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Motivation: image classification
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Mild misclassifications in Fashion MNIST — for example...
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Motivation: image classification
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How different are these datasets?
Represent images as points x;, y; € RY
Similarity between images = ||x, — yi|
Dissimilarity between label 1 and label j = g;;

Datasets are similar if their images & labels are similar.




Motivation: image classification

Labeled Dataset #1 Labeled Dataset #2
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Represent collection of images with label 1 as y; = Z 5kak
k=1

Represent datasets as vector valued measures g = [//tl

Datasets are similar if d(u,v) << 1 for some distance d.



Motivation: gradient flows

Given a target vector valued measure j, a loss functional Z,
and a constraint set C, find a minimizer of

min Z'(p, p) .
peC

Given a distance d between vector valued measures, could
flow to critical points via gradient descent. In discrete time,

. 1 n
p?“ = argmin,.~Z(p, 1) + Z—sz(p,pT :

which, for nice &£, is stable wrt perturbations in d.




Vector valued measures

Fix Q C R closed. Let G denote an n node graph.

Consider vector valued measures with total mass one:

PR XG) = {ﬂ = lplizy i € ML), Z/’ti = 9’(9)}

i=1
N

::I[Z

For example, when £2 = R and G has three nodes:
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Previous work on vector valued OT

There are several existing notions of distance on (L2 X G).

Bacon '20]: define static distance via Kantorovich formulation:;
transport plans y;; move mass from y; to v; at cost ¢;(x, y);

orove strong duality; compatibility of c;; to ensure mettric.

Also W,-type metrics [Todeschi, Metvier, Mirebeau ’'25], [Ryu,
Chen, Li, Osher '18].

We seek a W,-type distance on &P(€2 X G) that unites

dynamic and static perspectives, with a (formal) Riemannian
structure for gradient flows and linearization.



Graph Wasserstein metric

_et G denote an n node weighted graph, where the weight of
the edge connecting node i to node j is ¢,; = 0. Ps 2025

P(G) = {P = ipiéi P 2 Oaipi = 1}
i=1 i=1

5 . 1 n 1
We(p, p) == min 5 Z J V| 0P, 1 pj )t
ij=1°0

]\51]\/1] — 9(pl’ p])vl] i

Examples: O(p;, p;) = (p; + p)/2, | /piD;; ©OF [ pl.l‘sp]?ds
0 ’



Graph Wasserstein metric

Thm [Maas ’11]: For & (P.o(G), Wy)is a
smooth Riemannian manifold.

Rmk: The manifold is not complete, and the geodesic between
two points in the interior can touch the boundary [Gangbo, Li,
Mou '19], so branching is possible.

10 see role of g;;, absorb for g;; > 0,
1 & | ,
Wetp. ) = min = Y | 1y, PO, 5
ij=1"0
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Induced geometry on simplex
Via the isometry p : A" - P(G) : r [rl, Foy eves]l — Ziri],

A" = {rEIR’_”‘[I:ZriSI} ~ P(G)

=1
p1 = 0.75 | py =0.25 p, =0.25 r. \
0.75 3 3
'3’// "-..x‘\\ o ,Q;// N o 05+ ¢
| . \
=0.25 O qiz =1 ’ 12 = ‘ : 5 r
P2 =4 p1 =0.5 p2= 025 p1 =0.25 p, = 05 0.25 0.5 2

Induced distance: d.-.1(r, 7)) = W(p(r),p(7r)).

Prop: [c.f. Maas, Erbar '12]
(A" dn-1) is topologically equivalent to (A" L] - | Rn-1);
on (A" 1Y, it is a smooth Riemannian manifold.
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Continuity equatior

Given Q C R4 closed, convex
graph, we consider the following continuity equation on €2 X G-

For velocities u,(x) = [ui,t(x)] _;and v(x) = [V,] t(x)], =1’

0p+VO(poOu)+Vg-(pv)=0
(p O u)(x) = pux)  (Pv);(x) = O(p,(x), p;(x))v(x)

For v symmetric, ith component of p(x) = [p; (x)]'_, satisfies
n
atpi,t + V- (ui,tpi,t) = 2 H(IOi,t’ pj,t)vij,tqu
=1

Let G (p, p) denote the solutions satisfying po = p, p1 = P
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Given a solution of the continuity egn, we consider the action

|, )2 = ZJ 1 p; + ZJ v 200, P

,j=1

his leads to the dynamic distance:

