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OT on the Hamming cube

The Hamming cube

The discrete cube {0,1}n (i.e., bit strings of length n) can be endowed with

1 the Euclidean distance |s − t |E =
√∑n

i=1 |si − ti |2, or

2 the Hamming distance |s − t |H =
∑n

i=1 |si − ti | =
∑n

i=1 1{si ̸=ti}.

We have in fact |s − t |E = |s − t |1/2
H , hence they give different geometries for

large n.

We collect some features of the Wasserstein distance, w.r.t. the Hamming
distance, to be later extended to quantum systems of n-qubits.
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OT on the Hamming cube

Given two probabilities σ, ρ over {0,1}n, write

W1(σ, ρ) = min
T

∑
s,t∈{0,1}n

|t − s|HT (s, t),

where T are transport plans between σ and ρ.

Example: let σ be uniform on {0,1}n, σ(s) = 1
2n , while let ρ(0) = 1. Then,

W1(σ, ρ) =
1
2n

∑
s∈{0,1}n

n∑
i=1

|si | =
n
2
.

The dual formulation is

W1(σ, ρ) = max
f

 ∑
s∈{0,1}n

f (s)(ρ(s)− σ(s))


where f : {0,1}n → R are Lipschitz with respect to the Hamming distance, i.e.,

|f (s)− f (t)| ≤ |s − t |H =
n∑

i=1

1{si ̸=tj}.
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OT on the Hamming cube

Behaviour with respect to local transformations

If σ and ρ have same (n − 1)-marginals, e.g.,

σ(0, s) + σ(1, s) = ρ(0, s) + ρ(1, s) for every s ∈ {0,1}n−1,

then
W1(σ, ρ) ≤ 1.

More generally, if σ and ρ have the same (n − k)-marginals, then

W1(σ, ρ) ≤ k .

If σ is the law of a random variable X and ρ is the law of Q(X ), where
Q : {0,1}n → {0,1}n acts only on k positions (e.g., Q is a transformation
of the first k positions), then

W1(σ, ρ) ≤ k .
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OT on the Hamming cube

Comparison with Total Variation distance

The following inequalities hold for any σ, ρ on {0,1}n:

∥σ − ρ∥TV ≤ W1(σ, ρ) ≤ n∥σ − ρ∥TV .

Indeed TV is Wasserstein w.r.t distance 1{s ̸=t} (recall the exercise):

|s − t |TV ≤ |s − t |H ≤ n|t − s|TV .
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W1 on qubits

Definition of quantum W1

On the system of n qubits Hn =
(
C2

)⊗n, we define the distance W1 essentially
by postulating that a state ρ is at distance ≤ 1 from a state σ if there exists
i = 1, . . . ,n such that

Tri [σ] = Tri [ρ].

The distance W1(ρ, σ) = ∥ρ− σ∥W1 will be induced by a norm on the subspace
of self-adjoint linear operators on (C2)⊗n with null trace.

We define the unit ball (centred at 0) as the convex envelope

Bn =

{
n∑

i=1

pi

(
ρ(i) − σ(i)

)
: pi ≥ 0,

n∑
i=1

pi = 1, ρ(i), σ(i)states,Tri [ρ(i)] = Tri [σ
(i)]

}

and the norm via the Minkowski functional:

∥X∥W1
= min (t ≥ 0 : X ∈ t Bn) .
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W1 on qubits

We obtain the explicit definition for the distance

∥σ−ρ∥W1 = min

{
n∑

i=1

ci : σ − ρ =
n∑

i=1

ci(σ
(i) − ρ(i)), ci ≥ 0,Tri [σ(i)] = Tri [ρ

(i)]

}
.

W1 is invariant with respect to
permutations of the qubits,
unitary operations U acting on a single qubit (e.g., Hadamard gate):

∥σ − ρ∥W1 = ∥UσU† − UρU†∥W1 .

Exercise:
1 Show that (10) fails for U = CX gate (acting on n ≥ 2 qubits).
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W1 on qubits

Simple properties

for states σ, ρ on m qubits and τ on n qubits:

∥σ ⊗ τ − ρ⊗ τ∥W1 ≤ ∥σ − ρ∥W1 .

