Quantum Wasserstein and Observability

François Golse

École polytechnique, CMLS

Non-commutative Optimal Transport Workshop II: Dynamics of Density Operators IPAM, April 30th 2025

In collaboration with T. Paul, M3AS 32 (2022) 941-963

Quantum Dynamics

Schrödinger's equation

$$i\hbar\partial_t\psi(t,x) = \underbrace{\left(-rac{1}{2}\hbar^2\Delta_x + V(x)
ight)}_{ ext{quantum Hamiltonian }\mathcal{H}}\psi(t,x)\,, \qquad x\in\mathbb{R}^d$$

for the unknown wave function $\psi \equiv \psi(t,x) \in \mathbb{C}$ s.t. $\|\psi(t,\cdot)\|_{L^2} = 1$ •von Neumann equation

$$i\hbar\partial_t R(t) = [\mathcal{H}, R(t)]$$

Unknown operator $R(t) = R(t)^* \ge 0$ on $L^2(\mathbb{R}^d)$ s.t. $\operatorname{tr}_{L^2}(R(t)) = 1$

The potential V is a **real-valued** function s.t. \mathcal{H} has a **self-adjoint** extension to $\mathfrak{H} = L^2(\mathbb{R}^d)$, so that $U(t) := e^{-it\mathcal{H}/\hbar}$ is a **unitary group** on \mathfrak{H} by Stone's theorem, and

$$\psi(t,\cdot) = U(t)\psi(0,\cdot), \qquad R(t) = U(t)R(0)U(t)^*$$

Observing Solutions of a PDE: an Example

Let $U \subset \mathbb{C}$ be a domain, and let $\emptyset \neq \Omega \subset U$ be open. Let $\bar{\partial}$ be the **Cauchy-Riemann operator** and let $f \in \mathcal{D}'(U)$ satisfy

$$\bar{\partial}f=0$$

Then (by analytic continuation)

$$f|_{\Omega} = 0 \implies f = 0 \text{ on } U$$

Pbm Existence of a constant $C[\Omega, U] > 0$ such that

$$\bar{\partial} f = 0 \text{ on } U \implies \sup_{z \in U} |f(z)| \le C[\Omega, U] \sup_{z \in \Omega} |f(z)|$$
?

Observation Inequality

A class \mathcal{K} of quantum states at t=0 is "observable" in $\Omega\subset\mathbb{R}^d$ (open) in time T>0 for the dynamics U(t) if there exists $C_{OBS}>0$ such that

Schrödinger's dynamics For all initial (pure) state $\psi^{\textit{in}} \in \mathcal{K}$

$$1 = \|\psi^{in}\|_{\mathfrak{H}}^2 \leq C_{OBS} \int_0^T \int_{\Omega} |\psi(t,x)|^2 dx dt$$

where $\psi(t,\cdot):=U(t)\psi^{in}$ for all $t\in\mathbb{R}$

von Neumann dynamics For all initial density operator $R^{in} \in \mathcal{K}$

$$1= {\sf tr}_{\mathfrak{H}}(R^{\it in}) \leq {\it C}_{\it OBS} \int_0^T {\sf tr}_{\mathfrak{H}}(1_\Omega R(t)) dt$$

where $R(t) := U(t)R^{in}U(t)^*$ for all $t \in \mathbb{R}$

J.L. Lions HUM for Schrödinger

Self-adjoint Hamiltonian
$$H = -\frac{1}{2}\Delta_x + V(x) = H^*$$

Control problem

$$\begin{cases} i\partial_t \phi = H\phi + 1_{(0,T)\times\omega} f \\ \phi\big|_{t=T} = 0 \end{cases}$$

Observability problem

$$\begin{cases} i\partial_t \psi = H\psi \\ \psi\big|_{t=0} = \psi^{in} \end{cases}$$

Control operator

$$\mathcal{C}: L^2((0,T)\times\omega)\ni f\mapsto -i\phi\big|_{t=0}\in L^2(\mathbb{R}^d)$$

