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Then, the formal vectorial Wasserstein gradient flow is the solution of the initial value problem
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1.5.1 Limitation of this approach:

Dynamic and static optimization perspective do not coincide; instead we get inequality (this will
have to be explained carefully – from their work, we anticipate that static distance via canonical
lifting won’t coincide, not that static dissimilarity won’t)

1.6 Main Results

In this paper we provide analysis of several di↵erent functions describing dissimilarity between
vector valued measures. In order to present our main results we begin by letting ⌦ be a convex and
closed subset of Rd, and G be a connected weighted graph with n nodes. Assume that the matrix
of edge weights [qij ]ni,j=1

is symmetric and that, between any nodes i and j, there exists a sequence
of edges {ekl}k,l connecting them on which qkl > 0 for all k, l.

First, we review an optimal transportation on graphs theory in Section 2.2. Here, we establish
the isomoprhism between probability measures on graph G, and a standard simplex �n�1

. We
discuss induced geometry on simplex, and an induced geometry on product space Rd ⇥�n�1

.

In section 3 we introduces (semi)metrics on vector-valued measures P(⌦⇥ G). First, in section
3.1, we introduce the dynamic distance on P(⌦ ⇥ G). Given an evolving vector valued measure
⇢ : [0, T ] ! P(⌦⇥ G), a vector-valued velocity field describing the evolution of each component in
physical space u : Rd ⇥ [0, T ] ! Rnd, and a matrix-valued velocity field v : Rd ⇥ [0, T ] ! Mn⇥n(R)
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Abstract—A key requirement for supervised machine learning
is labeled training data, which is created by annotating unlabeled
data with the appropriate class. Because this process can in many
cases not be done by machines, labeling needs to be performed by
human domain experts. This process tends to be expensive both
in time and money, and is prone to errors. Additionally, reviewing
an entire labeled dataset manually is often prohibitively costly,
so many real world datasets contain mislabeled instances.

To address this issue, we present in this paper a non-
parametric end-to-end pipeline to find mislabeled instances in
numerical, image and natural language datasets. We evaluate
our system quantitatively by adding a small number of label
noise to 29 datasets, and show that we find mislabeled instances
with an average precision of more than 0.84 when reviewing our
system’s top 1% recommendation. We then apply our system
to publicly available datasets and find mislabeled instances in
CIFAR-100, Fashion-MNIST, and others. Finally, we publish the
code and an applicable implementation of our approach.

I. INTRODUCTION

The prediction accuracy of supervised machine learning
methods depends on two main ingredients: the quality of the
labeled training data and the appropriateness of the algorithm
[1]. In this paper, we focus on identifying mislabeled instances
in order to improve data quality. This, in return, may help us
to get a higher prediction accuracy when applying a suitable
classification algorithm [1].

Still today, labeling is either done manually by experts as
in Fashion-MNIST [2] or at least checked by humans as in
CIFAR-100 [3], which costs both time and money. Errors can
occur when labeling is performed by experts as well as when
it is performed by non-experts. [1] lists subjectivity, data-entry
error, and inadequacy of the information as possible causes.
Especially on numerical and image data, the last two are the
most important [4], [5]. For datasets containing as many as
50,000 instances (e.g., CIFAR-100), it is nearly impossible to
manually find mislabeled data without additional pre-selection.

In order to address the problem of mislabeled instances,
we present a tool set that comprises an end-to-end pipeline
to help identify this kind of error. The user needs to provide
the labeled data to be checked; suitable hyperparameters are
inferred automatically. The tool then returns the instances with
the highest probability of carrying a wrong label. Hence, it can
be used to improve existing datasets as well as to check new

Fig. 1. Mislabeled instances in the CIFAR-100 training set, with correspond-
ing label and index of the image in the data set.

Fig. 2. Mislabeled instances in the Fashion-MNIST training set.

datasets before publishing them. The tool can be applied to any
classification problem, whether it is numerical data, images,
or natural language.

For the empirical evaluation of our tool set, we use a
combination to 29 real-world and synthetic datasets, among
these the famous MNIST, CIFAR, Twenty Newsgroup and
IMDB datasets. We show that our approach can successfully
identify mislabeled instances with label noise both completely
at random (independent of the class) and at random (where
some classes might be confused more easily) [6], [7]. Our
experiments show that the tool set is applicable to a large
variety of classification datasets.

In summary, our contribution is as follows.
• We provide a tool to automatically pre-select instances

likely to be mislabeled, that is suitable for use by non-
machine learning practitioners due to its complete inde-
pendence of user-supplied hyperparameters.