Consider states σ, ρ over m + n qubits with reduced density operators

σ1,...,m, ρ1,...,n, σm+1,...,m+n, ρm+1,...,m+n.

Then,

∥σ − ρ∥W1 ≥ ∥σ1,...,m − ρ1,...,m∥W1 + ∥σm+1,...,m+n − ρm+1,...,m+n∥W1

Equality holds if

σ = σ1,...,m ⊗ σm+1,...,m+n and ρ = ρ1,...,m ⊗ ρm+1,...,m+n.

Dario Trevisan (UNIPI) NOT2025 Tutorials March 13, 2025 11 / 35



W1 on qubits

Relation with trace distance

We have the inequalities

1
2
∥σ − ρ∥1 ≤ ∥σ − ρ∥W1 ≤

n
2
∥σ − ρ∥1.

Exercise:
1 if there exists i such that Tri [ρ] = Tri [σ] then

∥σ − ρ∥W1 =
1
2
∥σ − ρ∥1.
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W1 on qubits

Recovery of classical distance
For diagonal states

σ =
∑

s∈{0,1}n

p(s)|s⟩⟨s|, ρ =
∑

s∈{0,1}n

q(s)|s⟩⟨s|

we recover the Wasserstein distance of order 1 w.r.t. Hamming distance:

∥ρ− σ∥W1 = W1(p,q).

Tensorization for product states gives

∥|x⟩⟨x | − |y⟩⟨y |∥W1 =
n∑

i=1

1{xi ̸=yi} = |x − y |H .

Given a (classical) transport plan π, between p and q, the triangle
inequality yields

∥ρ− σ∥W1 = ∥
∑
x,y

π(x , y) (|x⟩⟨x | − |y⟩⟨y |) ∥W1 ≤
∑
x,y

π(x , y)|x − y |H .

This proves inequality ≤, i.e., quantum W1 is cheaper.
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W1 on qubits

To prove that it is not strictly cheaper:
Given ci ≥ 0, states ρ(i), σ(i) such that

σ − ρ =
n∑

i=1

ci(σ
(i) − ρ(i)),

discard the off-diagonals of ρ(i) and σ(i), yielding probabilities q(i), p(i) with

p − q =
n∑

i=1

ci(p(i) − q(i)).

The n − 1 marginals of p(i) and q(i) (discarding the bit i) coincide, hence

W1(p(i),q(i)) ≤ 1.

Since also the classical W1 is induced by a norm, by triangle inequality

W1(p,q) ≤
n∑

i=1

ciW1(p(i),q(i)) ≤
n∑

i=1

ci .
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W1 on qubits

Remarks
A“Monge problem” without transport plans:

∥ρ−σ∥W1 = min

{
n∑

i=1

ci : σ − ρ =
n∑

i=1

ci(σ
(i) − ρ(i)), ci ≥ 0,Tri [σ(i)] = Tri [ρ

(i)]

}
.

Computational aspects: Since ρ(i) and σ(i) are states, computing W1 is a
positive semidefinite problem. The computational cost grows however
with the number of qubits (the dimension is 2n).

Generalizations: We actually cover the case of systems H = (Cd )⊗n,
possibly one can generalize to d → ∞. We can also consider the limit
n → ∞ (spin systems).

We search for a dual formulation

∥ρ− σ∥W1 = max
H

{Tr[H(ρ− σ)] : ∥H∥L ≤ 1} ,

with ∥H∥L a quantum notion of Lipschitz constant of H.
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Quantum Lipschitz constant
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Quantum Lipschitz constant

The classical case
In the classical case, if f : {0,1}n → R

∥f∥L = max
x ̸=y

|f (y)− f (x)|
|x − y |H

.

We obtain functions with bounded differences:

|f (x)− f (y)| ≤ ∥f∥Lk

if the strings x , y ∈ {0,1}n differ in k positions.

Exercise: to compute ∥f∥L it is sufficient to bound |f (x)− f (y)| for strings x , y
differing in 1 position (argue along a “discrete geodesic”).