Observation operator

$$\mathcal{O}: L^2(\mathbb{R}^d) \ni \psi^{in} \mapsto \psi\big|_{(0,T)\times\omega} \in L^2((0,T)\times\omega)$$

For each $\psi^{in} \in L^2(\Omega)$ and each $f \in L^2((0, T) \times \omega)$, one has

$$\int_{0}^{T} \int_{\omega} \overline{\mathcal{O}\psi^{in}}(t,x) f(t,x) dx dt = \int_{0}^{T} \int_{\mathbb{R}^{d}} \overline{\psi(t,x)} (i\partial_{t}\phi - H\phi)(t,x) dx dt
= \int_{0}^{T} \int_{\mathbb{R}^{d}} (\overline{\psi}i\partial_{t}\phi - \overline{H\psi}\phi)(t,x) dx dt
= \int_{0}^{T} \int_{\mathbb{R}^{d}} (\overline{\psi}i\partial_{t}\phi + \phi i\partial_{t}\overline{\psi})(t,x) dx dt
= \left[i \int_{\mathbb{R}^{d}} \overline{\psi}\phi(t,x) dx\right]_{t=0}^{t=T}
= \int_{\mathbb{R}^{d}} \overline{\psi^{in}} \mathcal{C}f(x) dx$$

Conclusion

- (1) One has $\mathcal{O} = \mathcal{C}^*$ so that $\overline{\operatorname{ran}(\mathcal{C})} = \ker(\mathcal{O})^{\perp}$
- (2) The existence of $C_{OBS} > 0$ implies that $ran(\mathcal{C}) = ker(\mathcal{O})^{\perp}$

In 1992, C. Bardos, G. Lebeau and J. Rauch provided a necessary and sufficient condition for controllability/observability of solutions of the wave equations in a bounded domain Ω by a subset of its (smooth) boundary $\partial\Omega$.

Their proof uses microlocal analysis based on an important earlier observation by J. Ralston (CPAM1969), and on the Melrose-Sjöstrand (CPAM1978-1982) propagation of singularities in domains with boundaries

Bardos-Lebeau-Rauch Geometric Condition

Let $(X, \Xi)(t; x, \xi) \in \mathbb{R}^{2d}$ be the flow of the classical Hamiltonian

$$H(x,\xi) := \frac{1}{2}|\xi|^2 + V(x)$$

In other words, $(X, \Xi)(t; x, \xi)$ is the solution at time t of

$$\begin{cases} \dot{X} = \frac{\partial H}{\partial \Xi}(X, \Xi) = \Xi, \\ \dot{\Xi} = -\frac{\partial H}{\partial X}(X, \Xi) = -\nabla V(X), \end{cases} (X, \Xi)\big|_{t=0} = (x, \xi)$$

Geometric condition satisfied by a triple (K, Ω, T) with $K \subset \mathbb{R}^{2d}$ compact, $\Omega \subset \mathbb{R}^d$ open and T > 0:

(GC) for each
$$(x, \xi) \in K$$
 there exists $t \in (0, T)$ such that $X(t; x, \xi) \in \Omega$

Illustration for the Geometric Condition

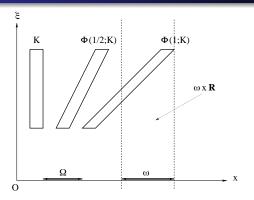


Figure: The geometric condition in space dimension d=1, with $V\equiv 0$. The classical free flow is $\Phi(t;x,\xi):=(X(t;x,\xi),\Xi(t;x,\xi))=(x+t\xi,\xi)$. The picture represents the image of the closed phase-space rectangle K by the map $(x,\xi)\mapsto \Phi(t;x,\xi)$ at time $t=\frac{1}{2}$ and t=1. The interval Ω satisfies the geometric condition with T=1, at variance with ω . Indeed, phase-space points on the bottom side of K stay out of the strip $\omega\times\mathbb{R}$ for all $t\in[0,1]$.

