \frac{\mathsf{Tr}}{n} [\rho(\log \rho - \log \sigma)].$$

 $(P_t) = e^{-t\mathcal{L}}$: GNS-symmetric with respect to σ . For simplicity: $\sigma = 1$.

Bakry-Émery approach	Lott-Sturm-Villani approach
$2\Gamma(a,b) := a^* \mathcal{L}b + (\mathcal{L}a)^*b - \mathcal{L}(a^*b),$ $2\Gamma_2(a,b) := \Gamma(a,\mathcal{L}b) + \Gamma(\mathcal{L}a,b) - \mathcal{L}\Gamma(a,b)$	$\mathcal{W}_2(ho_0, ho_1)^2 := \inf_{A, ho} \left\{ \int_0^1 \langle A_t, ho_t A_t angle dt : ight. \\ \dot{ ho}_t = \partial^\dagger \left(ho_t A_t ight), ho_{t=0,1} = ho_{0,1} ight\}$
$\Gamma_2 \ge K\Gamma$	K -convexity of $D(\cdot \sigma)$ along \mathcal{W}_2 geodesics
$\langle \partial P_t a, \rho \partial P_t a \rangle \le e^{-2Kt} \langle \partial a, P_t \rho \partial a \rangle$	$\textstyle \int_0^1 \langle \partial P_t a, \rho^s (\partial P_t a) \rho^{1-s} \rangle d s \leq e^{-2Kt} \int_0^1 \langle \partial a, (P_t \rho)^s \partial a (P_t \rho)^{1-s} \rangle d s$
call it $\mathrm{BE}(K,\infty)$	$call \; it \; Ric \geq K$
easier to compute	has interesting applications e.g. exponential decay of relative entro

Junge et al, Carlen–Maas... Goal: derive $\mathrm{Ric} \geq K$ from $\Gamma_2 \geq K\Gamma$ type computation

The intertwining condition

$\operatorname{Ric} \geq K$ would follow from an intertwining condition

$$\partial_j P_t = e^{-Kt} P_t \partial_j$$

The heat semigroup on $(\mathbb{R}^n, \mathrm{d} x)$	$\partial_j P_t = P_t \partial_j$	$\operatorname{Ric} \geq 0$
The Ornstein–Uhlenbeck semigroup on $(\mathbb{R}^n, \mathrm{d}\gamma)$	$\partial_j P_t = e^{-t} P_t \partial_j$	$Ric \geq 1$

The intertwining condition

$\operatorname{Ric} \geq K$ would follow from an intertwining condition

$$\partial_j P_t = e^{-Kt} P_t \partial_j$$

The heat semigroup on $(\mathbb{R}^n, d x)$	$\partial_j P_t = P_t \partial_j$	$Ric \geq 0$
The Ornstein–Uhlenbeck semigroup on $(\mathbb{R}^n, \mathrm{d}\gamma)$	$\partial_j P_t = e^{-t} P_t \partial_j$	$Ric \geq 1$
The Bose Ornstein–Uhlenbeck	$\partial_j P_t = e^{-\sinh(\beta/2)t} P_t \partial_j$	$Ric \geq \sinh(\beta/2)$

The intertwining condition

$Ric \ge K$ would follow from an intertwining condition

$$\partial_j P_t = e^{-Kt} P_t \partial_j$$

The heat semigroup on $(\mathbb{R}^n, \mathrm{d} x)$	$\partial_j P_t = P_t \partial_j$	Ric ≥ 0
The Ornstein–Uhlenbeck semigroup on $(\mathbb{R}^n, \mathrm{d}\gamma)$	$\partial_j P_t = e^{-t} P_t \partial_j$	$Ric \geq 1$
The Bose Ornstein–Uhlenbeck	$\partial_j P_t = e^{-\sinh(\beta/2)t} P_t \partial_j$	$Ric \geq \sinh(\beta/2)$
Simple random walk on $\mathbb{Z}_N, N \geq 3$	$\partial P_t = \vec{P_t} \partial$	Ric ≥ 0
Simple random walk on $\{0,1\}^n$	$\partial P_t = \vec{P_t} \partial$	$\operatorname{Ric} \geq \frac{2}{n}$

The intertwining condition can be relaxed (Münch-Wirth-Z. '24)

