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Outline

* Reduced density matrices
« Equation of motion for the 1-electron reduced density matrix

* Linear response theory
= adiabatic approximations
= linear response function
= excitation energies

= extended random phase approximation

Note that in the lecture there are two equivalent symbols used for 1-RDM!
r)=r

In the literature one often finds lower case gamma for 1-RDM

v = @)



One-electron reduced density matrix (1-RDM, one-matrix)

Dz, ") =TW(z,2)) = N/\I!*(a:’, e xN)¥(z, .. xN)dee .. dey

» Definitions of natural spinorbitals and natural occupation numbers

/ D(z, ') i(a') da’ = ni ()

Do) = Y mipile) o] )

* Properties (sufficient and necessary ensemble N-rep conditions)

where N is a number of particles in a system.



p-electron reduced density matrix

» Two-electron reduced density matrix (2-RDM, two-matrix)

, N(N —1
F(2)(x1,a:2;33’1,:v2): ( 5 )

X /\I!(x’l,xé, o N ) (21, 20, ..., zN)dTs .. dTN



p-electron reduced density matrix

« Two-electron reduced density matrix (2-RDM, two-matrix)

, N(N —1
F(2)(x1,332;33’1,:c2): ( 5 )

X /\I!(x’l,:cé, o N ) (21, 20, ..., zN)dTs .. dTN

* In general one defines a p-particle reduced density matrix as follows

p
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p col ) [ N . / "
I )(;cl,a:2,...,mp,xl,xQ...,af;p)—( )/\I!(azl,xQ,...,a:p,po,...,xN)



Reduced-density matrix functional theory (RDMFT)

* The existence of the functional is assured by the Hohenberg-Kohn
theorem extended by Gilbert [Phys. Rev. B 12, 2111 (1975)]

I'Y(z, ') = Vegr — Fo

1-RDM is assumed to be v-representable.

A construction of a functional for ensemble N-representable 1-RDM
was provided by S. M. Valone [J. Chem. Phys. 73, 1344, 4653 (1980)]

E[Fgl)] = Tr [(f—l— @ext)f‘g)} + min Tr [Veef‘(m}
F(N)—>Fgl)
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Equation of motion for N-electron density matrix

+ Consider a time-dependent Schrodinger equation

o |T™)
ot

H |

A

i
» A time-derivative for pure-state (p) N-electron density matrix reads

Y =[o™) (]




Equation of motion for ensemble N-electron density matrix

* For ensemble-state (e) N-electron density matrix
(V) = Zw] OV (B | = Z%r(m

a similar equation of motion holds

H Z%F(N)}

Liouville-von Neumann equation



Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy

* In the first quantization the Liouville-von Neumann equation takes form

oW (..., 25\)*V ~
i [ (5517 7CUN) (3717 737N)] _ |:H1N\IJ(331,,.TN)} \Ij(l'll,,l’?\[)*

ot
o) e ¥ )]

* Skip primes at the last N-p primed coordinates, integrate over N-p

coordinates and multiply both sides by N!/p!/(N-p)! to get an equation
involving p-RDM and p+1-RDM

p=1: equation, [V (¢), (1)
p=2 : equation,[T'®(¢),T'® (¢)]

BBGKY hierarchy



BBGKY hierarchy

 Solving full BBGKY hierarchy is equivalent to solving the time-
dependent Schrodinger equation.
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BBGKY hierarchy

 Solving full BBGKY hierarchy is equivalent to solving the time-
dependent Schrodinger equation.

* One should truncate the hierarchy at some level p and make
approximations for the p-RDM.

« For example, truncating the hierarchy after the second equation would
require approximating 3-RDM by 1- and 2-RDM.

* |t has been shown that reconstruction schemes giving reasonable results
for ground state energy fail when employed in the truncated BBGKY
equations [A. Akbari et al., Phys. Rev. B 85, 235121 (2012)]



Equation of motion for 1-RDM

* For the time-dependent Hamiltonian

N A 1 N
H(t) =) h(z;t)+ 5 > it
i=1 i#j

1
h(x,t) = —§V% + v(x,t)

the first equation in the BBGKY hierarchy reads

[i% — h(z1,t) + h(zh, )| T (2, 2, )

— Q/dajg (7“1_21 — rﬂ%) I'®) (21, z0; 2}, 22, 1)



Equation of motion for 1-RDM

 Due to the Runge-Gross theorem [Phys. Rev. Lett. 52, 997 (1984)]

{0, w(t) b — (1)

the time-dependent 2-matrix is a functional of the time-dependent
1-matrix

L®(t) = T, w(to))(t)



Time-dependent 2-RDM is a functional of 1-RDM - proof

* Assume two different (by more than a time-dependent function) time-
dependent potentials yielding the same 1-RDM

vi(x,t) — va(x,t) # c(t)
vi(z,t) — T{ (1)
va(,t) — TH) (1)

ri) =1 (1) =10 )
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Time-dependent 2-RDM is a functional of 1-RDM - proof