1
W2 (o) = inf[ v 2ds

0
such that (p,u,v) € €(u,v)

Thm: [C., Garcia Trillos, Nikolic '25]: Wq s is @ metric on
P,(£2 X G) and a minimizer exists.
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Dynamic metric comparison

Continuity equation: d.p +V - (p Qu)+ V- (pv) =0
C., Garcia Trillos, Nikolic Chen, Georgiou, Tannenbaum

(ﬁ")ij = 0(p;, Pj)V;j (ﬁV)zj = PV )y — Pi(vi)_
Action: [|@, W||2 := Y. J\u,-\zpi + (1D

l

Q

i,j=1 ij=1 Q

Thm [Chen, Georgiou, Tannenbaum 18], [Esposito,
Patacchini, Schlichting, SlepcCev '21]: The CGT formulation is
not symmetric and leads to a Finslerian structure.
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From dynamic to static

Potential analogy with Hellinger-Kantorovich”?

|
HK?*(y, v)=ian J (| v,|* + 4EP)p dt
0 JQ

such that 0.p, +V - (pyv,) =4ps,, py=u,p1 =v

Thm [Liero, Mielke, Savaré "16]:. Given the projection operator,
Bk : P(Cq) = M(Q) : A ng (r*dA(x, r)), we have

HK(IM, I/) — lan(g ( 1 U)

O’CEQ such that §B,x(4,) = s, Px(h) = v
Bk
7 A

x e .




Static [ n(x)dp,(x) =J (1 =
Rd Rdx An—1

Motivatec i=1

r-

PB: PRIX AN - PRIXG): A mpa

) n(xX)dA(x, r)

(P(NA(x, 1))

In other words, u\=PAifffori=1,....,.n—1,n € Cb(le)

J n(x)dp(x) = J
R4 Rdx An-

Call 4,(x, r) := Z Hx) ® 6,(n) the

.ﬂz

/ Y /}T
a~ . é
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Static (semi) 1121l Doy fails the triangle inequality

Dgay (. V) := inf { Wiaani(A1, 45) + B4, = p, PA, = v}
'& dxA”—l(/l;v /11/)

Prop [C., Garcia Jrillos, Nikolic 25]: On P5(R? X G), Dgas;
is a semi-metric, W, g~ is a metric, and Dpay < W, 4

Prop [C., Garcia Trillos, Nikolic '25]:
n

W5 o, v) = min Z ” lx — XII* + We(6;, 6)dy,(x, X)
i j=1 L n
S.L. }/ij = @(RZd)a Hi = Z ﬂl#yiﬁ yj — 2 ﬂ2#}/lj
j=1 i=1

c.f. [Erbar, Maas "12] on graph, [Bacon '20] for cost cl-j(x, X)
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Comparison of metrics

How are these various (semi) metrics related?

Thm [C., Garcia Trillos, Nikolic ’25]: For u,v € P(L2 X G),

axG(:V) < Drayg(p,v) < W, 5 (p,v

Cor [C., Garcia Trillos, Nikolic|’25]: Suppose Q C R%is
bounded. For Cq ~ max Z and C,; ~ diam(£2 X A",

l

]

J
min{l,Cq_l/z}dBL(ﬂ,V) <...< max{l,Cg/znm}déf(ﬂ,l/)

In particular, on a bounded domain, all are topologically equiv.
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Which metric to use?

n
Dynamic metric: gradient flows; for Z(p, u) := Z KL(p;| ),

=1
atpi,t — Api,t - V- (Vl()g(ﬂi)ﬂi,z)

Caveat: existence of 1, satisfying 7 ,#A4,.

¢ = /1” open, since
R % A" may be a branching space [Cavallett, Mondino *17]
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Thank you!



Gradient flows

Energy:
B(w) = [ fu@)dz+ Y [ Viwu(@ds

+ % Z //Rded pi(2)Wij(z — y)p; (y)dady,

i,j=1
Gradient flows:

k=1

Orpi(z) =V - (ui(w) (V&-f (1(x)) + VVi(z) + > VWi * m(@))

n

-2 (az'f(u(:v)) — 03 (u(@)) + Vilw) = Vi) + 3 (Wi — W) » “’“(x)>

0 (i), () qij,
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Graph operators

Vg :R" - R™™(R) : ¢ v [pj — 4]l

n

: nxXn n 1
leg R % — R" v~ [— 523:(2)@] —?in)qijL:1



