# Quantum OT: quantum channels and qubits Tutorial 3

Dario Trevisan

Università di Pisa dario.trevisan@unipi.it

March 13, 2025





- 2) W<sub>1</sub> on qubits
- Quantum Lipschitz constant
- W<sub>1</sub> continuity of Shannon Entropy
- Gaussian concentration inequalities

#### 6 Bibliography

#### Plan

#### OT on the Hamming cube

- 2  $W_1$  on qubits
- 3 Quantum Lipschitz constant
- 4  $W_1$  continuity of Shannon Entropy
- 5 Gaussian concentration inequalities
- Bibliography

## The Hamming cube

The discrete cube  $\{0, 1\}^n$  (i.e., bit strings of length *n*) can be endowed with

- the Euclidean distance  $|s t|_E = \sqrt{\sum_{i=1}^n |s_i t_i|^2}$ , or
- **2** the Hamming distance  $|s t|_H = \sum_{i=1}^n |s_i t_i| = \sum_{i=1}^n \mathbf{1}_{\{s_i \neq t_i\}}$ .

We have in fact  $|s - t|_E = |s - t|_H^{1/2}$ , hence they give different geometries for large *n*.

We collect some features of the Wasserstein distance, w.r.t. the Hamming distance, to be later extended to quantum systems of *n*-qubits.

Given two probabilities  $\sigma$ ,  $\rho$  over  $\{0, 1\}^n$ , write

$$W_1(\sigma,\rho) = \min_{T} \sum_{s,t \in \{0,1\}^n} |t-s|_H T(s,t),$$

where T are transport plans between  $\sigma$  and  $\rho$ .

**Example**: let  $\sigma$  be uniform on  $\{0, 1\}^n$ ,  $\sigma(s) = \frac{1}{2^n}$ , while let  $\rho(\mathbf{0}) = 1$ . Then,

$$W_1(\sigma, \rho) = rac{1}{2^n} \sum_{s \in \{0,1\}^n} \sum_{i=1}^n |s_i| = rac{n}{2}.$$

The dual formulation is

$$W_1(\sigma,\rho) = \max_f \left\{ \sum_{s \in \{0,1\}^n} f(s)(\rho(s) - \sigma(s)) \right\}$$

where  $f : \{0, 1\}^n \to \mathbb{R}$  are Lipschitz with respect to the Hamming distance, i.e.,

$$|f(s) - f(t)| \le |s - t|_H = \sum_{i=1}^n \mathbf{1}_{\{s_i \ne t_j\}}.$$

## Behaviour with respect to local transformations

• If  $\sigma$  and  $\rho$  have same (n-1)-marginals, e.g.,

$$\sigma(\mathbf{0}, \mathbf{s}) + \sigma(\mathbf{1}, \mathbf{s}) = \rho(\mathbf{0}, \mathbf{s}) + \rho(\mathbf{1}, \mathbf{s})$$
 for every  $\mathbf{s} \in \{\mathbf{0}, \mathbf{1}\}^{n-1}$ ,

then

$$W_1(\sigma,\rho) \leq 1.$$

• More generally, if  $\sigma$  and  $\rho$  have the same (n - k)-marginals, then

$$W_1(\sigma,\rho) \leq k.$$

 If σ is the law of a random variable X and ρ is the law of Q(X), where Q: {0,1}<sup>n</sup> → {0,1}<sup>n</sup> acts only on k positions (e.g., Q is a transformation of the first k positions), then

$$W_1(\sigma,\rho) \leq k.$$

## Comparison with Total Variation distance

The following inequalities hold for any  $\sigma$ ,  $\rho$  on  $\{0, 1\}^n$ :

$$\|\sigma - \rho\|_{TV} \leq W_1(\sigma, \rho) \leq n \|\sigma - \rho\|_{TV}.$$

Indeed TV is Wasserstein w.r.t distance  $1_{\{s \neq t\}}$  (recall the exercise):

$$|\boldsymbol{s}-\boldsymbol{t}|_{TV} \leq |\boldsymbol{s}-\boldsymbol{t}|_{H} \leq n|\boldsymbol{t}-\boldsymbol{s}|_{TV}.$$

### Plan

#### OT on the Hamming cube

#### 2 $W_1$ on qubits

- 3) Quantum Lipschitz constant
- 4  $W_1$  continuity of Shannon Entropy
- 5 Gaussian concentration inequalities
- Bibliography

## Definition of quantum $W_1$

On the system of *n* qubits  $\mathcal{H}_n = (\mathbb{C}^2)^{\otimes n}$ , we define the distance  $W_1$  essentially by postulating that a state  $\rho$  is at distance  $\leq 1$  from a state  $\sigma$  if there exists i = 1, ..., n such that

$$\operatorname{Tr}_i[\sigma] = \operatorname{Tr}_i[\rho].$$

The distance  $W_1(\rho, \sigma) = \|\rho - \sigma\|_{W_1}$  will be induced by a norm on the subspace of self-adjoint linear operators on  $(\mathbb{C}^2)^{\otimes n}$  with null trace.