* Assume two different (by more than a time-dependent function) time-
dependent potentials yielding the same 1-RDM

vi(x,t) — va(x,t) # c(t)
vi(z,t) — T{ (1)
va(z,1) — T3 (1)
IV () =18 (1) =1 (8)
On one hand

i) =T () = pi(t) = pa(t)
On the other hand, the Runge-Gross theorem states

vi(2,t) —va(m,t) #Fct) = pi(t) #p2(t)



Time-dependent 2-RDM is a functional of 1-RDM - proof

* Assume two different (by more than a time-dependent function) time-
dependent potentials yielding the same 1-RDM

vi(w,t) —va(x,t) # c(t)
vi(z,t) — T (1)
va(, 1) — T3 (1)
P () =18 () =T (1)
On one hand
DY) =157(t) = pu(t) = pa(t)
On the other hand, the Runge-Gross theorem states
vi(z,t) —va(x,t) #Fc(t) = pi(t) #p2(t)

« Contradictory equations are obtained. Consequently,

{r<1>(t), \If(to)} S ou(z,t) — U(t) — T @)



Equation of motion for 1-RDM

* Thus, the first equation in the BBGKY hierarchy may be seen as the
equation of motion for 1-RDM.

(z% — h(zy,t) + iL(:c’l,t)) I (2,24, t)

= Z/dxg (rig —rog) TOT W] (21, 29; 27, 22, 1)

K. Pernal, O. Gritsenko, and E.J. Baerends, Phys. Rev. A75, 012506 (2007)



Equation of motion for 1-RDM

* In the matrix representation in a fixed, time-independent and
orthonormal basis set{x,(z)}

F(l) CIZ‘ 33 erq Xp )*

F(2)($1,$2§$17$2 Z Ij(qrs Xp(T1 Xq(ZEQ)XT(:Ul) X8($/2>*

pqrs

the equation of motion involving one- and two-electron reduced density
matrices reads

P S (g (DT (1) — Doy (e (1)

T

+2 3 I (1) (Xaxrlxaxe) — (Xexa xokp) Thorg ()

rst

OGxelxsxe) = //x;‘(a:’)x?;(:cﬂr — |7y (@) xi () dx da’



The linear response of the one-matrix

* Alinear response of 1-RDM to a perturbation is given by a
convolution of the linear response function and the perturbation

oL';;(t) Z/ Xkl (t — ) dvg (t')dt’
or in terms of the corresponding Fourier transforms

Zijkl 5’Ukl )

« The sum over states (SOS) definition of the response function
reads

<qfo\a}ai\ \111> <@I\akal\\1}0> <\110|a,1aly\11]> <\111|a}ai|\110>
Xij (W) = Z —

! w— B+ Ey+ 1 w+FEr— Fy+n

where n is a positive infinitesimal, Eo is a ground state energy and E;
- excited state energies.



Linear response density matrix functional theory
« Assume the initial conditions at o
H+H()

Vpg DTpg = npopg
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Linear response density matrix functional theory
Assume the initial conditions at to
H+H()
Vg LT'pg = 1p Opq

The system is perturbed with a one-electron time-dependent
perturbation N

HNY (1) =) (i, t)
1=1
The unperturbed (stationary) natural orbitals are used as a basis set,
l.e.

pp(x,t) = Z Upq (%) pq(z)

Expand all terms in the equation of motion up to linear terms:



Linear response density matrix functional theory

Lpg(t) = npdpg + 0L'pq(1)
hpg(t) = hpg + Upg (%)

>~ [TEm 1) (ogerloair) = TELITIO) dorpaloron)

rst

=) {Fg(w)st 1] {pqr]0spe) — Tl [T] {psps \%%ﬁ]

rst

+o0
+> / Kpgrs(t — )T 5 (') dt’

where K is called a coupling matrix.
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Linear response density matrix functional theory

Lpg(t) = npdpg + 0L'pq(1)
hpg(t) = hpg + Upg (%)

>~ [TEm 1) (ogerloair) = TELITIO) dorpaloron)

rst

=) {Fg(w)st 1] {pqr]0spe) — Tl [T] {psps \%%ﬁ]

rst

+o0
+ > / Kpgrs(t — )T 5 (') dt’

where K is called a coupling matrix.

- Zero-order terms drops out (see the stationary equations)

* Fourier transform first-order terms

+00
FIfIw) = fw) = / ¢ £ (1) dt

— 0



Linear response density matrix functional theory

* Use the convolution theorem

+0o0
h(t) = / gt — ) F(#)dt = h(w) = g(w) f(w)

and the property

AW0) = iwf(w

to obtain finally the linear response equation for 1-RDM
Vg Z Lys(w)w 0prdgs — Oprhgs + Ogshrp — Kpgrs(w)] = (np — ng) vgp(w)

where

[pg(w) = F[oT ()] (w)



Coupling matrix
* The m-dependent coupling matrix K is defined as
Vpguw  Kpgow(w) = 2/6iw =)

0 et {Tﬁltm () @aprlpsps) — Tiad [T1() <¢t¢s\¢re@p>}

8 ATy (1)

d(t —t)

r=10)
where I'© is the stationary one-matrix.



