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Outline

• Reduced density matrices 

• Equation of motion for the 1-electron reduced density matrix 

• Linear response theory  
! adiabatic approximations 
! linear response function 
! excitation energies 
! extended random phase approximation

Note that in the lecture there are two equivalent symbols used for 1-RDM!

 



  

 

 

 



     

   

  



In the literature one often finds lower case gamma for 1-RDM

!(1) is a one-electron reduced density matrix (1-RDM) deÖned as

!(1)(x1; x
0
1) = N

Z
%(x01; : : : ; xN )

"%(x1; : : : ; xN )dx2 : : : dxN

& ! !(1)

!(2)(x1; x2;x1; x2) is an element of the two-electron reduced density
matrix (2-RDM) deÖned as

!(2)(x1; x2;x
0
1; x

0

2) =
N(N " 1)

2

Z
%(x01; x

0
2; : : : ; xN )

"%(x1; x2; : : : ; xN )dx3 : : : dxN

p-paricle reduced denisty matrix

!(p)(x1; x2; : : : ; xp;x
0
1; x

0

2 : : : ; x
0
p) =

"
N
p

#Z
%(x01; x

0
2; : : : ; x

0
p; xp+1; : : : ; xN )

"

#%(x1; x2; : : : ; xp; xp+1; : : : ; xN )dxp+1 : : : dxN

Gilbert theorem
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(1)
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i

where !(1)e stands for ensemble N -representable 1-RDM, the minimization is
performed with respect to ensemble-state density matrices that reduce to a
given !(1), and
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One-electron reduced density matrix (1-RDM, one-matrix)

• Definitions of natural spinorbitals and natural occupation numbers

Γ(x, x′) ≡ Γ(1)(x, x′) = N

∫
Ψ∗(x′, . . . , xN )Ψ(x, . . . , xN ) dx2 . . . dxN

∫
Γ(x, x′) ϕi(x

′) dx′ = ni ϕi(x)

Γ(x, x
′) =

∑

i

ni ϕi(x) ϕ
∗

i (x
′)

• Properties (sufficient and necessary ensemble N-rep conditions)

∀i,j

∫
ϕ∗

i (x)ϕj(x) dx = δij

∑

i

ni = N , ∀i 0 ≤ ni ≤ 1

where N is a number of particles in a system.



p-electron reduced density matrix

Γ(2)(x1, x2;x
′

1, x
′

2) =
N(N − 1)

2

×

∫
Ψ(x′

1, x
′

2, . . . , xN )∗Ψ(x1, x2, . . . , xN )dx3 . . . dxN

• Two-electron reduced density matrix (2-RDM, two-matrix)



p-electron reduced density matrix

Γ(2)(x1, x2;x
′

1, x
′

2) =
N(N − 1)

2

×

∫
Ψ(x′

1, x
′

2, . . . , xN )∗Ψ(x1, x2, . . . , xN )dx3 . . . dxN

• Two-electron reduced density matrix (2-RDM, two-matrix)

• In general one defines a p-particle reduced density matrix as follows

         

 


  


      

          

          
   

 


 


 
  




 



      
           

   

      


 


     


 







 



     


       


                 





Reduced density matrix functional theory (RDMFT)

• The existence of the functional is assured by the Hohenberg-Kohn 
theorem extended by Gilbert [Phys. Rev. B 12, 2111 (1975)]

• A construction of a functional for ensemble N-representable 1-RDM 
was provided by S. M. Valone [J. Chem. Phys. 73, 1344, 4653 (1980)]

         

 


  


      

          

          
   

 


 


 
  




 



      
           

   

      


 


     


 







 



     


       


                 

 

    



1-RDM is assumed to be v-representable. 

         

 


  


      

          

          
   

 


 


 
  




 



      
           

   

      


 


     


 







 



     


       


                 

 

    



   

 





 













 

         

          

  
 








 


















 





         

 


  


      

          

          
   

 


 


 
  




 



      
           

   

      


 


     


 







 



     


       


                 

 

    



   

 





 













 

         

          

  
 








 


















 







Equation of motion for N-electron density matrix

• Consider a time-dependent Schrödinger equation

• A time-derivative for pure-state (p) N-electron density matrix reads

         

 


  


      

          

          
   

 


 


 
  




 



      
           

   

      


 


     


 







 



     


       


                 

 

    



   

 





 













 

         

          

  
 








 


















 



    








 




  
 


 












































 


 



 


 















 






 





         

 


  


      

          

          
   

 


 


 
  




 



      
           

   

      


 


     


 







 



     


       


                 

 

    



   

 





 













 

         

          

  
 








 


















 



    








 




  
 


 












































 


 



 


 















 






 





         

 


  


      

          

          
   

 


 


 
  




 



      
           

   

      


 


     


 







 



     


       


                 

 

    



   

 





 













 

         

          

  
 








 


















 



    








 




  
 


 












































 


 



 


 















 






 





         

 


  


      

          

          
   

 


 


 
  




 



      
           

   

      


 


     


 







 



     


       


                 

 

    



   

 





 













 

         

          

  
 








 


















 



    








 




  
 


 












































 


 



 


 















 






 







Equation of motion for ensemble N-electron density matrix

• For ensemble-state (e) N-electron density matrix

a similar equation of motion holds

     



 








 




 




 










 






















 









 




 










 





     



 








 




 




 










 






















 









 




 










 





Liouville-von Neumann equation



Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy

• In the first quantization the Liouville-von Neumann equation takes form

BBGKY hierarchy

• Skip primes at the last N-p primed coordinates, integrate over N-p 
coordinates and multiply both sides by N!/p!/(N-p)! to get an equation 
involving p-RDM and p+1-RDM