Say we want to prove $Ric \ge K$, and let us consider the gradient estimate form

$$\int_0^1 \langle \partial P_t a, \rho^s (\partial P_t a) \rho^{1-s} \rangle \mathrm{d}s \le e^{-2Kt} \int_0^1 \langle \partial a, (P_t \rho)^s \partial a (P_t \rho)^{1-s} \rangle \mathrm{d}s$$

which we reformulate as

$$\langle \partial P_t a, \Lambda(L_\rho, R_\rho)(\partial P_t a) \rangle \leq e^{-2Kt} \langle \partial a, \Lambda(L_{P_t \rho}, R_{P_t \rho})(\partial a) \rangle.$$

Here
$$L_A(X) = AX$$
, $R_B(X) = XB$ and $\Lambda(L_\rho, R_\rho)(X) = \int_0^1 \rho^s X \rho^{1-s} ds$.

Say we want to prove $Ric \ge K$, and let us consider the gradient estimate form

$$\int_0^1 \langle \partial P_t a, \rho^s (\partial P_t a) \rho^{1-s} \rangle ds \le e^{-2Kt} \int_0^1 \langle \partial a, (P_t \rho)^s \partial a (P_t \rho)^{1-s} \rangle ds$$

which we reformulate as

$$\langle \partial P_t a, \Lambda(L_\rho, R_\rho)(\partial P_t a) \rangle \leq e^{-2Kt} \langle \partial a, \Lambda(L_{P_t \rho}, R_{P_t \rho})(\partial a) \rangle.$$

Here $L_A(X)=AX, R_B(X)=XB$ and $\Lambda(L_\rho,R_\rho)(X)=\int_0^1 \rho^s X \rho^{1-s} ds$. Assume $\partial P_t=\vec{P_t}\partial$: it becomes

$$\langle \vec{P}_t \partial a, \Lambda(L_\rho, R_\rho)(\vec{P}_t \partial a) \rangle \leq e^{-2Kt} \langle \partial a, \Lambda(L_{P_t \rho}, R_{P_t \rho})(\partial a) \rangle.$$

Say we want to prove $Ric \ge K$, and let us consider the gradient estimate form

$$\int_{0}^{1} \langle \partial P_{t} a, \rho^{s} (\partial P_{t} a) \rho^{1-s} \rangle ds \leq e^{-2Kt} \int_{0}^{1} \langle \partial a, (P_{t} \rho)^{s} \partial a (P_{t} \rho)^{1-s} \rangle ds$$

which we reformulate as

$$\langle \partial P_t a, \Lambda(L_\rho, R_\rho)(\partial P_t a) \rangle \leq e^{-2Kt} \langle \partial a, \Lambda(L_{P_t \rho}, R_{P_t \rho})(\partial a) \rangle.$$

Here $L_A(X)=AX, R_B(X)=XB$ and $\Lambda(L_\rho,R_\rho)(X)=\int_0^1 \rho^s X \rho^{1-s} ds$. Assume $\partial P_t=\vec{P_t}\partial$: it becomes

$$\langle \vec{P_t} \partial a, \Lambda(L_\rho, R_\rho)(\vec{P_t} \partial a) \rangle \leq e^{-2Kt} \langle \partial a, \Lambda(L_{P_t\rho}, R_{P_t\rho})(\partial a) \rangle.$$

Consider a stronger estimate that is equivalent to the operator inequality

$$\vec{P_t}^{\dagger} \Lambda(L_{\rho}, R_{\rho}) \vec{P_t} \le e^{-2Kt} \Lambda(L_{P_t \rho}, R_{P_t \rho}).$$

Say we want to prove $Ric \ge K$, and let us consider the gradient estimate form

$$\int_0^1 \langle \partial P_t a, \rho^s (\partial P_t a) \rho^{1-s} \rangle \mathrm{d}s \leq e^{-2Kt} \int_0^1 \langle \partial a, (P_t \rho)^s \partial a (P_t \rho)^{1-s} \rangle \mathrm{d}s$$

which we reformulate as

$$\langle \frac{\partial P_t a}{\partial P_t a}, \Lambda(L_\rho, R_\rho)(\frac{\partial P_t a}{\partial P_t a}) \rangle \leq e^{-2Kt} \langle \partial a, \Lambda(L_{P_t \rho}, R_{P_t \rho})(\partial a) \rangle.$$