We define the unit ball (centred at 0) as the convex envelope

$$\mathcal{B}_{n} = \left\{ \sum_{i=1}^{n} p_{i} \left( \rho^{(i)} - \sigma^{(i)} \right) : p_{i} \ge 0, \ \sum_{i=1}^{n} p_{i} = 1, \ \rho^{(i)}, \ \sigma^{(i)} \text{states}, \ \mathsf{Tr}_{i}[\rho^{(i)}] = \mathsf{Tr}_{i}[\sigma^{(i)}] \right\}$$

and the norm via the Minkowski functional:

$$\|X\|_{W_1} = \min\left(t \ge 0 : X \in t \mathcal{B}_n\right).$$

NOT2025 Tutorials

We obtain the explicit definition for the distance

$$\|\sigma - \rho\|_{W_1} = \min\left\{\sum_{i=1}^n c_i : \sigma - \rho = \sum_{i=1}^n c_i(\sigma^{(i)} - \rho^{(i)}), c_i \ge 0, \operatorname{Tr}_i[\sigma^{(i)}] = \operatorname{Tr}_i[\rho^{(i)}]\right\}$$

 $W_1$  is invariant with respect to

- permutations of the qubits,
- unitary operations U acting on a single qubit (e.g., Hadamard gate):

$$\|\sigma - \rho\|_{W_1} = \|U\sigma U^{\dagger} - U\rho U^{\dagger}\|_{W_1}.$$

#### Exercise:

Show that (10) fails for U = CX gate (acting on  $n \ge 2$  qubits).

## Simple properties

• for states  $\sigma$ ,  $\rho$  on *m* qubits and  $\tau$  on *n* qubits:

$$\|\sigma \otimes \tau - \rho \otimes \tau\|_{W_1} \le \|\sigma - \rho\|_{W_1}.$$

• Consider states  $\sigma$ ,  $\rho$  over m + n qubits with reduced density operators

 $\sigma_{1,\ldots,m}, \quad \rho_{1,\ldots,n}, \quad \sigma_{m+1,\ldots,m+n}, \quad \rho_{m+1,\ldots,m+n}.$ 

Then,

$$\|\sigma - \rho\|_{W_1} \ge \|\sigma_{1,\dots,m} - \rho_{1,\dots,m}\|_{W_1} + \|\sigma_{m+1,\dots,m+n} - \rho_{m+1,\dots,m+n}\|_{W_1}$$

Equality holds if

## Relation with trace distance

We have the inequalities

$$\frac{1}{2} \|\sigma - \rho\|_{1} \le \|\sigma - \rho\|_{W_{1}} \le \frac{n}{2} \|\sigma - \rho\|_{1}.$$

#### Exercise:

• if there exists *i* such that  $Tr_i[\rho] = Tr_i[\sigma]$  then

$$\|\sigma - \rho\|_{W_1} = \frac{1}{2}\|\sigma - \rho\|_1.$$

## Recovery of classical distance

For diagonal states

$$\sigma = \sum_{oldsymbol{s} \in \{0,1\}^n} oldsymbol{p}(oldsymbol{s}) |oldsymbol{s}
angle \langle oldsymbol{s}|, \qquad 
ho = \sum_{oldsymbol{s} \in \{0,1\}^n} oldsymbol{q}(oldsymbol{s}) |oldsymbol{s}
angle \langle oldsymbol{s}|$$

we recover the Wasserstein distance of order 1 w.r.t. Hamming distance:

$$\|\rho-\sigma\|_{W_1}=W_1(\rho,q).$$

Tensorization for product states gives

$$|||\mathbf{x}\rangle\langle\mathbf{x}|-|\mathbf{y}\rangle\langle\mathbf{y}|||_{W_1}=\sum_{i=1}^n\mathbf{1}_{\{\mathbf{x}_i\neq\mathbf{y}_i\}}=|\mathbf{x}-\mathbf{y}|_H.$$

 Given a (classical) transport plan π, between p and q, the triangle inequality yields

$$\|\rho - \sigma\|_{W_1} = \|\sum_{x,y} \pi(x,y) \left(|x\rangle \langle x| - |y\rangle \langle y|\right)\|_{W_1} \le \sum_{x,y} \pi(x,y)|x - y|_{H}.$$

• This proves inequality  $\leq$ , i.e., quantum  $W_1$  is cheaper.

To prove that it is not strictly cheaper:

• Given  $c_i \ge 0$ , states  $\rho^{(i)}$ ,  $\sigma^{(i)}$  such that

$$\sigma - \rho = \sum_{i=1}^{n} c_i (\sigma^{(i)} - \rho^{(i)}),$$

discard the off-diagonals of  $\rho^{(i)}$  and  $\sigma^{(i)}$ , yielding probabilities  $q^{(i)}$ ,  $p^{(i)}$  with

$$p-q = \sum_{i=1}^{n} c_i (p^{(i)} - q^{(i)}).$$

• The n-1 marginals of  $p^{(i)}$  and  $q^{(i)}$  (discarding the bit *i*) coincide, hence

$$W_1(p^{(i)}, q^{(i)}) \leq 1.$$

• Since also the classical  $W_1$  is induced by a norm, by triangle inequality

$$W_1(p,q) \leq \sum_{i=1}^n c_i W_1(p^{(i)},q^{(i)}) \leq \sum_{i=1}^n c_i.$$

A"Monge problem" without transport plans:

$$\|\rho - \sigma\|_{W_1} = \min\left\{\sum_{i=1}^n c_i : \sigma - \rho = \sum_{i=1}^n c_i(\sigma^{(i)} - \rho^{(i)}), c_i \ge 0, \operatorname{Tr}_i[\sigma^{(i)}] = \operatorname{Tr}_i[\rho^{(i)}]\right\}.$$

- Computational aspects: Since  $\rho^{(i)}$  and  $\sigma^{(i)}$  are states, computing  $W_1$  is a positive semidefinite problem. The computational cost grows however with the number of qubits (the dimension is  $2^n$ ).
- Generalizations: We actually cover the case of systems  $H = (\mathbb{C}^d)^{\otimes n}$ , possibly one can generalize to  $d \to \infty$ . We can also consider the limit  $n \to \infty$  (spin systems).
- We search for a dual formulation

$$\|\rho - \sigma\|_{W_1} = \max_{H} \{ \operatorname{Tr}[H(\rho - \sigma)] : \|H\|_L \le 1 \},\$$

with  $||H||_L$  a quantum notion of Lipschitz constant of *H*.