     

 







 


 




 










 





















 









 




 









 



  


     


 

      




      


     


 



      

      


 


    


    




      

 












   









 







  






 








    


 


 


   





  





 


  



For ensemble-state density matrix we have

�̂(N)
e =

�

j

⇤j

⇧⇧⇥N
j

⌅ ⇤
⇥N

j

⇧⇧ =
�

j

⇤j�̂
(N)
p,j

i
⌃�̂(N)

e

⌃t
= i

�

j

⇤j

⌃�̂(N)
p,j

⌃t

=
�

j

⇤j

�
Ĥ, �̂(N)

p,j

✏
=

�

⌦Ĥ,
�

j

⇤j�̂
(N)
p,j

 

↵

=
�
Ĥ, �̂(N)

e

✏

Liouville-von Neumann equation

i
⌃[⇥(x⇤1, . . . , x⇤N )⇥⇥(x1, . . . , xN )]

⌃t
=
�
Ĥ1...N⇥(x1, . . . , xN )

✏
⇥(x⇤1, . . . , x

⇤
N )⇥

�⇥(x1, . . . , xN )
�
Ĥ1�...N �⇥(x⇤1, . . . , x

⇤
N )⇥

✏

p = 1 : equation1[�
(1)(t),�(2)(t)]

p = 2 : equation2[�
(2)(t),�(3)(t)]

...

For p = 1 the equation reads

Ĥ(t) =
N�

i=1

⌃
�1

2
�2

i + �̂(xi, t)
⌥

+
1
2

N�

i ⌅=j

r�1
ij

Ĥ(t) =
N�

i=1

ĥ(xi, t) +
1
2

N�

i ⌅=j

r�1
ij

⌃
i
⌃

⌃t
� ĥ(x1, t) + ĥ(x⇤1, t)

⌥
�(1)(x1, x

⇤
1, t)

= 2
�

dx2

�
r�1
12 � r�1

1�2

⇥
�(2)(x1, x2;x⇤1, x2, t)

Matrix representation

�(1)(x, x⇤) =
�

pq

�(1)
pq ⇥p(x)⇥q(x⇤)⇥

�(2)(x1, x2;x⇤1, x
�

2) =
�

pqrs

�(2)
pqrs ⇥p(x1)⇥q(x2)⇥r(x⇤1)

⇥⇥s(x⇤2)
⇥
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BBGKY hierarchy

• Solving full BBGKY hierarchy is equivalent to solving the time-
dependent Schrödinger equation.
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BBGKY hierarchy

• Solving full BBGKY hierarchy is equivalent to solving the time-
dependent Schrödinger equation.

• One should truncate the hierarchy at some level p and make 
approximations for the p-RDM.

• For example, truncating the hierarchy after the second equation would 
require approximating 3-RDM by 1- and 2-RDM.

• It has been shown that reconstruction schemes giving reasonable results 
for ground state energy fail when employed in the truncated BBGKY 
equations [A. Akbari et al., Phys. Rev. B 85, 235121 (2012)]



Equation of motion for 1-RDM

• For the time-dependent Hamiltonian

ĥ(x, t) = −
1

2
∇

2

r
+ υ(x, t)

     

 







 


 




 










 





















 









 




 









 



  


     


 

      




      


     


 



      

      


 


    


    




      

 












   









 



 




  






 








    


 


 


   





  





 


  



the first equation in the BBGKY hierarchy reads

     

 







 


 




 










 





















 









 




 









 



  


     


 

      




      


     


 



      

      


 


    


    




      

 












   









 



 




  






 








    


 


 


 

 





  





 


  





Equation of motion for 1-RDM

• Due to the Runge-Gross theorem [Phys. Rev. Lett. 52, 997 (1984)] 

the time-dependent 2-matrix is a functional of the time-dependent  
1-matrix

     

     

  

 

  

 



   


   

   

  

      

         





    





 



Matrix representation

!(1)(x; x0) =
X

pq

!(1)pq #p(x)#q(x
0)"

!(2)(x1; x2;x
0
1; x

0

2) =
X

pqrs

!(2)pqrs #p(x1)#q(x2)#r(x
0
1)
"#s(x

0
2)
"

2-RDM as a functional of 1-RDM

$1(x; t)! $2(x; t) 6= c(t)

$1(x; t)! !
(1)
1 (t)

$2(x; t)! !
(1)
2 (t)

!
(1)
1 (t) = !

(1)
2 (t) = !(1)(t)

But on one hand

!
(1)
1 (t) = !

(1)
2 (t) =) '1(t) = '2(t)

On the other, the RG theorem shows

$1(x; t)! $2(x; t) 6= c(t) =) '1(t) 6= '2(t)
n
!(1)(t);&(t0)

o
! $(x; t)! &(t)! !(2)(t)

n
!(1)(t);&(t0)

o
! !(2)(t)

!(2)(t) = !(2)[!(1);&(t0)](t)

$
i
@

@t
! ĥ(x1; t) + ĥ(x01; t)

%
!(1)(x1; x

0
1; t)

= 2

Z
dx2

'
r#112 ! r

#1
102

(
!(2)[!(1)](x1; x2;x

0
1; x2; t)

Relation of 2-RDM with 1-RDM functional. From the EOM one get (for the

time-independent case)

0 = (np ! nq)hqp

+ 2
X

rst

h
!
(2)
prst h'q'rj's'ti ! h't'sj'r'pi!

(2)
tsrq

i

The relation from my CPL paper reads

2
X

rst

h
!
(2)
prst h'q'rj's'ti ! !