Here $L_A(X)=AX, R_B(X)=XB$ and $\Lambda(L_\rho,R_\rho)(X)=\int_0^1 \rho^s X \rho^{1-s} ds$. Assume $\partial P_t=\vec{P_t}\partial$: it becomes

$$\langle \vec{P_t} \partial a, \Lambda(L_\rho, R_\rho)(\vec{P_t} \partial a) \rangle \leq e^{-2Kt} \langle \partial a, \Lambda(L_{P_t\rho}, R_{P_t\rho})(\partial a) \rangle.$$

Consider a stronger estimate that is equivalent to the operator inequality

$$\vec{P_t}^{\dagger} \Lambda(L_{\rho}, R_{\rho}) \vec{P_t} \le e^{-2Kt} \Lambda(L_{P_t \rho}, R_{P_t \rho}).$$

By nice properties of Λ , it suffices to show the "linearized"

$$\vec{P_t}^{\dagger} L_{\rho} \vec{P_t} \le e^{-2Kt} L_{P_t \rho}, \qquad \vec{P_t}^{\dagger} R_{\rho} \vec{P_t} \le e^{-2Kt} R_{P_t \rho}.$$

So far, we only assume $\partial P_t = \vec{P_t} \partial$, so $\vec{P_t}$ is semi-flexible:

$$\vec{P_t}|_{\mathrm{ran}(\partial)} = \mathrm{fixed}: \qquad \vec{P_t}\partial(a) = \partial P_t(a)$$

while

$$ec{P_t}|_{\mathsf{ran}(\partial)^\perp} = \mathsf{anything}.$$

So far, we only assume $\partial P_t = \vec{P_t} \partial$, so $\vec{P_t}$ is semi-flexible:

$$ec{P_t}|_{\mathsf{ran}(\partial)} = \mathsf{fixed}: \qquad ec{P_t}\partial(a) = \partial P_t(a)$$

while

$$|\vec{P}_t|_{\mathsf{ran}(\partial)^{\perp}} = \mathsf{anything}.$$

But we need $\vec{P}_t|_{\text{ran}(\partial)^{\perp}} = \text{something that yields}$

$$\vec{P_t}^{\dagger} L_{\rho} \vec{P_t} \le e^{-2Kt} L_{P_t \rho}, \qquad \vec{P_t}^{\dagger} R_{\rho} \vec{P_t} \le e^{-2Kt} R_{P_t \rho}.$$
 (*)

So far, we only assume $\partial P_t = \vec{P_t} \partial$, so $\vec{P_t}$ is semi-flexible:

$$\vec{P_t}|_{\mathsf{ran}(\partial)} = \mathsf{fixed}: \qquad \vec{P_t}\partial(a) = \partial P_t(a)$$

while

$$|\vec{P}_t|_{\mathsf{ran}(\partial)^{\perp}} = \mathsf{anything}.$$

But we need $\vec{P}_t|_{\text{ran}(\partial)^{\perp}} = \text{something that yields}$

$$\vec{P_t}^{\dagger} L_{\rho} \vec{P_t} \le e^{-2Kt} L_{P_t \rho}, \qquad \vec{P_t}^{\dagger} R_{\rho} \vec{P_t} \le e^{-2Kt} R_{P_t \rho}.$$
 (*)

Not so clear, so let's consider the infinitesimal form:

$$\partial P_t = \vec{P_t} \partial \qquad \Leftrightarrow \qquad \partial \mathcal{L} = \vec{\mathcal{L}} \partial$$

and
$$((\xi|\eta) := \sum_i \xi_i^* \eta_i \text{ for } \xi = (\xi_i) \text{ and } \eta = (\eta_i))$$

$$(*) \qquad \Leftrightarrow \qquad \frac{1}{2} \left((\vec{\mathcal{L}}\xi|\xi) + (\xi|\vec{\mathcal{L}}\xi) - \mathcal{L}(\xi|\xi) \right) \ge K(\xi|\xi).$$