• We provide a thorough evaluation of our approach with
29 different real-world and synthetic datasets.

• We identify mislabeled instances in CIFAR-100, MNIST
and Fashion-MNIST, that, to the best of our knowledge,
have not been published before.

• We supply the full source code, including the scripts to
create the qualitative and quantitative evaluation1.

1https://github.com/mueller91/labelfix
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Mild misclassifications in Fashion MNIST— for example…
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Labeled Dataset #1 Labeled Dataset #2

How different are these datasets? 
Represent images as points  
Similarity between images  =  
Dissimilarity between label  and label  =  
Datasets are similar if their images & labels are similar.

xk, yl ∈ ℝd

∥xk − yl∥
i j qij

x1 x2 x3

y1 y2 y3

Applications: 
• Compare 

performance of 
two classifiers 

• Compare 
structure of two 
labeled datasets 
(ATLAS/CMS)

Motivation: image classification

qij
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Labeled Dataset #1 Labeled Dataset #2

Represent collection of images with label  as 

Represent datasets as vector valued measures  

Datasets are similar if  for some distance d.

i

μ = [μi]n
i=1

d(μ, ν) ≪ 1

μ1
μ2
μ3
μ4
μ5
μ6

ν1
ν2
ν3
ν4
ν5
ν6

μi =
K

∑
k=1

δxk
mk

Motivation: image classification

μ ν



Motivation: gradient flows
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Given a target vector valued measure , a loss functional , 
and a constraint set , find a minimizer of

μ ℒ
C

For classification or gradient flows, what is an appropriate 
notion of distance d between vector valued measures?

min
ρ∈C

ℒ(ρ, μ) .

Given a distance d between vector valued measures, could 
flow to critical points via gradient descent. In discrete time,

ρn+1
τ = argminρ∈Cℒ(ρ, μ) +

1
2τ

d2(ρ, ρn
τ ),

which, for nice , is stable wrt perturbations in d.ℒ



Fix  closed. Let  denote an  node graph.Ω ⊆ ℝd G n

Vector valued measures

7
x1

x2

x3

μ1
μ2

μ3

𝒫(Ω × G) := {μ = [μi]n
i=1 : μi ∈ ℳ(Ω),

n

∑
i=1

μi ∈ 𝒫(Ω)}
Consider vector valued measures with total mass one:

=: μ̄⏟
For example, when  and  has three nodes:Ω = ℝ G
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Previous work on vector valued OT
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There are several existing notions of distance on . 

[Chen, Georgiou, Tannenbaum ’18]: define dynamic distance 
via a product space structure on  &  

[Bacon ’20]: define static distance via Kantorovich formulation; 
transport plans  move mass from  to  at cost ; 
prove strong duality; compatibility of  to ensure metric. 

Also -type metrics [Todeschi, Metvier, Mirebeau ’25], [Ryu, 
Chen, Li, Osher ’18]. 

We seek a -type distance on  that unites 
dynamic and static perspectives, with a (formal) Riemannian 
structure for gradient flows and linearization.

𝒫(Ω × G)

(WG, 𝒫(G)) (W2, 𝒫(ℝd))

γij μi νj cij(x, y)
cij

W1

W2 𝒫(Ω × G)



W2
G(p, p̃) := min

1
2

n

∑
i,j=1

∫
1

0
|vij,t |

2 θ(pi,t, pj,t)qijdt

such that ∂t pt + ∇G ⋅ (p̌tvt) = 0, p0 = p, p1 = p̃
Figure 1: first figure

Figure 2: second figure
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Graph Wasserstein metric
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Examples: ,      ,    or     

p̌ijvij := θ(pi, pj)vij

θ(pi, pj) = (pi + pj)/2 pipj ∫
1

0
p1−s

i ps
j ds

Let  denote an  node weighted graph, where the weight of 
the edge connecting node  to node  is . 

G n
i j qij ≥ 0

𝒫(G) = {p =
n

∑
i=1

piδi : pi ≥ 0,
n

∑
i=1

pi = 1}



Graph Wasserstein metric

11

Rmk: The manifold is not complete, and the geodesic between 
two points in the interior can touch the boundary [Gangbo, Li, 
Mou ’19], so branching is possible. 

To see role of , absorb weights into velocity: for ,qij qij > 0

W2
G(p, p̃) = min

1
2

n

∑
i,j=1

∫
1

0
|vij,t |

2 θ(pi,t, pj,t)q−1
ij dt

such that ∂t pt + ∇[n] ⋅ (p̌tvt) = 0, p0 = p, p1 = p̃

Thm [Maas ’11]: For  connected,  is a 
smooth Riemannian manifold.