(2)
tsrq h't'sj'r'pi

i

=

Z
/Eee[!]

/'p(x)"
'q(x)

"dx!
Z
/Eee[!]

/'q(x)
'p(x)dx

3



Time-dependent 2-RDM is a functional of 1-RDM - proof

• Assume two different (by more than a time-dependent function) time-
dependent potentials yielding the same 1-RDM     
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On one hand 

2-RDM as a functional of 1-RDM

⇧1(x, t)� ⇧2(x, t) ⌅= c(t)

⇧1(x, t) ⇥ �(1)
1 (t)

⇧2(x, t) ⇥ �(1)
2 (t)

�(1)
1 (t) = �(1)

2 (t) = �(1)(t)

But on one hand

�(1)
1 (t) = �(1)

2 (t) =⇤ ⌅1(t) = ⌅2(t)

On the other, the RG theorem shows

⇧1(x, t)� ⇧2(x, t) ⌅= c(t) =⇤ ⌅1(t) ⌅= ⌅2(t)
⌥

�(1)(t),⇥(t0)
�
⇥ ⇧(x, t) ⇥ ⇥(t) ⇥ �(2)(t)

⌥
�(1)(t),⇥(t0)

�
⇥ �(2)(t)

Relation of 2-RDM with 1-RDM functional. From the EOM one get (for the
time-independent case)

0 = (np � nq)hqp

+ 2
⇤

rst

⇧
�(2)

prst ⌥⌃q⌃r|⌃s⌃t� � ⌥⌃t⌃s|⌃r⌃p��(2)
tsrq

⌃

The relation from my CPL paper reads

2
⇤

rst

⇧
�(2)

prst ⌥⌃q⌃r|⌃s⌃t� � �(2)
tsrq ⌥⌃t⌃s|⌃r⌃p�

⌃

=
⌅

�Eee[�]
�⌃p(x)�

⌃q(x)�dx�
⌅

�Eee[�]
�⌃q(x)

⌃p(x)dx

So
0 = (np � nq)hqp +

⌅
�Eee[�]
�⌃p(x)�

⌃q(x)�dx�
⌅

�Eee[�]
�⌃q(x)

⌃p(x)dx

Variational equation

E[{⌃p} , {np}] =
⇤

p

nphpp + Eee[{⌃p} , {np}]

⇤ = E[{⌃p} , {np}]�
⇤

pq

⇥pq (⌥⌃p|⌃q� � �pq)� µ

�
⇤

p

np �N

⇥

�⇤
�⌃p(x)�

=
�E[{⌃p} , {np}]

�⌃p(x)�
�

⇤

q

⇥pq⌃q(x) = 0

�⇤
�np

=
�E[{⌃p} , {np}]

�np
� µ = 0

3



Time-dependent 2-RDM is a functional of 1-RDM - proof

• Assume two different (by more than a time-dependent function) time-
dependent potentials yielding the same 1-RDM

     

  

 

  

 

     



   


   

   

  

      

         





    





 



On the other hand, the Runge-Gross theorem states 

     

     

  

 

  

 



   


   

   

  

      

         





    





 



On one hand 

2-RDM as a functional of 1-RDM

⇧1(x, t)� ⇧2(x, t) ⌅= c(t)

⇧1(x, t) ⇥ �(1)
1 (t)

⇧2(x, t) ⇥ �(1)
2 (t)

�(1)
1 (t) = �(1)

2 (t) = �(1)(t)

But on one hand

�(1)
1 (t) = �(1)

2 (t) =⇤ ⌅1(t) = ⌅2(t)

On the other, the RG theorem shows

⇧1(x, t)� ⇧2(x, t) ⌅= c(t) =⇤ ⌅1(t) ⌅= ⌅2(t)
⌥

�(1)(t),⇥(t0)
�
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⇥ �(2)(t)

Relation of 2-RDM with 1-RDM functional. From the EOM one get (for the
time-independent case)

0 = (np � nq)hqp
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⇤
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⇧
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⌃
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⌃q(x)�dx�
⌅

�Eee[�]
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⌃p(x)dx
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⌅
�Eee[�]
�⌃p(x)�

⌃q(x)�dx�
⌅

�Eee[�]
�⌃q(x)

⌃p(x)dx

Variational equation

E[{⌃p} , {np}] =
⇤

p

nphpp + Eee[{⌃p} , {np}]

⇤ = E[{⌃p} , {np}]�
⇤

pq

⇥pq (⌥⌃p|⌃q� � �pq)� µ

�
⇤

p

np �N

⇥

�⇤
�⌃p(x)�

=
�E[{⌃p} , {np}]

�⌃p(x)�
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⇤
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�⇤
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=
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Time-dependent 2-RDM is a functional of 1-RDM - proof

• Assume two different (by more than a time-dependent function) time-
dependent potentials yielding the same 1-RDM

     

  

 

  

 

     



   


   

   

  

      

         





    





 



On the other hand, the Runge-Gross theorem states 

     

     

  

 

  

 



   


   

   

  

      

         





    





 



     

     

  

 

  

 



   


   

   

  

      

         





    





 



• Contradictory equations are obtained. Consequently, 

On one hand 

2-RDM as a functional of 1-RDM

⇧1(x, t)� ⇧2(x, t) ⌅= c(t)

⇧1(x, t) ⇥ �(1)
1 (t)

⇧2(x, t) ⇥ �(1)
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2 (t) = �(1)(t)

But on one hand
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1 (t) = �(1)

2 (t) =⇤ ⌅1(t) = ⌅2(t)