A"Monge problem" without transport plans:

$$\|\rho - \sigma\|_{W_1} = \min\left\{\sum_{i=1}^n c_i : \sigma - \rho = \sum_{i=1}^n c_i(\sigma^{(i)} - \rho^{(i)}), c_i \ge 0, \operatorname{Tr}_i[\sigma^{(i)}] = \operatorname{Tr}_i[\rho^{(i)}]\right\}$$

- Computational aspects: Since  $\rho^{(i)}$  and  $\sigma^{(i)}$  are states, computing  $W_1$  is a positive semidefinite problem. The computational cost grows however with the number of qubits (the dimension is  $2^n$ ).
- Generalizations: We actually cover the case of systems  $H = (\mathbb{C}^d)^{\otimes n}$ , possibly one can generalize to  $d \to \infty$ . We can also consider the limit  $n \to \infty$  (spin systems).
- We search for a dual formulation

$$\|\rho - \sigma\|_{W_1} = \max_{H} \{ \operatorname{Tr}[H(\rho - \sigma)] : \|H\|_L \le 1 \},\$$

with  $||H||_L$  a quantum notion of Lipschitz constant of *H*.

NOT2025 Tutorials

A"Monge problem" without transport plans:

$$\|\rho - \sigma\|_{W_1} = \min\left\{\sum_{i=1}^n c_i : \sigma - \rho = \sum_{i=1}^n c_i(\sigma^{(i)} - \rho^{(i)}), c_i \ge 0, \operatorname{Tr}_i[\sigma^{(i)}] = \operatorname{Tr}_i[\rho^{(i)}]\right\}$$

- Computational aspects: Since  $\rho^{(i)}$  and  $\sigma^{(i)}$  are states, computing  $W_1$  is a positive semidefinite problem. The computational cost grows however with the number of qubits (the dimension is  $2^n$ ).
- Generalizations: We actually cover the case of systems  $H = (\mathbb{C}^d)^{\otimes n}$ , possibly one can generalize to  $d \to \infty$ . We can also consider the limit  $n \to \infty$  (spin systems).
- We search for a dual formulation

$$\|\rho - \sigma\|_{W_1} = \max_{H} \{ \operatorname{Tr}[H(\rho - \sigma)] : \|H\|_L \le 1 \},\$$

with  $||H||_L$  a quantum notion of Lipschitz constant of *H*.

NOT2025 Tutorials

A"Monge problem" without transport plans:

$$\|\rho - \sigma\|_{W_1} = \min\left\{\sum_{i=1}^n c_i : \sigma - \rho = \sum_{i=1}^n c_i(\sigma^{(i)} - \rho^{(i)}), c_i \ge 0, \operatorname{Tr}_i[\sigma^{(i)}] = \operatorname{Tr}_i[\rho^{(i)}]\right\}$$

- Computational aspects: Since  $\rho^{(i)}$  and  $\sigma^{(i)}$  are states, computing  $W_1$  is a positive semidefinite problem. The computational cost grows however with the number of qubits (the dimension is  $2^n$ ).
- Generalizations: We actually cover the case of systems  $H = (\mathbb{C}^d)^{\otimes n}$ , possibly one can generalize to  $d \to \infty$ . We can also consider the limit  $n \to \infty$  (spin systems).
- We search for a dual formulation

$$\|\rho - \sigma\|_{W_1} = \max_{H} \{ \operatorname{Tr}[H(\rho - \sigma)] : \|H\|_L \le 1 \},\$$

with  $||H||_L$  a quantum notion of Lipschitz constant of *H*.

### Plan

- 1) OT on the Hamming cube
- 2)  $W_1$  on qubits
- Quantum Lipschitz constant
  - W<sub>1</sub> continuity of Shannon Entropy
  - 5 Gaussian concentration inequalities
  - 6) Bibliography

In the classical case, if  $f : \{0, 1\}^n \to \mathbb{R}$ 

$$||f||_L = \max_{x \neq y} \frac{|f(y) - f(x)|}{|x - y|_H}$$

We obtain functions with bounded differences:

 $|f(x)-f(y)|\leq \|f\|_L k$ 

if the strings  $x, y \in \{0, 1\}^n$  differ in k positions.

Exercise: to compute  $||f||_L$  it is sufficient to bound |f(x) - f(y)| for strings *x*, *y* differing in 1 position (argue along a "discrete geodesic").

Using Kantorovich duality for  $W_1$ , we can also write



In the classical case, if  $f : \{0, 1\}^n \to \mathbb{R}$ 

$$|f||_L = \max_{x \neq y} \frac{|f(y) - f(x)|}{|x - y|_H}$$

We obtain functions with bounded differences:

$$|f(x)-f(y)|\leq \|f\|_L k$$

if the strings  $x, y \in \{0, 1\}^n$  differ in *k* positions.

Exercise: to compute  $||f||_L$  it is sufficient to bound |f(x) - f(y)| for strings *x*, *y* differing in 1 position (argue along a "discrete geodesic").