So far, we only assume $\partial P_t = \vec{P_t} \partial$, so $\vec{P_t}$ is semi-flexible:

$$\vec{P_t}|_{\mathsf{ran}(\partial)} = \mathsf{fixed}: \qquad \vec{P_t}\partial(a) = \partial P_t(a)$$

while

$$|\vec{P}_t|_{\mathsf{ran}(\partial)^{\perp}} = \mathsf{anything}.$$

But we need $\vec{P}_t|_{\text{ran}(\partial)^{\perp}} = \text{something that yields}$

$$\vec{P_t}^{\dagger} L_{\rho} \vec{P_t} \le e^{-2Kt} L_{P_t \rho}, \qquad \vec{P_t}^{\dagger} R_{\rho} \vec{P_t} \le e^{-2Kt} R_{P_t \rho}.$$
 (*)

Not so clear, so let's consider the infinitesimal form:

$$\partial P_t = \vec{P_t} \partial \qquad \Leftrightarrow \qquad \partial \mathcal{L} = \vec{\mathcal{L}} \partial$$

and $((\xi|\eta) := \sum_i \xi_i^* \eta_i \text{ for } \xi = (\xi_i) \text{ and } \eta = (\eta_i))$

$$(*) \qquad \Leftrightarrow \qquad \frac{1}{2} \left((\vec{\mathcal{L}}\xi|\xi) + (\xi|\vec{\mathcal{L}}\xi) - \mathcal{L}(\xi|\xi) \right) \ge K(\xi|\xi).$$

Now: choose a good $\vec{\mathcal{L}} \leadsto \vec{P_t}$ by optimizing λ in

$$\vec{\mathcal{L}} : \operatorname{ran}(\partial) \oplus \operatorname{ran}(\partial)^{\perp} \to \operatorname{ran}(\partial) \oplus \operatorname{ran}(\partial)^{\perp}, \qquad \partial a + \eta \mapsto \partial \mathcal{L}a + \lambda \eta.$$

Example: complete graph

Let \mathcal{X} be a set of n points. Consider

$$L(\psi)(x) = \frac{1}{n} \sum_{y} (\psi(x) - \psi(y)).$$

For any $\xi \in \ell^2(\mathcal{X} \times \mathcal{X})$ with $\xi = \partial f + \eta$, our \vec{L} is of the form

$$\vec{L}\xi = \partial Lf + 2K\eta$$

where $K \geq \frac{1}{2} + \frac{1}{n}$ is the Bakry–Émery curvature lower bound.

Example: complete graph

Let \mathcal{X} be a set of n points. Consider

$$L(\psi)(x) = \frac{1}{n} \sum_{y} (\psi(x) - \psi(y)).$$

For any $\xi \in \ell^2(\mathcal{X} \times \mathcal{X})$ with $\xi = \partial f + \eta$, our \vec{L} is of the form

$$\vec{L}\xi = \partial Lf + 2K\eta$$

where $K \geq \frac{1}{2} + \frac{1}{n}$ is the Bakry–Émery curvature lower bound.

Münch-Wirth-Z. '24

This choice of \vec{L} yields ${\rm Ric} \geq K$ via intertwining. In particular, ${\rm Ric} \geq \frac{1}{2} + \frac{1}{n}$, recovering a result of Mielke ('13).

Example: dephasing semigroups

The dephasing semigroup $P_t = e^{-t\mathcal{L}}$ on $M_n(\mathbb{C})$ with $E^{\dagger}(\sigma) = \sigma$

$$P_t(A) = e^{-t}A + (1 - e^{-t})E(A), \qquad \mathcal{L}(A) = A - E(A).$$

For any $\xi \in L^2(M_n(\mathbb{C}),\sigma)^{\oplus d}$ with $\xi = \partial(A) + \eta$ with $\eta \perp \operatorname{ran}\partial$, our $\vec{\mathcal{L}}$ is

$$\vec{\mathcal{L}}\xi = \partial \mathcal{L}(A) + 2K\eta,$$

Example: dephasing semigroups

The dephasing semigroup $P_t = e^{-t\mathcal{L}}$ on $M_n(\mathbb{C})$ with $E^{\dagger}(\sigma) = \sigma$

$$P_t(A) = e^{-t}A + (1 - e^{-t})E(A), \qquad \mathcal{L}(A) = A - E(A).$$

For any $\xi \in L^2(M_n(\mathbb{C}), \sigma)^{\oplus d}$ with $\xi = \partial(A) + \eta$ with $\eta \perp \operatorname{ran}\partial$, our $\vec{\mathcal{L}}$ is

$$\vec{\mathcal{L}}\xi = \partial \mathcal{L}(A) + 2K\eta,$$

where $K \geq \frac{1}{2} + \frac{C(E)}{1+C(E)}$ is the Bakry–Émery curvature lower bound. Here C(E) is the Pimsner–Popa index

$$C(E) := \sup\{C > 0 : CA \le E(A), \forall \text{ positive } A \in M_n(\mathbb{C})\}.$$