On the other, the RG theorem shows
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�(1)(t),⇥(t0)
�
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�
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⌃p(x)dx

So
0 = (np � nq)hqp +

⌅
�Eee[�]
�⌃p(x)�

⌃q(x)�dx�
⌅

�Eee[�]
�⌃q(x)

⌃p(x)dx

Variational equation

E[{⌃p} , {np}] =
⇤

p

nphpp + Eee[{⌃p} , {np}]

⇤ = E[{⌃p} , {np}]�
⇤

pq

⇥pq (⌥⌃p|⌃q� � �pq)� µ

�
⇤

p

np �N

⇥

�⇤
�⌃p(x)�

=
�E[{⌃p} , {np}]

�⌃p(x)�
�

⇤

q
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�np

=
�E[{⌃p} , {np}]

�np
� µ = 0
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Equation of motion for 1-RDM

• Thus, the first equation in the BBGKY hierarchy may be seen as the 
equation of motion for 1-RDM.

K. Pernal, O. Gritsenko, and E.J. Baerends, Phys. Rev. A 75, 012506 (2007)

Matrix representation

!(1)(x; x0) =
X

pq

!(1)pq #p(x)#q(x
0)"

!(2)(x1; x2;x
0
1; x

0

2) =
X

pqrs

!(2)pqrs #p(x1)#q(x2)#r(x
0
1)
"#s(x

0
2)
"

2-RDM as a functional of 1-RDM

$1(x; t)! $2(x; t) 6= c(t)

$1(x; t)! !
(1)
1 (t)

$2(x; t)! !
(1)
2 (t)

!
(1)
1 (t) = !

(1)
2 (t) = !(1)(t)

But on one hand

!
(1)
1 (t) = !

(1)
2 (t) =) '1(t) = '2(t)

On the other, the RG theorem shows

$1(x; t)! $2(x; t) 6= c(t) =) '1(t) 6= '2(t)
n
!(1)(t);&(t0)

o
! $(x; t)! &(t)! !(2)(t)

n
!(1)(t);&(t0)

o
! !(2)(t)

!(2)(t) = !(2)[!(1);&(t0)](t)

$
i
@

@t
! ĥ(x1; t) + ĥ(x01; t)

%
!(1)(x1; x

0
1; t)

= 2

Z
dx2

'
r#112 ! r

#1
102

(
!(2)[!(1)](x1; x2;x

0
1; x2; t)

Relation of 2-RDM with 1-RDM functional. From the EOM one get (for the

time-independent case)

0 = (np ! nq)hqp

+ 2
X

rst

h
!
(2)
prst h'q'rj's'ti ! h't'sj'r'pi!

(2)
tsrq

i

The relation from my CPL paper reads

2
X

rst

h
!
(2)
prst h'q'rj's'ti ! !

(2)
tsrq h't'sj'r'pi

i

=

Z
/Eee[!]

/'p(x)"
'q(x)

"dx!
Z
/Eee[!]

/'q(x)
'p(x)dx

3



Equation of motion for 1-RDM

the equation of motion involving one- and two-electron reduced density 
matrices reads

i
∂Γpq(t)

∂t
=

∑

r

[hqr(t)Γpr(t) − Γrq(t)hrp(t)]

+2
∑

rst

[Γ(2)
prst(t) ⟨χqχr|χsχt⟩ − ⟨χtχs|χrχp⟩Γ(2)

tsrq(t)]

• In the matrix representation in a fixed, time-independent and 
orthonormal basis set{χp(x)}

⟨χiχk|χjχl⟩ =

∫ ∫
χ∗

i (x
′)χ∗

k(x)|r − r′|−1χj(x
′)χl(x) dx dx′

     

 







 


 




 










 





















 









 




 









 



  


     


 

      




      


     


 



      

      


 


    


    




      

 











   









 



 




  






 








    


 


 


 

 





  





 


  

 

  




 


 

 



 




 












The linear response of the one-matrix

or in terms of the corresponding Fourier transforms 

• A linear response of 1-RDM to a perturbation is given by a 
convolution of the linear response function and the perturbation

     

     

 




 



 




       

 




 

    

 
  



 


 











 



 


 





 


 





 



     


 

 


 










 


 






      









 






      




 

     

 



  


      

           

 






 










 


 






      









 






      




 



         

  









  






 







 

  


 






    









  

 



    




 





     

     

 




 



 




       

 




 

    

 
  



 


 











 



 


 





 


 





 



     


 

 


 










 


 






      









 






      




 

     

 



  


      

           

 






 










 


 






      









 






      




 



         

  









  






 







 

  


 






    









  

 



    




 





     

     

 




 



 




       

 




 

    

 
  



 


 











 



 


 





 


 





 



     


 

 


 










 


 






      









 






      




 

     

 



  


      

           

 






 










 


 






      









 






      




 



         

  









  






 







 

  


 






    









  

 



    




 





• The sum over states (SOS) definition of the response function 
reads

where η is a positive infinitesimal, E0 is a ground state energy and EI 
- excited state energies. 
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Ĥ ̸= Ĥ(t)
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Linear response density matrix functional theory

• Assume the initial conditions at t0

Ĥ ̸= Ĥ(t)

∀pq Γpq = np δpq

• The system is perturbed with a one-electron time-dependent 
perturbation

Ĥ(1)(t) =
N∑

i=1

υ(xi, t)

ϕp(x, t) =
∑

q

Upq(t) ϕq(x)

• The unperturbed (stationary) natural orbitals are used as a basis set, 
i.e.