Using Kantorovich duality for  $W_1$ , we can also write

$$\left|\sum_{x} f(x)(p(x) - q(x))\right| \le \|f\|_L W_1(p,q).$$

Dario Trevisan (UNIPI)

NOT2025 Tutorials

In the classical case, if  $f : \{0, 1\}^n \to \mathbb{R}$ 

$$|f||_L = \max_{x \neq y} \frac{|f(y) - f(x)|}{|x - y|_H}$$

We obtain functions with bounded differences:

$$|f(x)-f(y)|\leq \|f\|_L k$$

if the strings  $x, y \in \{0, 1\}^n$  differ in k positions.

**Exercise**: to compute  $||f||_L$  it is sufficient to bound |f(x) - f(y)| for strings *x*, *y* differing in 1 position (argue along a "discrete geodesic").

Using Kantorovich duality for  $W_1$ , we can also write

$$\left|\sum f(x)(p(x)-q(x))\right|\leq \|f\|_L W_1(p,q).$$

Dario Trevisan (UNIPI)

In the classical case, if  $f : \{0, 1\}^n \to \mathbb{R}$ 

$$|f||_L = \max_{x \neq y} \frac{|f(y) - f(x)|}{|x - y|_H}$$

We obtain functions with bounded differences:

$$|f(x)-f(y)|\leq \|f\|_L k$$

if the strings  $x, y \in \{0, 1\}^n$  differ in k positions.

**Exercise:** to compute  $||f||_L$  it is sufficient to bound |f(x) - f(y)| for strings *x*, *y* differing in 1 position (argue along a "discrete geodesic").

Using Kantorovich duality for  $W_1$ , we can also write

$$\left|\sum_{x}f(x)(p(x)-q(x))\right|\leq \|f\|_{L}W_{1}(p,q).$$

Dario Trevisan (UNIPI)

## Definition of quantum Lipschitz constant

We define  $||H||_L$  as the dual norm to  $W_1$ , for any self-adjoint operator H on  $(\mathbb{C}^2)^{\otimes n}$ :

$$\|H\|_{L} = \max_{\rho,\sigma} \left\{ \mathrm{Tr}[H(\rho - \sigma)] : \|\rho - \sigma\|_{W_{1}} \le 1 \right\}.$$

Since we work in finite dimensional spaces, duality is straightforward:

$$\|\rho - \sigma\|_{W_1} = \max_{H} \{ \operatorname{Tr}[H(\rho - \sigma)] : \|H\|_L \le 1 \}.$$

But we also have an operational definition of *H*:

$$\|H\|_{L} = 2 \max_{i=1,\ldots,n} \min_{H^{(i)}} \left\|H - \mathbb{I}^{(i)} \otimes H^{(i)}\right\|_{\infty},$$

where  $\mathbb{I}^{(i)}$  is the identity on the *i*-th qubit and  $H^{(i)}$  does not act on the *i*-th qubit, and  $\|\cdot\|_{\infty}$  denotes the operator norm (dual to  $\|\cdot\|_1$ ).

## Definition of quantum Lipschitz constant

We define  $||H||_L$  as the dual norm to  $W_1$ , for any self-adjoint operator H on  $(\mathbb{C}^2)^{\otimes n}$ :

$$\|H\|_{L} = \max_{\rho,\sigma} \{ \operatorname{Tr}[H(\rho - \sigma)] : \|\rho - \sigma\|_{W_{1}} \leq 1 \}.$$

Since we work in finite dimensional spaces, duality is straightforward:

$$\|\rho - \sigma\|_{W_1} = \max_{H} \{ \operatorname{Tr}[H(\rho - \sigma)] : \|H\|_L \le 1 \}.$$

But we also have an operational definition of *H*:

$$\|H\|_{L} = 2 \max_{i=1,\ldots,n} \min_{H^{(i)}} \left\|H - \mathbb{I}^{(i)} \otimes H^{(i)}\right\|_{\infty},$$

where  $\mathbb{I}^{(i)}$  is the identity on the *i*-th qubit and  $H^{(i)}$  does not act on the *i*-th qubit, and  $\|\cdot\|_{\infty}$  denotes the operator norm (dual to  $\|\cdot\|_1$ ).

## Definition of quantum Lipschitz constant

We define  $||H||_L$  as the dual norm to  $W_1$ , for any self-adjoint operator H on  $(\mathbb{C}^2)^{\otimes n}$ :

$$\|H\|_{L} = \max_{\rho,\sigma} \left\{ \operatorname{Tr}[H(\rho - \sigma)] : \|\rho - \sigma\|_{W_{1}} \leq 1 \right\}.$$

Since we work in finite dimensional spaces, duality is straightforward:

$$\|\rho - \sigma\|_{W_1} = \max_{H} \{ \operatorname{Tr}[H(\rho - \sigma)] : \|H\|_L \le 1 \}.$$

But we also have an operational definition of *H*:

$$\|H\|_{L} = 2 \max_{i=1,\ldots,n} \min_{H^{(i)}} \left\|H - \mathbb{I}^{(i)} \otimes H^{(i)}\right\|_{\infty},$$

where  $\mathbb{I}^{(i)}$  is the identity on the *i*-th qubit and  $H^{(i)}$  does not act on the *i*-th qubit, and  $\|\cdot\|_{\infty}$  denotes the operator norm (dual to  $\|\cdot\|_1$ ).

#### Write

$$\|H\|'_{L} = 2 \max_{i=1,\ldots,n} \min_{H^{(i)}} \left\|H - \mathbb{I}^{(i)} \otimes H^{(i)}\right\|_{\infty}.$$

We prove  $||H||_L \leq ||H||'_L$ .