Using Kantorovich duality for W1, we can also write∣∣∣∣∣∑
x

f (x)(p(x)− q(x))

∣∣∣∣∣ ≤ ∥f∥LW1(p,q).
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Quantum Lipschitz constant

Definition of quantum Lipschitz constant

We define ∥H∥L as the dual norm to W1, for any self-adjoint operator H on
(C2)⊗n:

∥H∥L = max
ρ,σ

{Tr[H(ρ− σ)] : ∥ρ− σ∥W1 ≤ 1} .

Since we work in finite dimensional spaces, duality is straightforward:

∥ρ− σ∥W1 = max
H

{Tr[H(ρ− σ)] : ∥H∥L ≤ 1} .

But we also have an operational definition of H:

∥H∥L = 2 max
i=1,...,n

min
H(i)

∥∥∥H − I(i) ⊗ H(i)
∥∥∥
∞

,

where I(i) is the identity on the i-th qubit and H(i) does not act on the i-th qubit,
and ∥ · ∥∞ denotes the operator norm (dual to ∥ · ∥1).
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Quantum Lipschitz constant

Write
∥H∥′L = 2 max

i=1,...,n
min
H(i)

∥∥∥H − I(i) ⊗ H(i)
∥∥∥
∞

.

We prove ∥H∥L ≤ ∥H∥′L.

1 If Tri [ρ(i)] = Tri [σ
(i)], then

Tr[I(i) ⊗ H(i)(ρ(i) − σ(i))] = Tr[H(i) Tri [ρ
(i) − σ(i)]] = 0.

2 It follows that if ρ− σ =
∑n

i=1 ci(ρ
(i) − σ(i)),

Tr[H(ρ−σ)] =
n∑

i=1

ci Tr[H(ρ(i)−σ(i))] =
n∑

i=1

ci Tr[(H−I(i)⊗H(i))(ρ(i)−σ(i))]

3 Using Tr[AB] ≤ ∥A∥∞∥B∥1, we bound

Tr[H(ρ− σ)] ≤
n∑

i=1

ci∥H∥′L.

4 Assuming ∥ρ− σ∥W1 ≤ 1 gives the inequality.
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Quantum Lipschitz constant

To prove ∥H∥′L ≤ ∥H∥L we use that, for self-adjoint A,

2min
c∈R

∥A − cI∥∞ = max
ρ,σ

Tr[A(ρ− σ)].

with ρ, σ states: prove it as an exercise.

1 Fix i = 1, . . . ,n and use minmax = maxmin to obtain

min
H(i)

∥H − I(i) ⊗ H(i)∥∞ = min
H(i)

min
c∈R

∥(H − I(i) ⊗ H(i))− cI∥∞

= min
H(i)

max
ρ,σ

2Tr[(H − I(i) ⊗ H(i))(ρ− σ)]

= max
ρ,σ

min
H(i)

2Tr[(H − I(i) ⊗ H(i))(ρ− σ)]

2 Reduce to ρ, σ such that Tri [ρ] = Tri [σ], otherwise one can choose H(i)

so that
Tr[I(i) ⊗ H(i)(ρ− σ)] = Tr[H(i) Tri [ρ− σ]] → −∞

3 Therefore Tr[I(i) ⊗ H(i)(ρ− σ)] = 0, and

min
H(i)

∥H − I(i) ⊗ H(i)∥∞ ≤ max
ρ,σ

Tr[H(ρ− σ)] ≤ ∥H∥L max
ρ,σ

∥ρ− σ∥W1

4 Finally use that ∥ρ− σ∥W1 ≤ 1 since Tri [ρ] = Tri [σ].
Dario Trevisan (UNIPI) NOT2025 Tutorials March 13, 2025 20 / 35



Quantum Lipschitz constant

To prove ∥H∥′L ≤ ∥H∥L we use that, for self-adjoint A,

2min
c∈R

∥A − cI∥∞ = max
ρ,σ

Tr[A(ρ− σ)].

with ρ, σ states: prove it as an exercise.