Linear response density matrix functional theory

• Assume the initial conditions at t0

• Expand all terms in the equation of motion up to linear terms:

Ĥ ̸= Ĥ(t)

∀pq Γpq = np δpq

• The system is perturbed with a one-electron time-dependent 
perturbation

Ĥ(1)(t) =
N∑

i=1

υ(xi, t)

ϕp(x, t) =
∑

q

Upq(t) ϕq(x)

• The unperturbed (stationary) natural orbitals are used as a basis set, 
i.e.



Linear response density matrix functional theory

 


  




  

             




 


  


  

   

  


  







  


  

  


 


     

         

  










 







 

 



 








 



 

    

    













   


 











   


 








 



 






 


  




  

             




 


  


  

   

  


  







  


  

  


 


     

         

  










 







 

 



 








 



 

    

    













   


 











   


 








 



 






where K is called a coupling matrix.



Linear response density matrix functional theory

• Zero-order terms drops out (see the stationary equations)

 


  




  

             




 


  


  

   

  


  







  


  

  


 


     

         

  










 







 

 



 








 



 

    

    













   


 











   


 








 



 






 


  




  

             




 


  


  

   

  


  







  


  

  


 


     

         

  










 







 

 



 








 



 

    

    













   


 











   


 








 



 






where K is called a coupling matrix.



Linear response density matrix functional theory

• Zero-order terms drops out (see the stationary equations)

 


  




  

             




 


  


  

   

  


  







  


  

  


 


     

         

  










 







 

 



 








 



 

    

    













   


 











   


 








 



 






 


  




  

             




 


  


  

   

  


  







  


  

  


 


     

         

  










 







 

 



 








 



 

    

    













   


 











   


 








 



 






where K is called a coupling matrix.

• Fourier transform first-order terms

 


  




  

             




 


  


  

   

  


  







  


  

  


 



     

         

  










 







 

 



 








 



 

    

    








   


 











   


 








 



 




 

     

 





 

 

 



     

   





Linear response density matrix functional theory

• Use the convolution theorem 

 


  




  

             




 


  


  

   

  


  







  


  

  


 



     

         

  










 







 

 



 








 



 

    

    








   


 











   


 








 



 




 

     

 





 

 

 



     

   



and the property

to obtain finally the linear response equation for 1-RDM

where the elements of the 2-matrix are in the basis set of {⌅p(x, t)}. First of all, one

observes that in the case of the uncorrelated Hartree-Fock theory, for which the functional

�(2)[�](t) is explicitly known, the right hand side of Eq.(26) vanishes, which implies the time

independence of the natural occupancies. Secondly, in the time-independent Hamiltonian

case, both sides of the above equation are zero and no stationary variational equations for

the occupation numbers are recovered.

In what follows, an N-electron system in a stationary state perturbed at t = t0 with a

time-dependent potential is considered. As shown previously [41], the Fourier-transformed

linear response �(⇤) of the 1-matrix results from solving the following set of equations

⇧pq

⇤

rs

�rs(⇤)[⇤ �pr�qs � �prhqs + �qshrp � Kpqrs(⇤)] = (np � nq) vqp(⇤) , (27)

where {vqp(⇤)} is the set of the Fourier-transformed matrix elements of the perturbing

potential and {np} are the unperturbed natural occupation numbers (note that the basis

set of the unperturbed natural spinorbitals is used, {⇥p(x)} ⇤ {⌅p(x)}). The ⇤-dependent

coupling matrix K(⇤) is a complicated quantity defined as

⇧pqvw Kpqvw(⇤) = 2

⌅
e�i� (t�t�)

⇥
⌥

⇥
rst

⇧
�(2)

prst[�](t)�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�](t) �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw(t⇥)

������
�=�(0)

d(t � t⇥) , (28)

where �(0) stands for the stationary 1-matrix. Since neither exact nor approximate forms

of the ⇤-dependent coupling matrix is known, one has to resort to an ⇤-free approximate

approach, such as the adiabatic approximation,

⌥�(2)
pqrs[�](t)

⌥�vw(t⇥)

�����
�=�(0)

⌅ �(t � t⇥)
⌥�(2)

pqrs[�]

⌥�vw

�����
�=�(0)

. (29)

Consequently, within the adiabatic approximation, the coupling matrix K becomes ⇤-

independent and reads

⇧pqvw Kpqvw = 2
⌥

⇥
rst

⇧
�(2)

prst[�]�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�] �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw

������
�=�(0)

. (30)

Thanks to the relation (13), the coupling matrix may be expressed entirely in terms of the

derivatives of the electron-electron interaction functional Eee[�] and the stationary natural

10
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Coupling matrix

• The ω-dependent coupling matrix K is defined as

where the elements of the 2-matrix are in the basis set of {⌅p(x, t)}. First of all, one

observes that in the case of the uncorrelated Hartree-Fock theory, for which the functional

�(2)[�](t) is explicitly known, the right hand side of Eq.(26) vanishes, which implies the time

independence of the natural occupancies. Secondly, in the time-independent Hamiltonian

case, both sides of the above equation are zero and no stationary variational equations for

the occupation numbers are recovered.