• If  $\operatorname{Tr}_i[\rho^{(i)}] = \operatorname{Tr}_i[\sigma^{(i)}]$ , then

 $\mathrm{Tr}[\mathbb{I}^{(l)} \otimes H^{(l)}(\rho^{(l)} - \sigma^{(l)})] = \mathrm{Tr}[H^{(l)} \,\mathrm{Tr}_{i}[\rho^{(l)} - \sigma^{(l)}]] = 0.$ 

② It follows that if  $ho - \sigma = \sum_{i=1}^{n} c_i (
ho^{(i)} - \sigma^{(i)})$ ,

$$\operatorname{Tr}[H(\rho - \sigma)] = \sum_{i=1}^{n} c_{i} \operatorname{Tr}[H(\rho^{(i)} - \sigma^{(i)})] = \sum_{i=1}^{n} c_{i} \operatorname{Tr}[(H - \mathbb{I}^{(i)} \otimes H^{(i)})(\rho^{(i)} - \sigma^{(i)})]$$

③ Using  $\operatorname{Tr}[AB] \leq \|A\|_{\infty} \|B\|_{1}$ , we bound

$$\operatorname{Tr}[H(\rho-\sigma)] \leq \sum_{i=1}^{n} c_{i} \|H\|_{L}^{\prime}$$

Assuming  $\|\rho - \sigma\|_{W_1} \leq 1$  gives the inequality.

Dario Trevisan (UNIPI)

NOT2025 Tutorials

Write

$$\|H\|'_{L} = 2 \max_{i=1,\ldots,n} \min_{H^{(i)}} \left\|H - \mathbb{I}^{(i)} \otimes H^{(i)}\right\|_{\infty}.$$

#### We prove $||H||_L \leq ||H||'_L$ .

• If  $\operatorname{Tr}_i[\rho^{(i)}] = \operatorname{Tr}_i[\sigma^{(i)}]$ , then

 $\mathrm{Tr}[\mathbb{I}^{(i)} \otimes H^{(i)}(\rho^{(i)} - \sigma^{(i)})] = \mathrm{Tr}[H^{(i)} \,\mathrm{Tr}_i[\rho^{(i)} - \sigma^{(i)}]] = 0.$ 

2 It follows that if  $ho - \sigma = \sum_{i=1}^{n} c_i (\rho^{(i)} - \sigma^{(i)})$ ,

$$\Pr[H(\rho - \sigma)] = \sum_{i=1}^{n} c_i \operatorname{Tr}[H(\rho^{(i)} - \sigma^{(i)})] = \sum_{i=1}^{n} c_i \operatorname{Tr}[(H - \mathbb{I}^{(i)} \otimes H^{(i)})(\rho^{(i)} - \sigma^{(i)})]$$

Ising  $Tr[AB] \leq ||A||_{\infty} ||B||_1$ , we bound

$$\operatorname{Tr}[H(\rho-\sigma)] \leq \sum_{i=1}^{n} c_{i} \|H\|_{L}^{\prime}$$

Assuming  $\|\rho - \sigma\|_{W_1} \leq 1$  gives the inequality.

Dario Trevisan (UNIPI)

NOT2025 Tutorials

Write

$$\|H\|'_{L} = 2 \max_{i=1,\ldots,n} \min_{H^{(i)}} \left\|H - \mathbb{I}^{(i)} \otimes H^{(i)}\right\|_{\infty}.$$

We prove  $||H||_L \leq ||H||'_L$ .

• If  $\operatorname{Tr}_i[\rho^{(i)}] = \operatorname{Tr}_i[\sigma^{(i)}]$ , then

$$\operatorname{Tr}[\mathbb{I}^{(i)} \otimes H^{(i)}(\rho^{(i)} - \sigma^{(i)})] = \operatorname{Tr}[H^{(i)} \operatorname{Tr}_i[\rho^{(i)} - \sigma^{(i)}]] = \mathbf{0}.$$

• It follows that if  $\rho - \sigma = \sum_{i=1}^{n} c_i (\rho^{(i)} - \sigma^{(i)})$ ,

$$Tr[H(\rho - \sigma)] = \sum_{i=1}^{n} c_i Tr[H(\rho^{(i)} - \sigma^{(i)})] = \sum_{i=1}^{n} c_i Tr[(H - \mathbb{I}^{(i)} \otimes H^{(i)})(\rho^{(i)} - \sigma^{(i)})]$$

• Using  $Tr[AB] \le ||A||_{\infty} ||B||_1$ , we bound

$$\operatorname{Tr}[H(\rho - \sigma)] \leq \sum_{i=1}^{n} c_{i} \|H\|_{L}^{\prime}$$

• Assuming  $\|\rho - \sigma\|_{W_1} \leq 1$  gives the inequality.

To prove  $||H||_{L}^{\prime} \leq ||H||_{L}$  we use that, for self-adjoint *A*,

$$2\min_{\boldsymbol{c}\in\mathbb{R}} \|\boldsymbol{A} - \boldsymbol{c}\mathbb{I}\|_{\infty} = \max_{\boldsymbol{\rho},\boldsymbol{\sigma}} \operatorname{Tr}[\boldsymbol{A}(\boldsymbol{\rho} - \boldsymbol{\sigma})].$$

with  $\rho$ ,  $\sigma$  states: prove it as an exercise.