𝒢 (𝒫>0(G), WG)



Via the isometry ,p : Δn−1 → 𝒫(G) : r ↦ [r1, r2, …,1 − Σiri]
Δn−1 = {r ∈ ℝn−1

+ :
n

∑
i=1

ri ≤ 1} ≅ 𝒫(G)

Induced geometry on simplex

12

Prop: [c.f. Maas, Erbar ’12] 
 is topologically equivalent to ; 

on , it is a smooth Riemannian manifold.
(Δn−1, dΔn−1) (Δn−1,∥ ⋅ ∥ℝn−1)

(Δn−1)∘

Induced distance: .dΔn−1(r, r̃) = WG(p(r), p(r̃))
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Continuity equation
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Given  closed, convex and  a connected weighted 
graph, we consider the following continuity equation on :

Ω ⊆ ℝd G
Ω × G

∂tρi,t + ∇ ⋅ (ui,tρi,t) =
n

∑
j=1

θ(ρi,t, ρj,t)vij,tqij

For  symmetric, th component of  satisfiesv i ρt(x) = [ρi,t(x)]n
i=1

Let  denote the solutions satisfying , .𝒞(ρ, ρ̃) ρ0 = ρ ρ1 = ρ̃

For velocities  and ,ut(x) = [ui,t(x)]n
i=1 vt(x) = [vij,t(x)]n

i,j=1

∂t ρ + ∇ ⊙ (ρ ⊙ u) + ∇G ⋅ (ρ̌v) = 0
(ρ ⊙ u)i(x) = ρi(x)ui(x) (ρ̌v)ij(x) = θ(ρi(x), ρj(x))vij(x)

θ(ρi, ρj) := θ ( dρi

dρ̄
,

dρj

dρ̄ ) ρ̄



Dynamic metric
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Thm: [C., García Trillos, Nikolic ’25]:  is a metric on 
 and a minimizer exists.

WΩ×G
𝒫2(Ω × G)

Given a solution of the continuity eqn, we consider the action

∥(u, v)∥2
ρ :=

n

∑
i=1

∫Ω
|ui |

2 ρi +
n

∑
i,j=1

∫Ω
|vij |

2 θ(ρi, ρj)qij

such that (ρ, u, v) ∈ 𝒞(μ, ν)

W2
Ω×G(μ, ν) = inf ∫

1

0
∥(ut, vt)∥2

ρt
dt

This leads to the dynamic distance:



Dynamic metric comparison
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Continuity equation: ∂t ρ + ∇ ⋅ (ρ ⊙ u) + ∇G ⋅ (ρ̌v) = 0
C., García Trillos, Nikolic
(ρ̌v)ij = θ(ρi, ρj)vij

Chen, Georgiou, Tannenbaum
(ρ̌v)ij = ρi(vi,j)+ − ρj(vij)−

(II) =
n

∑
i,j=1

∫Ω
|vij |

2 θ(ρi, ρj)qij

Action: ∥(u, v)∥2
ρ := ∑

i
∫ |ui |

2 ρi + (II)

(II) =
n

∑
i,j=1

∫Ω
(vij)2

+ρiqij

Thm [Chen, Georgiou, Tannenbaum ’18], [Esposito, 
Patacchini, Schlichting, Slepčev ’21]: The CGT formulation is 
not symmetric and leads to a Finslerian structure.



Thm [Liero, Mielke, Savaré ’16]: Given the projection operator,
, we have 𝔓HK : 𝒫(ℭΩ) → ℳ(Ω) : λ ↦ πΩ#(r2dλ(x, r))

r ∈
R

From dynamic to static

17

Potential analogy with Hellinger-Kantorovich?

such that ∂tρt + ∇ ⋅ (ρtvt) = 4ρtξt, ρ0 = μ, ρ1 = ν

HK2(μ, ν) = inf ∫
1

0 ∫Ω
( |vt |

2 + 4ξ2
t )ρtdt

HK(μ, ν) = inf WℭΩ
(λμ, λν)

such that 𝔓HK(λμ) = μ, 𝔓HK(λν) = ν

μ ∈ ℳ(Ω)λμ ∈ 𝒫(ℭΩ)
x ∈ Ω

𝔓HK

x ∈ Ω



In other words,  iff for  , μ = 𝔓λ i = 1,…, n − 1, η ∈ Cb(ℝd)

∫ℝd

η(x)dμi(x) = ∫ℝd×Δn−1

riη(x)dλ(x, r)

Static (semi) metrics

18

𝔓 : 𝒫(ℝd × Δn−1) → 𝒫(ℝd × G) : λ ↦ πℝd#(p(r)λ(x, r))