Example: dephasing semigroups

The dephasing semigroup $P_t = e^{-t\mathcal{L}}$ on $M_n(\mathbb{C})$ with $E^{\dagger}(\sigma) = \sigma$

$$P_t(A) = e^{-t}A + (1 - e^{-t})E(A), \qquad \mathcal{L}(A) = A - E(A).$$

For any $\xi \in L^2(M_n(\mathbb{C}), \sigma)^{\oplus d}$ with $\xi = \partial(A) + \eta$ with $\eta \perp \operatorname{ran}\partial$, our $\vec{\mathcal{L}}$ is

$$\vec{\mathcal{L}}\xi = \partial \mathcal{L}(A) + 2K\eta,$$

where $K \geq \frac{1}{2} + \frac{C(E)}{1+C(E)}$ is the Bakry–Émery curvature lower bound. Here C(E) is the Pimsner–Popa index

$$C(E) := \sup\{C > 0 : CA \le E(A), \forall \text{ positive } A \in M_n(\mathbb{C})\}.$$

Münch-Wirth-Z. '24

This $\vec{\mathcal{L}}$ yields $\mathrm{Ric} \geq K$ via intertwining. In particular, $\mathrm{Ric} \geq \frac{1}{2} + \frac{C(E)}{1 + C(E)}$.

Example: depolarizing semigroups

The depolarizing semigroup $P_t = e^{-t\mathcal{L}}$ on $M_n(\mathbb{C})$ (with $\sigma = 1$)

$$P_t(a) = e^{-t}a + (1 - e^{-t})\frac{1}{n}\text{Tr}(a)\mathbf{1}, \qquad \mathcal{L}(A) = A - \frac{1}{n}\text{Tr}(a)\mathbf{1}.$$

In this case, our result reads

Münch-Wirth-Z. '24

The above intertwining gives $Ric \ge \frac{1}{2} + \frac{1}{n+1}$, improving previous estimate $Ric \ge \frac{1}{2} + \frac{1}{2n}$ (...).

This is the best that we can do using "intertwining", but

Example: depolarizing semigroups

The depolarizing semigroup $P_t = e^{-t\mathcal{L}}$ on $M_n(\mathbb{C})$ (with $\sigma = 1$)

$$P_t(a) = e^{-t}a + (1 - e^{-t})\frac{1}{n}\text{Tr}(a)\mathbf{1}, \qquad \mathcal{L}(A) = A - \frac{1}{n}\text{Tr}(a)\mathbf{1}.$$

In this case, our result reads

Münch-Wirth-Z. '24

The above intertwining gives $Ric \ge \frac{1}{2} + \frac{1}{n+1}$, improving previous estimate $Ric \ge \frac{1}{2} + \frac{1}{2n}$ (...).

This is the best that we can do using "intertwining", but

Münch-Wirth-Z. '24

For depolarizing semigroup, one has Ric $\geq \frac{1}{2} + \frac{1}{n}$ via direct but slightly involved computations.

General picture: 1st order differential calculus

Theorem: Wirth '22

If $\mathcal L$ generates a QMS on $M_n(\mathbb C)$ that is GNS-symmetric with respect to σ , then there exists a finite-dimensional Hilbert C^* -bimodule F over $M_n(\mathbb C)$, a strongly continuous group of isometries (V_t) on F, an anti-linear operator $\mathcal J\colon F\to F$ and a derivation $\partial\colon M_n(\mathbb C)\to F$ such that