Fix i = 1, ..., n and use min max = max min to obtain  $\min_{H^{(i)}} \|H - \mathbb{I}^{(i)} \otimes H^{(i)}\|_{\infty} = \min_{H^{(i)}} \min_{\sigma \in \mathbb{R}} \|(H - \mathbb{I}^{(i)} \otimes H^{(i)}) - c\mathbb{I}\|_{\infty}$   $= \min_{H^{(i)}} \max_{\rho, \sigma} 2 \operatorname{Tr}[(H - \mathbb{I}^{(i)} \otimes H^{(i)})(\rho - \sigma)]$   $= \max_{\rho, \sigma} \min_{H^{(i)}} 2 \operatorname{Tr}[(H - \mathbb{I}^{(i)} \otimes H^{(i)})(\rho - \sigma)]$ 

Preduce to ρ, σ such that Tr<sub>i</sub>[ρ] = Tr<sub>i</sub>[σ], otherwise one can choose H<sup>(i)</sup> so that

$$\operatorname{Tr}[\mathbb{I}^{(i)}\otimes H^{(i)}(
ho-\sigma)] = \operatorname{Tr}[H^{(i)}\operatorname{Tr}_i[
ho-\sigma]] o -\infty$$

③ Therefore  $Tr[\mathbb{I}^{(i)} \otimes H^{(i)}(\rho - \sigma)] = 0$ , and

 $\min_{H^{(i)}} \|H - \mathbb{I}^{(i)} \otimes H^{(i)}\|_{\infty} \leq \max_{\rho, \sigma} \operatorname{Tr}[H(\rho - \sigma)] \leq \|H\|_{L} \max_{\rho, \sigma} \|\rho - \sigma\|_{W_{1}}$ 

**9** Finally use that  $\|\rho - \sigma\|_{W_1} \leq 1$  since  $\operatorname{Tr}_i[\rho] = \operatorname{Tr}_i[\sigma]$ .

Dario Trevisan (UNIPI)

NOT2025 Tutorials

To prove  $||H||'_L \le ||H||_L$  we use that, for self-adjoint *A*,

$$2\min_{\boldsymbol{c}\in\mathbb{R}}\|\boldsymbol{A}-\boldsymbol{c}\mathbb{I}\|_{\infty}=\max_{\rho,\sigma}\mathrm{Tr}[\boldsymbol{A}(\rho-\sigma)].$$

with  $\rho$ ,  $\sigma$  states: prove it as an exercise.

• Fix 
$$i = 1, ..., n$$
 and use min max = max min to obtain  

$$\min_{H^{(i)}} ||H - \mathbb{I}^{(i)} \otimes H^{(i)}||_{\infty} = \min_{H^{(i)}} \min_{c \in \mathbb{R}} ||(H - \mathbb{I}^{(i)} \otimes H^{(i)}) - c\mathbb{I}||_{\infty}$$

$$= \min_{H^{(i)}} \max_{\rho, \sigma} 2 \operatorname{Tr}[(H - \mathbb{I}^{(i)} \otimes H^{(i)})(\rho - \sigma)]$$

$$= \max_{\rho, \sigma} \min_{H^{(i)}} 2 \operatorname{Tr}[(H - \mathbb{I}^{(i)} \otimes H^{(i)})(\rho - \sigma)]$$

**2** Reduce to  $\rho$ ,  $\sigma$  such that  $\text{Tr}_i[\rho] = \text{Tr}_i[\sigma]$ , otherwise one can choose  $H^{(i)}$  so that

$$\operatorname{Tr}[\mathbb{I}^{(i)} \otimes \mathcal{H}^{(i)}(\rho - \sigma)] = \operatorname{Tr}[\mathcal{H}^{(i)} \operatorname{Tr}_i[\rho - \sigma]] \to -\infty$$

Solution Therefore  $Tr[\mathbb{I}^{(i)} \otimes H^{(i)}(\rho - \sigma)] = 0$ , and

$$\min_{\mathcal{H}^{(i)}} \|\mathcal{H} - \mathbb{I}^{(i)} \otimes \mathcal{H}^{(i)}\|_{\infty} \leq \max_{\rho,\sigma} \operatorname{Tr}[\mathcal{H}(\rho - \sigma)] \leq \|\mathcal{H}\|_{L} \max_{\rho,\sigma} \|\rho - \sigma\|_{W_{1}}$$

Sinally use that  $\|\rho - \sigma\|_{W_1} \leq 1$  since  $\operatorname{Tr}_i[\rho] = \operatorname{Tr}_i[\sigma]$ .

- It always holds  $\|H\|_L \leq 2 \min_{c \in \mathbb{R}} \|H c\mathbb{I}\|_{\infty} \leq 2\|H\|_{\infty}$ .
- If H = ∑<sub>𝒯⊆[n]</sub> H<sub>𝒯</sub> is a sum of local operators, i.e., H<sub>𝒯</sub> acts only on qubits in the subset 𝒯, then

$$\left\|\boldsymbol{H}\right\|_{L} \leq 2 \max_{i} \left\| \sum_{\mathcal{I} \subseteq [\boldsymbol{n}]: i \in \mathcal{I}} \boldsymbol{H}_{\mathcal{I}} \right\|_{\infty},$$

simply by taking for  $i = 1, \ldots, n$ 

$$\mathbb{I}^{(i)}\otimes H^{(i)}=\sum_{i\notin\mathcal{I}}H_{\mathcal{I}}.$$

Exercises:

If H = ∑<sub>x</sub> f(x)|x⟩⟨x| is diagonal, then ||H||<sub>L</sub> = ||f||<sub>L</sub>.
 Prove that ||H − I Tr[H]/2<sup>n</sup>||<sub>∞</sub> ≤ n||H||<sub>L</sub>.