Classical-to-Quantum Couplings [FG-TP ARMA 2017]

Coupling of $f \in \mathcal{P}^{ac}(\mathbb{R}^{2d})$ (probability density on \mathbb{R}^{2d}) with a density operator $R \in \mathcal{D}(\mathfrak{H}) := \{0 \leq T = T^* \in \mathcal{L}(\mathfrak{H}) \text{ s.t. } \operatorname{tr}_{\mathfrak{H}}(T) = 1\}$

$$\mathbb{R}^{2d} \ni (x,\xi) \mapsto Q(x,\xi) = Q(x,\xi)^* \in \mathcal{L}(\mathfrak{H}) \text{ s.t. } Q(x,\xi) \ge 0 \text{ a.e.}$$

s.t. $\operatorname{tr}_{\mathfrak{H}}(Q(x,\xi)) = f(x,\xi) \text{ a.e., and } \iint_{\mathbb{R}^{2d}} Q(x,\xi) dx d\xi = R$

Set of couplings of f and R denoted C(f, R); one has $C(f, R) \neq \emptyset$ since $Q = f \otimes R$ defined by

$$Q: (x,\xi) \mapsto Q(x,\xi) := f(x,\xi)R$$
 belongs to $\mathcal{C}(f,R)$

Classical-to-Quantum Wasserstein [FG-TP ARMA 2017]

Classical to Quantum Transport Cost a (differential) operator parametrized by the classical phase-space variables

$$c_{\hbar}^{\lambda}(x,\xi) \equiv c_{\hbar}(x,\xi,y,D_y) := \lambda^2 |x-y|^2 + |\xi + i\hbar \nabla_y|^2$$

Shifted harmonic oscillator; in particular (by Heisenberg's uncertainty inequality)

$$c_{\hbar}^{\lambda}(x,\xi) \geq \lambda d\hbar I_{\mathfrak{H}}$$

Metric if $R \in \mathcal{D}_2(\mathfrak{H}) := \{ T \in \mathcal{D}(\mathfrak{H}) \text{ s.t. } \operatorname{tr}_{\mathfrak{H}}(T^{\frac{1}{2}}(|x|^2 - \Delta)T^{\frac{1}{2}}) < \infty \}$ while $f \in \mathcal{P}_2^{ac}(\mathbb{R}^{2d}) := \{ \phi \in \mathcal{P}^{ac}(\mathbb{R}^{2d}) \text{ s.t. } (|x|^2 + |\xi|^2)\phi \in L^1(\mathbb{R}^{2d}) \}$

$$\mathfrak{d}_{\lambda}(f,R)^{2} := \inf_{Q \in \mathcal{C}(f,R)} \iint_{\mathbb{R}^{2d}} \operatorname{tr}_{\mathfrak{H}}(Q(x,\xi)^{\frac{1}{2}} c_{\hbar}^{\lambda}(x,\xi) Q(x,\xi)^{\frac{1}{2}}) dx d\xi$$
$$> \lambda d\hbar$$

Propagation of \mathfrak{d}_{λ}

Thm [F.G.-T. Paul (ARMA2017)] Assume $V \in C^{1,1}(\mathbb{R}^d)$ such that $\mathcal{H}:=-\frac{1}{2}\hbar^2\Delta_x+V(x)$ has a self-adjoint extension to \mathfrak{H} , and denote its quantum dynamics by $U(t):=\mathrm{e}^{-it\mathcal{H}/\hbar}$.

Let $\Phi(t; x, \xi) = (X, \Xi)(t; x, \xi)$ is the classical Hamiltonian flow of $H(x, \xi) := \frac{1}{2} |\xi|^2 + V(x)$.