- (a) $V_t(A\xi B) = \sigma^{it} A \sigma^{-it} (V_t \xi) \sigma^{it} B \sigma^{-it}$ for all $A, B \in M_n(\mathbb{C}), \xi \in F$,
- $\text{(b)} \ \ \mathcal{J}(A\xi B) = \sigma^{1/2}B^*\sigma^{-1/2}(\mathcal{J}\xi)\sigma^{1/2}A^*\sigma^{-1/2} \text{ for all } A,B\in M_n(\mathbb{C}),\, \xi\in F,$
- (c) $\tau((\mathcal{J}\xi|\mathcal{J}\eta)\sigma) = \tau((\eta|\xi)\sigma)$ for all $\xi, \eta \in F$,
- (d) $\mathcal{J}V_t = V_t \mathcal{J}$ for all $t \in \mathbb{R}$,
- (e) $\partial(\sigma^{it}A\sigma^{-it}) = V_t\partial(A)$ for all $A \in M_n(\mathbb{C}), t \in \mathbb{R}$,
- (f) $\partial(\sigma^{1/2}A^*\sigma^{-1/2}) = \mathcal{J}\partial(A)$ for all $A \in M_n(\mathbb{C})$,
- (g) $F = \lim \{ \partial(A)B \mid A, B \in M_n(\mathbb{C}) \},$
- (h) $\Gamma(A,B) = (\partial(A)|\partial(B))$ for all $A,B \in M_n(\mathbb{C})$.

Alicki's theorem: $F=M_n(\mathbb{C})^d$ with $((A_j)|(B_j))=\sum_j A_j^*B_j,$ $(V_t\xi)_j=e^{i\omega_jt}\sigma^{it}\xi_j\sigma^{-it},$ $(\mathcal{J}\xi)_j=\sigma^{1/2}\xi_{j^*}^*\sigma^{-1/2}$ and $(\partial A)_j=e^{-\omega_j/4}[V_j,A].$

General picture: gradient estimate $GE(K, \infty)$

Let Λ be an operator mean function with $f(t) = \Lambda(1,t)$, e.g.

$$\Lambda(a,b) = \int_0^1 a^s b^{1-s} ds, \qquad f(t) = \frac{t-1}{\log(t)}.$$

Define

$$\|\xi\|_{\Lambda,\rho}^2 = \tau \left[(\xi|f(V_{-i}^\rho)\xi)\rho \right].$$

In Alicki's picture:

$$\|\partial A\|_{\Lambda,\rho}^{2} = \sum_{j=1}^{d} \tau \left[[V_{j}, A]^{*} \Lambda(e^{\omega_{j}/2} L_{\rho}, e^{-\omega_{j}/2} R_{\rho}) [V_{j}, A] \right].$$

Definition

We say that a GNS-symmetric QMS with first-order differential calculus $(F,(V_t),\mathcal{J},\partial)$ satisfies the gradient estimate $\mathrm{GE}_\Lambda(K,\infty)$ if

$$\|\partial(P_t(A))\|_{\Lambda,\rho}^2 \le e^{-2Kt} \|\partial(A)\|_{\Lambda,P_t^{\dagger}\rho}^2$$

for all self-adjoint $A \in M_n(\mathbb{C})$, positive definite $\rho \in M_n(\mathbb{C})$ and $t \geq 0$.

General picture: intertwining curvature lower bound

Theorem: Münch-Wirth-Z. '24

Suppose that a GNS-symmetric QMS (P_t) has first-order differential calculus $(F, \mathcal{J}, (V_t), \partial)$. If there exists a linear operator $\vec{\mathcal{L}}$ on F such that

- (a) $\vec{\mathcal{L}}\partial = \partial \mathcal{L}$,
- (b) $\vec{\mathcal{L}}\mathcal{J} = \mathcal{J}\vec{\mathcal{L}}$ and
- (c) for all $\xi \in F$,

$$\frac{1}{2}\left((\vec{\mathcal{L}}\xi|\xi) + (\xi|\vec{\mathcal{L}}\xi) - \mathcal{L}(\xi|\xi)\right) \ge K(\xi|\xi),$$

then it satisfies $GE_{\Lambda}(K,\infty)$ for every operator mean function Λ .

When (a)-(c) are satisfied, we say that (P_t) with first-order differential calculus $(F, \mathcal{J}, (V_t), \partial)$ has intertwining curvature bounded below by K.

Thank you very much!