- It always holds  $\|H\|_{L} \leq 2 \min_{c \in \mathbb{R}} \|H c\mathbb{I}\|_{\infty} \leq 2\|H\|_{\infty}$ .
- If H = ∑<sub>I⊆[n]</sub> H<sub>I</sub> is a sum of local operators, i.e., H<sub>I</sub> acts only on qubits in the subset I, then

$$\left\|\boldsymbol{H}\right\|_{L} \leq 2 \max_{i} \left\| \sum_{\mathcal{I} \subseteq [\boldsymbol{n}]: i \in \mathcal{I}} \boldsymbol{H}_{\mathcal{I}} \right\|_{\infty},$$

simply by taking for  $i = 1, \ldots, n$ 

$$\mathbb{I}^{(i)}\otimes H^{(i)}=\sum_{i\notin\mathcal{I}}H_{\mathcal{I}}.$$

#### Exercises:

- 1 If  $H = \sum_{x} f(x) |x\rangle \langle x|$  is diagonal, then  $||H||_{L} = ||f||_{L}$ .
- 2 Prove that  $||H \mathbb{I}\operatorname{Tr}[H]/2^n||_{\infty} \leq n||H||_L$ .

## Plan

4

- 1) OT on the Hamming cube
- 2  $W_1$  on qubits
- 3 Quantum Lipschitz constant
  - *W*<sub>1</sub> continuity of Shannon Entropy
- Gaussian concentration inequalities
- Bibliography

## Continuity of entropy

Reminder: Shannon's entropy  $S(\rho) = -\sum_{x} p(x) \ln p(x)$  and Von Neumann entropy  $S(\rho) = -\operatorname{Tr}[\rho \ln \rho]$ . Continuity of the entropy has applications in information theory:

if  $q \approx p$ , is  $S(q) \approx S(p)$ ?

On the cube  $\{0,1\}^n$ , Polyanski and Wu proved

$$|S(p)-S(q)|\leq nh_2\left(\frac{W_1(p,q)}{n}\right).$$

with  $h_2(x) = -(1 - x) \ln(1 - x) - x \ln x$  the (binary) entropy of a Bernoulli.

Example: if X is uniform and Y is close to X, i.e.,  $W_1(X, Y) \ll n$ , then

 $S(Y) \approx n.$ 

## Continuity of entropy

Reminder: Shannon's entropy  $S(\rho) = -\sum_{x} p(x) \ln p(x)$  and Von Neumann entropy  $S(\rho) = -\operatorname{Tr}[\rho \ln \rho]$ . Continuity of the entropy has applications in information theory:

if  $q \approx p$ , is  $S(q) \approx S(p)$ ?

On the cube  $\{0, 1\}^n$ , Polyanski and Wu proved

$$|\mathcal{S}(p)-\mathcal{S}(q)|\leq nh_2\left(rac{W_1(p,q)}{n}
ight).$$

with  $h_2(x) = -(1 - x) \ln(1 - x) - x \ln x$  the (binary) entropy of a Bernoulli.

Example: if X is uniform and Y is close to X, i.e.,  $W_1(X, Y) \ll n$ , then

 $S(Y) \approx n.$ 

## Continuity of entropy

Reminder: Shannon's entropy  $S(\rho) = -\sum_{x} p(x) \ln p(x)$  and Von Neumann entropy  $S(\rho) = -\operatorname{Tr}[\rho \ln \rho]$ . Continuity of the entropy has applications in information theory:

if  $q \approx p$ , is  $S(q) \approx S(p)$ ?

On the cube  $\{0, 1\}^n$ , Polyanski and Wu proved

$$|\mathcal{S}(p)-\mathcal{S}(q)|\leq nh_2\left(rac{W_1(p,q)}{n}
ight).$$

with  $h_2(x) = -(1 - x) \ln(1 - x) - x \ln x$  the (binary) entropy of a Bernoulli.

Example: if X is uniform and Y is close to X, i.e.,  $W_1(X, Y) \ll n$ , then

$$S(Y) \approx n.$$

Dario Trevisan (UNIPI)

For states  $\rho$ ,  $\sigma \in \mathcal{S}(\mathbb{C}^d)$ , Fannes-Audenaert proved

$$|S(\rho) - S(\sigma)| \le h_2\left(\frac{1}{2}\|
ho - \sigma\|_1\right) + \frac{1}{2}\|
ho - \sigma\|_1 \ln(d-1).$$

Consider  $d = 2^n$ . Then

- it is exactly Polyanskiy-Wu for n = 1,
- (a) for  $n \gg 1$ , useful only if  $\|\rho \sigma\|_1/2 \ll 1$ .

Using the quantum Wasserstein we prove: for  $\rho$ ,  $\sigma \in S((\mathbb{C}^2)^{\otimes n})$ :

$$|S(\rho) - S(\sigma)| \le nh_2\left(\frac{\|\rho - \sigma\|_{W_1}}{n}\right) + \|\rho - \sigma\|_{W_1}\ln(3).$$

For states  $\rho$ ,  $\sigma \in \mathcal{S}(\mathbb{C}^d)$ , Fannes-Audenaert proved

$$|S(\rho) - S(\sigma)| \le h_2\left(rac{1}{2}\|
ho - \sigma\|_1
ight) + rac{1}{2}\|
ho - \sigma\|_1\ln(d-1).$$

Consider  $d = 2^n$ . Then

- **1** it is exactly Polyanskiy-Wu for n = 1,
- 2 for  $n \gg 1$ , useful only if  $\|\rho \sigma\|_1/2 \ll 1$ .