In what follows, an N-electron system in a stationary state perturbed at t = t0 with a

time-dependent potential is considered. As shown previously [41], the Fourier-transformed

linear response �(⇤) of the 1-matrix results from solving the following set of equations

⇧pq

⇤

rs

�rs(⇤)[⇤ �pr�qs � �prhqs + �qshrp � Kpqrs(⇤)] = (np � nq) vqp(⇤) , (27)

where {vqp(⇤)} is the set of the Fourier-transformed matrix elements of the perturbing

potential and {np} are the unperturbed natural occupation numbers (note that the basis

set of the unperturbed natural spinorbitals is used, {⇥p(x)} ⇤ {⌅p(x)}). The ⇤-dependent

coupling matrix K(⇤) is a complicated quantity defined as

⇧pqvw Kpqvw(⇤) = 2

⌅
e�i� (t�t�)

⇥
⌥

⇥
rst

⇧
�(2)

prst[�](t)�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�](t) �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw(t⇥)

������
�=�(0)

d(t � t⇥) , (28)

where �(0) stands for the stationary 1-matrix. Since neither exact nor approximate forms

of the ⇤-dependent coupling matrix is known, one has to resort to an ⇤-free approximate

approach, such as the adiabatic approximation,

⌥�(2)
pqrs[�](t)

⌥�vw(t⇥)

�����
�=�(0)

⌅ �(t � t⇥)
⌥�(2)

pqrs[�]

⌥�vw

�����
�=�(0)

. (29)

Consequently, within the adiabatic approximation, the coupling matrix K becomes ⇤-

independent and reads

⇧pqvw Kpqvw = 2
⌥

⇥
rst

⇧
�(2)

prst[�]�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�] �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw

������
�=�(0)

. (30)

Thanks to the relation (13), the coupling matrix may be expressed entirely in terms of the

derivatives of the electron-electron interaction functional Eee[�] and the stationary natural
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where Γ(0) is the stationary one-matrix.



Coupling matrix

• The ω-dependent coupling matrix K is defined as

where the elements of the 2-matrix are in the basis set of {⌅p(x, t)}. First of all, one

observes that in the case of the uncorrelated Hartree-Fock theory, for which the functional

�(2)[�](t) is explicitly known, the right hand side of Eq.(26) vanishes, which implies the time

independence of the natural occupancies. Secondly, in the time-independent Hamiltonian

case, both sides of the above equation are zero and no stationary variational equations for

the occupation numbers are recovered.

In what follows, an N-electron system in a stationary state perturbed at t = t0 with a

time-dependent potential is considered. As shown previously [41], the Fourier-transformed

linear response �(⇤) of the 1-matrix results from solving the following set of equations

⇧pq

⇤

rs

�rs(⇤)[⇤ �pr�qs � �prhqs + �qshrp � Kpqrs(⇤)] = (np � nq) vqp(⇤) , (27)

where {vqp(⇤)} is the set of the Fourier-transformed matrix elements of the perturbing

potential and {np} are the unperturbed natural occupation numbers (note that the basis

set of the unperturbed natural spinorbitals is used, {⇥p(x)} ⇤ {⌅p(x)}). The ⇤-dependent

coupling matrix K(⇤) is a complicated quantity defined as

⇧pqvw Kpqvw(⇤) = 2

⌅
e�i� (t�t�)

⇥
⌥

⇥
rst

⇧
�(2)

prst[�](t)�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�](t) �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw(t⇥)

������
�=�(0)

d(t � t⇥) , (28)

where �(0) stands for the stationary 1-matrix. Since neither exact nor approximate forms

of the ⇤-dependent coupling matrix is known, one has to resort to an ⇤-free approximate

approach, such as the adiabatic approximation,

⌥�(2)
pqrs[�](t)

⌥�vw(t⇥)

�����
�=�(0)

⌅ �(t � t⇥)
⌥�(2)

pqrs[�]

⌥�vw

�����
�=�(0)

. (29)

Consequently, within the adiabatic approximation, the coupling matrix K becomes ⇤-

independent and reads

⇧pqvw Kpqvw = 2
⌥

⇥
rst

⇧
�(2)

prst[�]�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�] �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw

������
�=�(0)

. (30)

Thanks to the relation (13), the coupling matrix may be expressed entirely in terms of the

derivatives of the electron-electron interaction functional Eee[�] and the stationary natural
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• We assume the adiabatic approximation

where the elements of the 2-matrix are in the basis set of {⌅p(x, t)}. First of all, one

observes that in the case of the uncorrelated Hartree-Fock theory, for which the functional

�(2)[�](t) is explicitly known, the right hand side of Eq.(26) vanishes, which implies the time

independence of the natural occupancies. Secondly, in the time-independent Hamiltonian

case, both sides of the above equation are zero and no stationary variational equations for

the occupation numbers are recovered.

In what follows, an N-electron system in a stationary state perturbed at t = t0 with a

time-dependent potential is considered. As shown previously [41], the Fourier-transformed

linear response �(⇤) of the 1-matrix results from solving the following set of equations

⇧pq

⇤

rs

�rs(⇤)[⇤ �pr�qs � �prhqs + �qshrp � Kpqrs(⇤)] = (np � nq) vqp(⇤) , (27)

where {vqp(⇤)} is the set of the Fourier-transformed matrix elements of the perturbing

potential and {np} are the unperturbed natural occupation numbers (note that the basis

set of the unperturbed natural spinorbitals is used, {⇥p(x)} ⇤ {⌅p(x)}). The ⇤-dependent

coupling matrix K(⇤) is a complicated quantity defined as

⇧pqvw Kpqvw(⇤) = 2

⌅
e�i� (t�t�)

⇥
⌥

⇥
rst

⇧
�(2)

prst[�](t)�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�](t) �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw(t⇥)

������
�=�(0)

d(t � t⇥) , (28)

where �(0) stands for the stationary 1-matrix. Since neither exact nor approximate forms

of the ⇤-dependent coupling matrix is known, one has to resort to an ⇤-free approximate

approach, such as the adiabatic approximation,

⌥�(2)
pqrs[�](t)

⌥�vw(t⇥)

�����
�=�(0)

⌅ �(t � t⇥)
⌥�(2)

pqrs[�]

⌥�vw

�����
�=�(0)

. (29)

Consequently, within the adiabatic approximation, the coupling matrix K becomes ⇤-

independent and reads

⇧pqvw Kpqvw = 2
⌥

⇥
rst

⇧
�(2)

prst[�]�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�] �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw

������
�=�(0)

. (30)

Thanks to the relation (13), the coupling matrix may be expressed entirely in terms of the

derivatives of the electron-electron interaction functional Eee[�] and the stationary natural
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where Γ(0) is the stationary one-matrix.