Then, for each $f^{in} \in \mathcal{P}^{ac}_2(\mathbb{R}^{2d})$ and each $R^{in} \in \mathcal{D}_2(\mathfrak{H})$

$$\mathfrak{d}_{\lambda}(f^{\textit{in}} \circ \Phi(t, \cdot, \cdot), \textit{U}(t)\textit{R}^{\textit{in}}\textit{U}(t)^{*}) \leq \mathfrak{d}_{\lambda}(f^{\textit{in}}, \textit{R}^{\textit{in}})e^{\textit{L}|t|}$$

with

$$L := \frac{1}{2} \left(\lambda + \frac{\mathsf{Lip}(\nabla V)}{\lambda} \right)$$

Pair Dispersion Estimate

Since

$$\dot{X}_t - \dot{Y}_t = \Xi_t - H_t , \qquad \dot{\Xi}_t - \dot{H}_t = -(\nabla V(X_t) - \nabla V(Y_t))$$

one has

$$\frac{d}{dt}(\lambda^{2}|X_{t} - Y_{t}|^{2} + |\Xi_{t} - H_{t}|^{2})$$

$$= 2\lambda^{2}(X_{t} - Y_{t}) \cdot (\Xi_{t} - H_{t}) - 2(\Xi_{t} - H_{t}) \cdot (\nabla V(X_{t}) - \nabla V(Y_{t}))$$

$$\leq 2\lambda^{2}|X_{t} - Y_{t}||\Xi_{t} - H_{t}| + 2|\Xi_{t} - H_{t}||\nabla V(X_{t}) - \nabla V(Y_{t})|$$

$$\leq 2\lambda^{2}|X_{t} - Y_{t}||\Xi_{t} - H_{t}| + 2\frac{\text{Lip}(\nabla V)}{\lambda}|\Xi_{t} - H_{t}|\lambda|X_{t} - Y_{t}|$$

$$\leq \left(\lambda + \frac{\text{Lip}(\nabla V)}{\lambda}\right)(\lambda^{2}|X_{t} - Y_{t}|^{2} + |\Xi_{t} - H_{t}|^{2})$$

Quantum=Classical Dynamics... on Different Objects

From the drei Männer Arbeit [Born-Heisenberg-Jordan Z. Phys. **35** (1926) 557–615, eq. (15)]

Let Q, P := **position** and **momentum** operators (assuming d = 1)

$$(Q\psi)(x) := x\psi(x), \qquad (P\psi)(x) := -i\hbar\psi'(x), \qquad x \in \mathbb{R}$$

and let $U(t) := e^{-it\mathcal{H}/\hbar}$, where

$$\mathcal{H} := -\frac{1}{2}\hbar^2 \partial_x^2 + V(x) = \mathcal{H}^*$$

Set

$$Q(t) := U(t)QU(t)^*, \qquad P(t) := U(t)PU(t)^*$$

Then

$$\frac{d}{dt}Q(t) = P(t), \qquad \frac{d}{dt}P(t) = -V'(Q(t))$$

Replace (Y_t, H_t) with (Q(t), P(t)) in the pair dispersion inequality.

14/24

Proof of the Propagation Theorem

(1) Pick
$$Q^{in} \in \mathcal{C}(f^{in}, R^{in})$$
, set $Q(t; x, \xi) = U(t)Q^{in}(\Phi(t, x, \xi))U(t)^*$;

$$\partial_t Q + \{\frac{1}{2}|\xi|^2 + V(x); Q\} + \frac{i}{\hbar} \left[-\frac{1}{2}\hbar^2 \Delta + V; Q \right] = 0$$

Then

$$\mathfrak{d}_{\lambda}(f(t,\cdot),R(t))^2 \leq \iint_{\mathbb{R}^{2d}} \operatorname{tr}_{\mathfrak{H}}(Q(t,x,\xi)^{rac{1}{2}} c_{\hbar}^{\lambda}(x,\xi) Q(t,x,\xi)^{rac{1}{2}}) dx d\xi$$