Call  the canonical lifting.λμ(x, r) :=
n

∑
i=1

μi(x) ⊗ δei
(r)

Motivated by this, we consider the projection operator:
∫ℝd

η(x)dμn(x) = ∫ℝd×Δn−1 (1 −
n

∑
i=1

ri) η(x)dλ(x, r)

x1

x2

x3

μ1
μ2

μ3

Figure 1: first figure
Figure 2: second figure
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@tµi(x) = r ·
 
µi(x)
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nX
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rWik ⇤ µk(x)
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�
nX

j=1
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Static (semi) metrics
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Dℝd×G(μ, ν) := inf {Wℝd×Δn−1(λ1, λ2) : 𝔓λ1 = μ, 𝔓λ2 = ν}
W2,𝒲(μ, ν) := Wℝd×Δn−1(λμ, λν)

Prop [C., García Trillos, Nikolic ’25]: On ,  
is a semi-metric,  is a metric, and .

𝒫2(ℝd × G) Dℝd×G
W2,𝒲 Dℝd×G ≤ W2,𝒲

c.f. [Erbar, Maas ’12] on graph, [Bacon ’20] for cost cij(x, x̃)

Prop [C., García Trillos, Nikolic ’25]:  

 W2
2,𝒲(μ, ν) = min

n

∑
i,j=1

∬ ∥x − x̃∥2 + W2
G(δj, δi)dγij(x, x̃)

s . t . γij ∈ 𝒫(ℝ2d), μi =
n

∑
j=1

π1#γij, νj =
n

∑
i=1

π2#γij

 fails the triangle inequalityDℝd×G
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Comparison of metrics

21

How are these various (semi) metrics related?

Thm [C., García Trillos, Nikolic ’25]: For , μ, ν ∈ 𝒫(Ω × G)
WΩ×G(μ, ν) ≤ Dℝd×G(μ, ν) ≤ W2,𝒲(μ, ν)

Cor [C., García Trillos, Nikolic ’25]: Suppose  is 
bounded. For  and , 

Ω ⊆ ℝd

Cq ∼ max
i ∑

j

qij Cd ∼ diam(Ω × Δn−1)

min{1,C−1/2
q }dBL(μ, ν) ≤ … ≤ max{1,C3/2

d n1/4}d1/2
BL (μ, ν) ⏟⏟

In particular, on a bounded domain, all are topologically equiv.



Example

μ =
1
2 [ δa

δ−a] ν = [ bδ0

(1 − b)δ0]

0−a a

𝔓

Wℝ×G(μ, ν)
≤ a + d[0,1](1/2,b)

Dℝ×G(μ, ν)

= a2 +
1
2

d2
[0,1](2b − 1,0)<

∃a, b
s.t.

0−a a
x

1

2b − 1

r



b1/2

Example

μ =
1
2 [ δa

δ−a] ν = [ bδ0

(1 − b)δ0]

0−a a0−a a0−a a 0−a a

1

2b − 1

Wℝ×G(μ, ν)
≤ a + d[0,1](1/2,b)

Dℝ×G(μ, ν)

= a2 +
1
2

d2
[0,1](2b − 1,0)<

∃a, b
s.t.

𝔓
r

x



Static metric: classification and linearization 

Caveat: existence of  satisfying  open, since 
 may be a branching space [Cavallett, Mondino ’17] 

Tμ Tμ#λref = λμ
ℝd × Δn−1

Which metric to use?

24

Dynamic metric: gradient flows; for ,ℒ(ρ, μ) :=
n

∑
i=1

KL(ρi |μi)

∂tρi,t = Δρi,t − ∇ ⋅ (∇log(μi)ρi,t)

+
n

∑
j=1

θ(ρi,t, ρj,t)log (
ρi,t /μi

ρj,t /μj ) qij

d2
LOT(μ, ν) := ∫ℝd×Δn−1

∥Tμ(x, r) − Tν(x, r)∥2dλref(x, r)



Thank you!



Gradient flows
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8 KATY CRAIG, NICOLÁS GARCÍA TRILLOS, D̄ORD̄E NIKOLIĆ

An immediate consequence of this result is that all three metric dominate the bounded Lipschitz
distance on P(⌦ ⇥ G) (see equation 2.1 for the definition), and when the domain ⌦ is bounded, all
metrics are bi-Hölder equivalent, hence topologically equivalent.