Coupling matrix
* The m-dependent coupling matrix K is defined as
Vpguw  Kpgow(w) = 2/6iw =)

0 et {Tﬁltm () @aprlpsps) — Tiad [T1() <sotsos\soreop>}

8 ATy (1)

where I'© is the stationary one-matrix.

« We assume the adiabatic approximation

O s T
arvw

O e T (2)

oT, (1) ~o(t—t)

'=1(0)

'=1(0)




Coupling matrix
* The m-dependent coupling matrix K is defined as
Vpguw  Kpgow(w) = 2/€iw =)

0 et {Tﬁltm () @aprlpsps) — Tiad [T1() <sotsos\soreop>}
O, ()

X

where I'© is the stationary one-matrix.

« We assume the adiabatic approximation

oarLUO)| 5y _ gy vl
Ol uu(¥) =r(0) 257 =10

that results in the o-free coupling matrix

02 st {Tér)st[ l{paorlospr) = Thargll] <90t905\90r90p>}
Vpguw Kpguw = 2 or

r=r)



Adiabatic approximation

« Employing the relation

2 2
2 Z [F](gr)st <80q80r’90890t> o Fésiq <80t80s’907"90p>

rst

[ 0BT . OFce|I]

yields

quvw quvw — or

W, = <5Eee[F] saq>

0Py

'=10)

* The coupling matrix in the adiabatic approximation is expressed in
terms of the derivatives of the energy functional used for ground
state calculation.



Consequence of the adiabatic approximation

* No change of the occupation numbers, i.e.

vV, 0ny(w) =0

« Wrong response of the density matrix in the w—0 limit.
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Potential energy curves for the 12; excited states for Hz in

excitation energies [a.u.]

0.85

0.75 A1

0.65

0.55 A

0.35

0.25

aug-cc-pVTZ basis set.

H-> CCSD
TDDMFT-exact functional

+
457

(50% double excit)

_|_
3%

(80% double excit)

)
T T T T 22+
1.5 3.5 5.5 7.5 9.5 g

R [a.u.] (50% double excit)



Potential energy curves for the 12:{ excited states for Hz in
aug-cc-pVTZ basis set.
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excitation energies[a.u.]

Potential energy curves for the 12; excited states for Hz in
aug-cc-pVTZ basis set.
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TD-DMFT

« Formulation of time-dependent density matrix functional theory has
opened an avenue to calculations of frequency-dependent response
properties and excitation energies of atoms and molecules.

* The accuracy of the computed data is limited by both the errors
inherent to the adiabatic approximation or its modifications and the
quality of the energy functionals.

* Double excitations are in principle within the reach.



A stationary case

« Assume a time-independent Hamiltonian.

« The energy functional
El{ep} {np}] = Z Nphpp + Eee[{@p}, {np}]

IS minimized under N-representability conditions.

« Consider a new functional with the conditions included through
Lagrange multipliers

El{ep} . {np}] - Zqu (opleg) — M(anN>

0§ E{pp}, {np}
59%(33)* - S, (x ZAPqu

0f) _ OF [{gpp},{np}]

on,, on,




A stationary case

* The variational equations for the orbitals read

0Fcc[{op},{np}]
Nphgp + / g 2
p *qp 5¢p(x)*
or using hermiticity of the Lagrange multiplier matrix Apg=(Aqgp)*

L R R s ExL SNOLS

Pq (z)"dr = Apg




A stationary case

* The variational equations for the orbitals read

0Fcc[{op},{np}]
Nphgp + / g 2
p *qp 5¢p(x)*
or using hermiticity of the Lagrange multiplier matrix Apg=(Aqgp)*

L R R s ExL SNOLS

Pq (z)"dr = Apg

« Equations for the occupation numbers are as follows

OE{op},{np}]

on,,

=



A stationary case

* The variational equations for the orbitals read

0Fcc[{op},{np}]
Nphgp + / g 2
p *qp 59019(37)*
or using hermiticity of the Lagrange multiplier matrix Apg=(Aqgp)*

L R R s ExL SNOLS

Pq (z)"dr = Apg

« Equations for the occupation numbers are as follows

OE{op},{np}]

on,,

= 1
* Note that the nonnegativity conditions

Vp 0<n,<1

must be imposed separately.



A stationary case

« For a time-independent Hamiltonian the equation of motion

P S g (DT (1) — Doy (1)

T

+2 3 IS (8) (o Ixsxe) — Oxexs|xexp) Tiarg (8)

rst

turns into the variational equation for orbitals after
using the natural orbitals as a basis set, i.e. {Xp(®)} = {pp(2)}
Vpq I'pg = Mp Opg

and employing the relation [K. Pernal et al., Chem. Phys. Lett. 415, 71
(2005)]

2
2) {Fg(ar)st (Parlpspr) — Tiole (00| 0pep)

rst

[ 0B.T] SE.[T]
-/ Sy () ¥117) 4 / g () PPLENEE