(2) Moreover

$$\begin{split} \frac{d}{dt} \iint_{\mathbb{R}^{2d}} \operatorname{tr}_{\mathfrak{H}}(Q(t,x,\xi)^{\frac{1}{2}} c_{\hbar}^{\lambda}(x,\xi) Q(t,x,\xi)^{\frac{1}{2}}) dx d\xi \\ & \leq \iint_{\mathbb{R}^{2d}} \operatorname{tr}_{\mathfrak{H}}(Q(t,x,\xi)^{\frac{1}{2}} \{ \frac{1}{2} |\xi|^2 + V(x); c_{\hbar}^{\lambda}(x,\xi) \} Q(t,x,\xi)^{\frac{1}{2}}) dx d\xi \\ & + \iint_{\mathbb{R}^{2d}} \operatorname{tr}_{\mathfrak{H}}\left(Q(t,x,\xi)^{\frac{1}{2}} \frac{i}{\hbar} \left[-\frac{\hbar^2}{2} \Delta + V; c_{\hbar}^{\lambda}(x,\xi) \right] Q(t,x,\xi)^{\frac{1}{2}} \right) dx d\xi \end{split}$$

(3) With the notation $a \lor b := ab + ba$, elementary computations show that one has

$$\begin{aligned} & \{ \frac{1}{2} |\xi|^2; c_{\hbar}^{\lambda}(x,\xi) \} + \frac{i}{\hbar} \left[-\frac{\hbar^2}{2} \Delta; c_{\hbar}^{\lambda}(x,\xi) \right] \\ &= \lambda (\xi + i\hbar \nabla_y) \vee \lambda (x - y) \leq \lambda c_{\hbar}^{\lambda}(x,\xi) \end{aligned}$$

and

$$\begin{aligned} \{V(x); c_{\hbar}^{\lambda}(x,\xi)\} + \frac{i}{\hbar} \left[V; c_{\hbar}^{\lambda}(x,\xi)\right] \\ &= \frac{\mathsf{Lip}(\nabla V)}{\lambda} (\xi + i\hbar \nabla_{y}) \vee \frac{\lambda}{\mathsf{Lip}(\nabla V)} (\nabla V(x) - \nabla V(y)) \\ &\leq \frac{\mathsf{Lip}(\nabla V)}{\lambda} c_{\hbar}^{\lambda}(x,\xi) \end{aligned}$$

by using the elementary inequality

$$\begin{vmatrix}
A^* = A \\
B^* = B
\end{vmatrix} \implies A \lor B = AB + BA \le A^2 + B^2$$

(4) Hence

$$\begin{split} \frac{d}{dt} \iint_{\mathbb{R}^{2d}} \mathrm{tr}_{\mathfrak{H}} (Q(t,x,\xi)^{\frac{1}{2}} c_{\hbar}^{\lambda}(x,\xi) Q(t,x,\xi)^{\frac{1}{2}}) dx d\xi \\ \leq \big(\lambda + \frac{\mathrm{Lip}(\nabla V)}{\lambda}\big) \iint_{\mathbb{R}^{2d}} \mathrm{tr}_{\mathfrak{H}} (Q(t,x,\xi)^{\frac{1}{2}} c_{\hbar}^{\lambda}(x,\xi) Q(t,x,\xi)^{\frac{1}{2}}) dx d\xi \end{split}$$

which implies the announced inequality.

BLR Observability Constant

Lemma

For (K,Ω,\mathcal{T}) with $K\subset\mathbb{R}^{2d}$ compact, $\Omega\subset\mathbb{R}^d$ open and $\mathcal{T}>0$

$$(GC) \implies C[K, \Omega, T] := \inf_{(x,\xi) \in K} \int_0^T 1_{\Omega}(X(t; x, \xi)) dt > 0$$

Proof Since Ω is open, 1_{Ω} is l.s.c. By the (GC), for each $x, \xi \in \mathbb{R}^d$, there exists $t_{x,\xi} \in (0,T)$ and $\eta_{x,\xi} > 0$ such that, for all $(x,\xi) \in K$

$$|t - t_{x,\xi}| < \eta_{x,\xi} \implies 1_{\Omega}(X(t;x,\xi)) = 1$$

 $\implies \int_0^T 1_{\Omega}(X(t;x,\xi))dt \ge 2\eta_{x,\xi} > 0$

By Fatou's lemma, the positive function $(x,\xi) \mapsto \int_0^T 1_{\Omega}(X(t;x,\xi))dt$ is l.s.c. on K compact, and therefore attains its minimum on K. \square