1 Fix i = 1, . . . ,n and use minmax = maxmin to obtain

min
H(i)

∥H − I(i) ⊗ H(i)∥∞ = min
H(i)

min
c∈R

∥(H − I(i) ⊗ H(i))− cI∥∞

= min
H(i)

max
ρ,σ

2Tr[(H − I(i) ⊗ H(i))(ρ− σ)]

= max
ρ,σ

min
H(i)

2Tr[(H − I(i) ⊗ H(i))(ρ− σ)]

2 Reduce to ρ, σ such that Tri [ρ] = Tri [σ], otherwise one can choose H(i)

so that
Tr[I(i) ⊗ H(i)(ρ− σ)] = Tr[H(i) Tri [ρ− σ]] → −∞

3 Therefore Tr[I(i) ⊗ H(i)(ρ− σ)] = 0, and

min
H(i)

∥H − I(i) ⊗ H(i)∥∞ ≤ max
ρ,σ

Tr[H(ρ− σ)] ≤ ∥H∥L max
ρ,σ

∥ρ− σ∥W1

4 Finally use that ∥ρ− σ∥W1 ≤ 1 since Tri [ρ] = Tri [σ].
Dario Trevisan (UNIPI) NOT2025 Tutorials March 13, 2025 20 / 35



Quantum Lipschitz constant

Remarks

It always holds ∥H∥L ≤ 2minc∈R ∥H − cI∥∞ ≤ 2∥H∥∞.
If H =

∑
I⊆[n] HI is a sum of local operators, i.e., HI acts only on qubits

in the subset I, then

∥H∥L ≤ 2max
i

∥∥∥∥∥∥
∑

I⊆[n]:i∈I

HI

∥∥∥∥∥∥
∞

,

simply by taking for i = 1, . . . ,n

I(i) ⊗ H(i) =
∑
i /∈I

HI .

Exercises:
1 If H =

∑
x f (x)|x⟩⟨x | is diagonal, then ∥H∥L = ∥f∥L.

2 Prove that ∥H − ITr[H]/2n∥∞ ≤ n∥H∥L.
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W1 continuity of Shannon Entropy

Continuity of entropy

Reminder: Shannon’s entropy S(p) = −
∑

x p(x) lnp(x) and Von Neumann
entropy S(ρ) = −Tr[ρ ln ρ].
Continuity of the entropy has applications in information theory:

if q ≈ p, is S(q) ≈ S(p)?

On the cube {0,1}n, Polyanski and Wu proved

|S(p)− S(q)| ≤ nh2

(
W1(p,q)

n

)
.

with h2(x) = −(1 − x) ln(1 − x)− x ln x the (binary) entropy of a Bernoulli.

Example: if X is uniform and Y is close to X , i.e., W1(X ,Y ) ≪ n, then

S(Y ) ≈ n.
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W1 continuity of Shannon Entropy

Quantum case

For states ρ, σ ∈ S(Cd ), Fannes-Audenaert proved

|S(ρ)− S(σ)| ≤ h2

(
1
2
∥ρ− σ∥1

)
+

1
2
∥ρ− σ∥1 ln(d − 1).

Consider d = 2n. Then
1 it is exactly Polyanskiy-Wu for n = 1,
2 for n ≫ 1, useful only if ∥ρ− σ∥1/2 ≪ 1.

Using the quantum Wasserstein we prove: for ρ, σ ∈ S((C2)⊗n):

|S(ρ)− S(σ)| ≤ nh2

(
∥ρ− σ∥W1

n

)
+ ∥ρ− σ∥W1 ln(3).
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Gaussian concentration inequalities

Since the n-qubits system has W1 diameter ≤ n, all the eigenvalues of an
observable H belong to the interval

[Tr[H]/2n − n∥H∥L,Tr[H]/2n + n∥H∥L].

In fact most eigenvalues belong to much smaller intervals of length ≈
√

n∥H∥L.

We aim to establish the following concentration inequality: for every δ > 0,

dim
(
H ≥

(
Tr[H]/2n + δ

√
n ∥H∥L /2

)
I
)
≤ 2n exp(−δ2/2).