Corollary 1.5 (Relations between (semi)-metrics on P2(⌦ ⇥ G)). Suppose G is connected and
symmetric and the interpolation function ✓ satisfies Assumption 1.1. Define Q := maxi

P
n

j=1
qij >

0. Then, for all µ, ⌫ 2 P2(⌦ ⇥ G),

min{1, Q
�1/2}dBL(µ, ⌫)  W⌦⇥G(µ, ⌫)  DRd⇥G(µ, ⌫)  W2,W(µ, ⌫).(1.10)

Furthermore, if ⌦ is bounded, then for C⌦,�n�1 := diam(⌦ ⇥ �n�1),

W2,W(µ, ⌫)  max{1, C
3/2

⌦,�n�1}(2n)1/4
p

dBL(µ, ⌫),

and all metrics are topologically equivalent.

We conclude with examples that show the preceding inequalities are sharp and DRd⇥G fails to
satisfy the triangle inequality.

Proposition 1.6 (Examples of sharpness and inequality). Suppose G is a two-node graph with
qij ⌘ 1, ⌦ = R. Then there exist ✓ satisfying assumption 1.1 so that

(i) for each pair of inequalities in (1.10), the constants are sharp and there exist measures for
which strict inequality holds;

(ii) DRd⇥G fails to satisfy the triangle inequality.

1.4. Perspectives on gradient flows and linearization. Returning to our original motivations
in data analysis and PDEs, we now discuss the merits of the vvOT distances in each of these
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An immediate consequence of this result is that all three metric dominate the bounded Lipschitz
distance on P(⌦ ⇥ G) (see equation 2.1 for the definition), and when the domain ⌦ is bounded, all
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the simplex �n�1; it is useful when thinking about the simplex �n�1 as a manifold. By � we will
represent measures over Rd ⇥�n�1.

Given a complete metric space (X, d) and a curve x : (0, 1) ! X is absolutely continuous,
denoted x 2 AC(0, 1;X), if there exists m 2 L

1(0, 1) so that

d(x(t), x(s)) 
ˆ

t

s

m(r)dr, 8 0 < s  t < 1. (2.5)

For any x 2 AC(0, 1;X), the metric derivative

|x0|(t) := lim
s!t

d(x(s), x(t))

|s� t|

exists for Lebesgue a.e. t 2 (0, 1), t 7! |x0|(t) belongs to L
1(0, 1), and m(t) = |x0|(t) is admissible

in (2.5). Furthermore, for any m 2 L
1(0, 1) satisfying (2.5), |x0|(t)  m(t) for a.e. t 2 (0, 1).

Sometimes, to emphasize the role of the metric we will write either |x0|X(t) or |x0|d(t) to denote
the metric derivative.

2.2 Optimal transport on graphs

Let G denote a weighted graph with nodes {1, . . . , n} and edge-weights {qij}ni,j=1
. Let RG ' Rn and

RG⇥G ' Rn
2
denote the sets of scalar functions on the nodes and edges of the graph, respectively.

Observe that any probability measure over G may be expressed as

p =
nX

i=1

pi�i for pi � 0 8i,
nX

i=1

pi = 1.

In this way, there is a one-to-one correspondence between probability measures on the graph p 2
P(G) and points in the simplex r 2 �n�1 (see [26]), via the bijections

p : �n�1 ! P(G) : [ri]n�1

i=1
7!

"
r1, r2, . . . , rn�1, 1�

n�1X

i=1

ri

#
, (2.6)

p
�1 : P(G) ! �n�1 : [pi]

n

i=1 ! [pi]
n�1

i=1
, (2.7)

and, through this, we can consider P(G) and �n�1 endowed with the usual Euclidean topologies,
so that p�1 is an isomorphism. The (relative) interior of P(G) is

(P(G))� = {p 2 P(G) : pi > 0 8i = 1, . . . , n}.

As originally introduced by Maas [36], one may define a notion of Wasserstein distance on P(G)
by considering the least amount of e↵ort required to flow between two probability measures on G
via a discrete analogue of the continuity equation, which we now describe. First, we consider the
usual notions of graph gradient and divergence operators

rG : Rn ! Rn⇥n(R) : � 7! [�j � �i]
n

i,j=1, divG : Rn⇥n ! Rn : v 7!
h
� 1

2

X

j

(vij � vji)qij
i
n

i=1

.

As the domain of the graph divergence is Rn⇥n, one must choose an appropriate notion of inter-
polation function ✓ : [0,+1) ⇥ [0,+1) ! [0,+1) to map a probability measure on the graph
p 2 P(G) ✓ Rn to a function [✓(pi, pj)]ni,j=1

on the edges, allowing one to define a notion of
flux at the graph level. This leads to the following notion of discrete continuity equation; see,
e.g., [22, equation 2.8].
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