Coupling matrix

• The ω-dependent coupling matrix K is defined as

where the elements of the 2-matrix are in the basis set of {⌅p(x, t)}. First of all, one

observes that in the case of the uncorrelated Hartree-Fock theory, for which the functional

�(2)[�](t) is explicitly known, the right hand side of Eq.(26) vanishes, which implies the time

independence of the natural occupancies. Secondly, in the time-independent Hamiltonian

case, both sides of the above equation are zero and no stationary variational equations for

the occupation numbers are recovered.

In what follows, an N-electron system in a stationary state perturbed at t = t0 with a

time-dependent potential is considered. As shown previously [41], the Fourier-transformed

linear response �(⇤) of the 1-matrix results from solving the following set of equations

⇧pq

⇤

rs

�rs(⇤)[⇤ �pr�qs � �prhqs + �qshrp � Kpqrs(⇤)] = (np � nq) vqp(⇤) , (27)

where {vqp(⇤)} is the set of the Fourier-transformed matrix elements of the perturbing

potential and {np} are the unperturbed natural occupation numbers (note that the basis

set of the unperturbed natural spinorbitals is used, {⇥p(x)} ⇤ {⌅p(x)}). The ⇤-dependent

coupling matrix K(⇤) is a complicated quantity defined as

⇧pqvw Kpqvw(⇤) = 2

⌅
e�i� (t�t�)

⇥
⌥

⇥
rst
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�(2)
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⌃

⌥�vw(t⇥)

������
�=�(0)

d(t � t⇥) , (28)

where �(0) stands for the stationary 1-matrix. Since neither exact nor approximate forms

of the ⇤-dependent coupling matrix is known, one has to resort to an ⇤-free approximate

approach, such as the adiabatic approximation,

⌥�(2)
pqrs[�](t)

⌥�vw(t⇥)

�����
�=�(0)

⌅ �(t � t⇥)
⌥�(2)

pqrs[�]

⌥�vw

�����
�=�(0)

. (29)

Consequently, within the adiabatic approximation, the coupling matrix K becomes ⇤-

independent and reads

⇧pqvw Kpqvw = 2
⌥

⇥
rst

⇧
�(2)

prst[�]�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�] �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw

������
�=�(0)

. (30)

Thanks to the relation (13), the coupling matrix may be expressed entirely in terms of the

derivatives of the electron-electron interaction functional Eee[�] and the stationary natural
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• We assume the adiabatic approximation

where the elements of the 2-matrix are in the basis set of {⌅p(x, t)}. First of all, one

observes that in the case of the uncorrelated Hartree-Fock theory, for which the functional

�(2)[�](t) is explicitly known, the right hand side of Eq.(26) vanishes, which implies the time

independence of the natural occupancies. Secondly, in the time-independent Hamiltonian

case, both sides of the above equation are zero and no stationary variational equations for

the occupation numbers are recovered.

In what follows, an N-electron system in a stationary state perturbed at t = t0 with a

time-dependent potential is considered. As shown previously [41], the Fourier-transformed

linear response �(⇤) of the 1-matrix results from solving the following set of equations

⇧pq

⇤

rs

�rs(⇤)[⇤ �pr�qs � �prhqs + �qshrp � Kpqrs(⇤)] = (np � nq) vqp(⇤) , (27)

where {vqp(⇤)} is the set of the Fourier-transformed matrix elements of the perturbing

potential and {np} are the unperturbed natural occupation numbers (note that the basis

set of the unperturbed natural spinorbitals is used, {⇥p(x)} ⇤ {⌅p(x)}). The ⇤-dependent

coupling matrix K(⇤) is a complicated quantity defined as

⇧pqvw Kpqvw(⇤) = 2

⌅
e�i� (t�t�)

⇥
⌥

⇥
rst

⇧
�(2)

prst[�](t)�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�](t) �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw(t⇥)

������
�=�(0)

d(t � t⇥) , (28)

where �(0) stands for the stationary 1-matrix. Since neither exact nor approximate forms

of the ⇤-dependent coupling matrix is known, one has to resort to an ⇤-free approximate

approach, such as the adiabatic approximation,

⌥�(2)
pqrs[�](t)

⌥�vw(t⇥)

�����
�=�(0)

⌅ �(t � t⇥)
⌥�(2)

pqrs[�]

⌥�vw

�����
�=�(0)

. (29)

Consequently, within the adiabatic approximation, the coupling matrix K becomes ⇤-

independent and reads

⇧pqvw Kpqvw = 2
⌥

⇥
rst

⇧
�(2)

prst[�]�⌅q⌅r|⌅s⌅t � �(2)
tsrq[�] �⌅t⌅s|⌅r⌅p 

⌃

⌥�vw

������
�=�(0)

. (30)

Thanks to the relation (13), the coupling matrix may be expressed entirely in terms of the

derivatives of the electron-electron interaction functional Eee[�] and the stationary natural
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that results in the ω-free coupling matrix 

∀pqvw Kpqvw = 2
∂

∑

rst

{

Γ(2)
prst[Γ]⟨ϕqϕr|ϕsϕt⟩ − Γ(2)

tsrq[Γ] ⟨ϕtϕs|ϕrϕp⟩
}

∂Γvw

∣

∣

∣

∣

∣

∣

Γ=Γ(0)

where Γ(0) is the stationary one-matrix.