Since dim((C2)⊗n) = 2n, it yields that the relative distribution of eigenvalues
is (roughly) concentrated as a Gaussian with mean Tr[H]/2n and standard
deviation

√
n∥H∥L/2.
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Gaussian concentration inequalities

Transport-entropy inequalities

A classical tool to establish concentration are inequalities of the form

W1(p,q) ≤
√

n
2

D(p∥q) . (1)

for probabilities p, q, and

D(p∥q) =
∑

x

p(x) ln(p(x)/q(x))

is the relative entropy (or Kullback-Leibler divergence).
If (1) holds for a given q and for every p, then duality yields a form of
Gaussian concentration.
Relevant cases (due to K. Marton) are: q product state or q Markov state
(i.e., the law of a Markov chain) under some assumptions.
We establish the quantum analogue of (1) for product states on qubits.
For non-product states there are partial results.
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Gaussian concentration inequalities

Quantum Marton’s inequality

For any ρ, σ ∈ S((C2)⊗n), with

σ = σ1 ⊗ . . .⊗ σn

product state, the following inequality holds:

∥ρ− σ∥W1 ≤
√

n
2

S(ρ∥σ),

where the relative entropy is defined as

S(ρ∥σ) = Tr[ρ (ln(ρ)− ln(σ))].
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Gaussian concentration inequalities

Quantum Pinsker’s inequality
If n = 1, then any σ is product and W1 is the trace distance, hence the
inequality becomes

∥ρ− σ∥1 ≤
√

2 S(ρ∥σ).

This is known as Pinsker’s inequality in the quantum case (of a single qubit).
Sketch of proof:

1 Establish the classical Pinsker’s inequality for classical probabilities r , s
on a two point set, e.g. {−,+}.

2 Introduce the orthogonal projectors Π+ = 1{ρ−σ≥0}, Π− = 1{ρ−σ<0} and
probabilities on {−,+}

r± = Tr[Π±ρ], s± = Tr[Π±σ].

So that

∥ρ− σ∥1 = |r+ − s+|+ |r− − s−| = ∥r − s∥1 ≤
√

2S(r∥s).
3 The pair {Π+,Π−} gives a measurement (Helstrom). Conclude by

monotonicity of the relative entropy:

S(r∥s) ≤ S(ρ∥σ).
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Gaussian concentration inequalities

Proof of quantum Marton’s inequality
1 Write

ρ− σ =
n∑

i=1

(ρ1...i ⊗ σi+1...n − ρ1...i−1 ⊗ σi...n)

2 Apply Pinsker’s inequality for every i = 1, . . . ,n:

∥ρ1...i ⊗ σi+1...n − ρ1...i−1 ⊗ σi...n∥1 ≤
√

2 S (ρ1...i ⊗ σi+1...n∥ρ1...i−1 ⊗ σi...n)

3 Summing upon i and using concavity of
√
·,

∥ρ− σ∥W1 ≤

√√√√n
2

n∑
i=1

S (ρ1...i ⊗ σi+1...n∥ρ1...i−1 ⊗ σi...n)

4 Conclude by the identity

S (ρ1...i ⊗ σi+1...n∥ρ1...i−1 ⊗ σi...n) = S (ρ1...i∥ρ1...i−1 ⊗ σi)

= −S(ρ1...i) + S(ρ1...i−1)− Tr [ρi lnσi ]

and telescopic summation.
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Gaussian concentration inequalities

Proof of Gaussian concentration inequality

1 Assume without loss of generality Tr[H] = 0 and ∥H∥L ≤ 1. We prove,

Tr[etH ] ≤ 2n exp(nt2/8), for every t > 0,

so that concentration follows by Markov inequality.
2 Choose σ = I/2n (maximally mixed state), which is a product state.

Duality and Marton’s inequality give

t Tr[Hρ] = t Tr[H(ρ− σ)] ≤ t∥ρ− σ∥W1 ≤ t
√

n
2

S(ρ∥σ) ≤ nt2

8
+ S(ρ∥σ).

3 Set ρ = etH/Tr[etH ] so that ln ρ = tH − ln Tr[etH ] and

S(ρ∥σ) = Tr[ρ ln ρ] + ln 2n = t Tr[Hρ]− ln Tr[etH ] + ln 2n.

4 Conclude that

ln Tr[etH ] ≤ nt2

8
+ ln2n.
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Gaussian concentration inequalities

Further applications/problems

Quantum generative models: qWGAN (Kiani et al.)
Quantum matching problem (Rouzé/França)
Quantum Ricci curvature (Gao/Rouzé)

Problems:
1 Efficient computation/approximation
2 Geometric inequalities on quantum Hamming cube
3 Mixing times for semigroups
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