Application to Observability

Thm Let $V \in C^{1,1}(\mathbb{R}^d)$ and (K, Ω, T) satisfying (GC). Then, for all $R^{in} \in \mathcal{D}_2(\mathfrak{H})$ and all $\delta > 0$, denoting $\Omega_{\delta} := \Omega + B(0, \delta)$, one has

$$\int_{0}^{T} \operatorname{tr}_{\mathfrak{H}}(1_{\Omega_{\delta}}U(t)R^{in}U(t)^{*})dt \geq \underbrace{C[K,\Omega,T]}_{\text{geometric}}$$

$$-\underbrace{\frac{1}{\delta}\inf_{\lambda>0}\frac{1}{\lambda}\frac{\exp\left(\frac{1}{2}T\left(\lambda+\frac{\operatorname{Lip}(\nabla V)}{\lambda}\right)\right)-1}{\frac{1}{2}\left(\lambda+\frac{\operatorname{Lip}(\nabla V)}{\lambda}\right)}\inf_{\text{supp}(f^{in})\subset K}\mathfrak{d}_{\lambda}(f^{in},R^{in})}_{\text{supp}(f^{in})\subset K}$$

semiclassical correction

Example 1: Toeplitz Initial Data

Assume that R^{in} is of the form

$$R^{in} := \int_{\mathbb{R}^{2d}} |q,p\rangle\langle q,p| \mu(dqdp), \quad \mu \in \mathcal{P}_2(\mathbb{R}^{2d})$$

where $|q,p\rangle(x) := (\pi\hbar)^{-d/4} e^{-|x-q|^2/2\hbar} e^{ip\cdot x/\hbar}$

In that case (see [FG-T. Paul, ARMA2017] Thm. 2.4)

$$\lambda d\hbar \leq \mathfrak{d}_{\lambda}(f^{in},R^{in})^2 \leq \max(1,\lambda^2)W_2(f^{in},\mu^{in})^2 + \lambda d\hbar$$

so that
$$\operatorname{supp}(\mu) \subset K \implies \inf_{\operatorname{supp}(f^{in}) \subset K} \mathfrak{d}_{\lambda}(f^{in}, R^{in}) = \sqrt{\lambda d\hbar}$$

Therefore, in that case, one arrives at

$$\frac{1}{C_{OBS}} = C[K, \Omega, T] - \frac{1}{\delta} \inf_{\lambda > 0} \sqrt{\frac{d\hbar}{\lambda}} \frac{\exp\left(\frac{1}{2}T\left(\lambda + \frac{\text{Lip}(\nabla V)}{\lambda}\right)\right) - 1}{\frac{1}{2}\left(\lambda + \frac{\text{Lip}(\nabla V)}{\lambda}\right)}$$

Example 2: Pure State

Assume that $R(t)=|U(t)\psi^{in}\rangle\langle U(t)\psi^{in}|$, where $U(t)=e^{-it\mathcal{H}/\hbar}$ is the Schrödinger group.

Choosing $f^{in}(q,p):=\frac{|\langle q,p|\psi^{in}\rangle|^2}{(2\pi\hbar)^d}=$ Husimi function of ψ^{in} leads to

$$\frac{1}{C_{OBS}} = C[K, \Omega, T] \iint_{K} |\langle q, p | \psi^{in} \rangle|^2 \frac{\textit{dqdp}}{(2\pi\hbar)^d} - D[T, \mathsf{Lip}(\nabla V)] \frac{\boldsymbol{\Sigma}[\psi^{in}]}{\delta}$$

where

$$\begin{split} D[T,L] := & 4 \frac{e^{(1+L)T/2} - 1}{1+L} \\ \Sigma[\psi^{in}]^2 := & \langle \psi^{in} | |x|^2 | \psi^{in} \rangle - |\langle \psi^{in} | x | \psi^{in} \rangle|^2 \\ & + \langle \psi^{in} | - \hbar^2 \Delta_x | \psi^{in} \rangle - |\langle \psi^{in} | - i\hbar \nabla_x | \psi^{in} \rangle|^2 \end{split}$$