Adiabatic approximation
• Employing the relation

• The coupling matrix in the adiabatic approximation is expressed in 
terms of the derivatives of the energy functional used for ground 
state calculation.

yields

     

     

  

 

  

 



   


   

   

  

      

         




    





 

            

 

    

 







   






      









   


 





















     















 

   




    

    




    






 







  







  





  


   



spinorbitals, namely

⇤pqvw Kpqvw =
⌥

�⌃
rs(W

�
rs[�]�Wsr[�])U�

rpUsq

⇥

⌥�vw

⇤⇤⇤⇤⇤
�=�(0)

, (31)

where

Wpq =

⌅
�Eee[�]

�⇤p
⇤q

⇧
. (32)

One should note that adopting the adiabatic approximation, i.e. ignoring the memory e⇥ects

in the coupling matrix K, runs a risk of an improper description of the linear response of

the natural occupation numbers to the perturbation. As Eq.(26) shows, the stationary

occupation numbers may be obtained by propagating the equation backward in time using

full information about the time dependence of the 1-matrix contained in the functional

�(2)[�](t). Due to the fact that in the time-independent case the equation of motion (19)

does not yield variational equations for the occupation numbers, the adiabatic approximation

(29) may a⇥ord a wrong ⇥ ⇥ 0 limit of the linear response equations (27).

We show that, unfortunately, this prediction is correct. To this end, it is convenient to

separate the linear response equations (27) into components describing the response of the

natural occupation numbers and the natural spinorbitals, {�pp(⇥)} and {�pq(⇥)} (where

p > q), respectively. Taking the combination of the two equations (27) for the indices p > q,

with the positive and negative signs and additionally an equation for p = q results in

⇥ N XR(⇥) + (A�B) XI(⇥) = 0 , (33)

⇥ N XI(⇥) + (A + B) XR(⇥) + C Z(⇥) = V(⇥) , (34)

and

⇥ Z(⇥) + 2 D XI(⇥) = 0 , (35)

where the perturbing potential is assumed to be real. The following definitions used above

⇤p>q XR
pq(⇥) = F{Re[�Upq(t)]}(⇥) ,

⇤p>q XI
pq(⇥) = iF{ Im[�Upq(t)]}(⇥) ,

⇤p Zp(⇥) = F{�np(t)}(⇥) ,

⇤p>q ⇤r>s Npq,rs = (np � nq)�pr�qs ,

⇤p>q Vpq(⇥) = vpq(⇥)(np � nq) , (36)
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Consequence of the adiabatic approximation
• No change of the occupation numbers, i.e.
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TD-DMFT

• Formulation of time-dependent density matrix functional theory has 
opened an avenue to calculations of frequency-dependent response 
properties and excitation energies of atoms and molecules. 

• The accuracy of the computed data is limited by both the errors 
inherent to the adiabatic approximation or its modifications and the 
quality of the energy functionals.  

• Double excitations are in principle within the reach.



A stationary case 

• Assume a time-independent Hamiltonian.

• The energy functional 

     

     

  

 

  

 



   


   

   

  

      

         





    





 

            

 

    

 







   






      









   


 





















     















 

   




    

    




   










  







  

 


  




  



is minimized under N-representability conditions.

• Consider a new functional with the conditions included through 
Lagrange multipliers 

     

     

  

 

  

 



   


   

   

  

      

         





    





 

            

 

    

 







   






      









   


 





















     















 

   




    

    




    






 







  







  



     

     

  

 

  

 



   


   

   

  

      

         




    





 

            

 

    

 







   






      









   


 





















     















 

   




    

    




    






 







  







  





  


   





A stationary case 

• The variational equations for the orbitals read

or using hermiticity of the Lagrange multiplier matrix λpq=(λqp)*
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• Equations for the occupation numbers are as follows

 


  




  

             





 


  


  

   

  


  







  


  

  


 





A stationary case 

• The variational equations for the orbitals read

or using hermiticity of the Lagrange multiplier matrix λpq=(λqp)*

 


  




  

             





 


  


  

   

  


  







  


  



 


  




  

             





 


  


  

   

  


  







  


  



• Equations for the occupation numbers are as follows

 


  




  

             





 


  


  

   

  


  







  


  

  


 



• Note that the nonnegativity conditions 

 


  




  

             





 


  


  

   

  


  







  


  

  


 


     



must be imposed separately.



A stationary case 

• For a time-independent Hamiltonian the equation of motion 

∀pq Γpq = np δpq

and employing the relation [K. Pernal et al., Chem. Phys. Lett. 415, 71 
(2005)]

using the natural orbitals as a basis set, i.e. {χp(x)} ≡ {ϕp(x)}

i
∂Γpq(t)

∂t
=

∑

r

[hqr(t)Γpr(t) − Γrq(t)hrp(t)]

+2
∑

rst

[Γ(2)
prst(t) ⟨χqχr|χsχt⟩ − ⟨χtχs|χrχp⟩Γ(2)

tsrq(t)]

turns into the variational equation for orbitals after

     

     

  

 

  

 



   


   

   

  

      

         




    





 

            

 

    

 







   






      









   


 





















     















 

   




    

    




    






 







  







  





  


   