Proof

Call $f(t,\cdot,\cdot):=f^{in}\circ\Phi(t;\cdot,\cdot)$ and $R(t):=U(t)R^{in}U(t)^*$. For all $Q(t)\in\mathcal{C}(f(t,\cdot,\cdot),R(t))$, one has

$$\begin{aligned} \left| \mathsf{tr}_{\mathfrak{H}}(\chi R(t)) - \iint_{\mathbb{R}^{2d}} \chi(x) f(t, x, \xi) dx d\xi \right| \\ &= \left| \iint_{\mathbb{R}^{2d}} \mathsf{tr}_{\mathfrak{H}}((\chi(x) - \chi(y)) Q(t, x, \xi) dx d\xi \right| \\ &\leq \frac{\mathsf{Lip}(\chi)}{\lambda} \left(\iint_{\mathbb{R}^{2d}} \mathsf{tr}_{\mathfrak{H}}(Q_t^{\frac{1}{2}}(\lambda^2 |x - y|^2 + |\xi + i\hbar \nabla_y|^2) Q_t^{\frac{1}{2}}) dx d\xi \right)^{\frac{1}{2}} \end{aligned}$$

so that

$$\left| \operatorname{tr}_{\mathfrak{H}}(\chi R(t)) - \iint_{\mathbb{R}^{2d}} \chi(x) f(t, x, \xi) dx d\xi \right| \leq \frac{\operatorname{Lip}(\chi)}{\lambda} \mathfrak{d}_{\lambda}(f(t, \cdot, \cdot), R(t))$$

$$\leq \frac{\operatorname{Lip}(\chi)}{\lambda} \mathfrak{d}_{\lambda}(f^{in}, R^{in}) \exp\left(\frac{1}{2}t\left(\lambda + \frac{\operatorname{Lip}(\nabla V)}{\lambda}\right)\right)$$

Since

$$\iint_{\mathbb{R}^{2d}} \chi(x) f(t, x, \xi) dx d\xi = \iint_{\mathbb{R}^{2d}} \chi(X(t; x, \xi)) f^{in}(x, \xi) dx d\xi$$

one has

$$\begin{split} \int_0^T \mathrm{tr}_{\mathfrak{H}}(\chi R(t)) dt &\geq \inf_{(x,\xi) \in \mathcal{K}} \int_0^T \chi(X(t;x,\xi)) dt \iint_{\mathcal{K}} f^{in}(x,\xi) dx d\xi \\ &- \frac{\mathrm{Lip}(\chi)}{\lambda} \frac{\exp\left(\frac{1}{2}T\left(\lambda + \frac{\mathrm{Lip}(\nabla V)}{\lambda}\right)\right) - 1}{\frac{1}{2}\left(\lambda + \frac{\mathrm{Lip}(\nabla V)}{\lambda}\right)} \mathfrak{d}_{\lambda}(f^{in},R^{in}) \end{split}$$

Conclude by choosing $\chi(x) := \left(1 - \frac{\operatorname{dist}(x,\Omega)}{\delta}\right)_{\perp}$, so that $\operatorname{Lip}(\chi) = \frac{1}{\delta}$

Conclusions/Perspectives

- •We have proved an **observation inequality** for the quantum dynamics under the only assumption that V is regular enough for the existence and uniqueness of the classical dynamics ($C^{1,1}$ potential)
- •The **observation constant is explicit** in terms of the geometric data of the Bardos-Lebeau-Rauch controllability condition
- •Approach based on a quantum analogue of the Wasserstein distance to measure the difference between a classical and a quantum density

Possible extensions

- •Obtaining a controllability statement (by duality as in HUM)
- •Including magnetic fields (I. Ben Porath's PhD thesis)
- •Other dispersive dynamics? Klein-Gordon?