Using the quantum Wasserstein we prove: for  $\rho$ ,  $\sigma \in \mathcal{S}((\mathbb{C}^2)^{\otimes n})$ :

$$|S(\rho) - S(\sigma)| \le nh_2\left(\frac{\|\rho - \sigma\|_{W_1}}{n}\right) + \|\rho - \sigma\|_{W_1}\ln(3).$$

For states  $\rho$ ,  $\sigma \in \mathcal{S}(\mathbb{C}^d)$ , Fannes-Audenaert proved

$$|S(\rho) - S(\sigma)| \le h_2\left(rac{1}{2}\|
ho - \sigma\|_1
ight) + rac{1}{2}\|
ho - \sigma\|_1\ln(d-1).$$

Consider  $d = 2^n$ . Then

- it is exactly Polyanskiy-Wu for n = 1,
- 2 for  $n \gg 1$ , useful only if  $\|\rho \sigma\|_1/2 \ll 1$ .

Using the quantum Wasserstein we prove: for  $\rho$ ,  $\sigma \in \mathcal{S}((\mathbb{C}^2)^{\otimes n})$ :

$$|\mathcal{S}(\rho) - \mathcal{S}(\sigma)| \leq nh_2\left(\frac{\|
ho - \sigma\|_{\mathcal{W}_1}}{n}
ight) + \|
ho - \sigma\|_{\mathcal{W}_1}\ln(3).$$

For states  $\rho$ ,  $\sigma \in \mathcal{S}(\mathbb{C}^d)$ , Fannes-Audenaert proved

$$|S(\rho) - S(\sigma)| \le h_2\left(rac{1}{2}\|
ho - \sigma\|_1
ight) + rac{1}{2}\|
ho - \sigma\|_1\ln(d-1).$$

Consider  $d = 2^n$ . Then

- it is exactly Polyanskiy-Wu for n = 1,
- 2 for  $n \gg 1$ , useful only if  $\|\rho \sigma\|_1/2 \ll 1$ .

Using the quantum Wasserstein we prove: for  $\rho$ ,  $\sigma \in \mathcal{S}((\mathbb{C}^2)^{\otimes n})$ :

$$|\mathcal{S}(\rho) - \mathcal{S}(\sigma)| \leq nh_2\left(\frac{\|
ho - \sigma\|_{\mathcal{W}_1}}{n}
ight) + \|
ho - \sigma\|_{\mathcal{W}_1}\ln(3).$$

### Plan

- OT on the Hamming cube
- 2  $W_1$  on qubits
- 3 Quantum Lipschitz constant
- W1 continuity of Shannon Entropy
- 5 Gaussian concentration inequalities
  - Bibliography

$$[\text{Tr}[H]/2^n - n \|H\|_L, \text{Tr}[H]/2^n + n \|H\|_L].$$

In fact most eigenvalues belong to much smaller intervals of length  $\approx \sqrt{n} ||H||_L$ . We aim to establish the following concentration inequality: for every  $\delta > 0$ , dim  $(H \ge (\text{Tr}[H]/2^n + \delta\sqrt{n} ||H||_L/2) \mathbb{I}) \le 2^n \exp(-\delta^2/2)$ .

Since dim $(\mathbb{C}^2)^{\otimes n}$  = 2<sup>*n*</sup>, it yields that the relative distribution of eigenvalues is (roughly) concentrated as a Gaussian with mean Tr[*H*]/2<sup>*n*</sup> and standard deviation  $\sqrt{n}||H|_L/2$ .

$$[\text{Tr}[H]/2^n - n \|H\|_L, \text{Tr}[H]/2^n + n \|H\|_L].$$

In fact most eigenvalues belong to much smaller intervals of length  $\approx \sqrt{n} ||H||_L$ .

We aim to establish the following concentration inequality: for every  $\delta > 0$ ,

 $\dim \left( H \ge \left( \operatorname{Tr}[H]/2^n + \delta \sqrt{n} \|H\|_L/2 \right) \mathbb{I} \right) \le 2^n \exp(-\delta^2/2).$ 

Since dim $(\mathbb{C}^2)^{\otimes n}$  = 2<sup>*n*</sup>, it yields that the relative distribution of eigenvalues is (roughly) concentrated as a Gaussian with mean Tr[*H*]/2<sup>*n*</sup> and standard deviation  $\sqrt{n} ||H|_L/2$ .

$$[Tr[H]/2^n - n||H||_L, Tr[H]/2^n + n||H||_L].$$

In fact most eigenvalues belong to much smaller intervals of length  $\approx \sqrt{n} \|H\|_{L}$ .

We aim to establish the following concentration inequality: for every  $\delta > 0$ ,

$$\dim \left( H \ge \left( \operatorname{Tr}[H]/2^n + \delta \sqrt{n} \|H\|_L/2 \right) \mathbb{I} \right) \le 2^n \exp(-\delta^2/2).$$

Since dim $((\mathbb{C}^2)^{\otimes n}) = 2^n$ , it yields that the relative distribution of eigenvalues is (roughly) concentrated as a Gaussian with mean Tr[*H*]/2<sup>*n*</sup> and standard deviation  $\sqrt{n} ||H|_L/2$ .

$$[Tr[H]/2^n - n||H||_L, Tr[H]/2^n + n||H||_L].$$

In fact most eigenvalues belong to much smaller intervals of length  $\approx \sqrt{n} ||H||_L$ .

We aim to establish the following concentration inequality: for every  $\delta > 0$ ,

dim 
$$(H \ge (\operatorname{Tr}[H]/2^n + \delta \sqrt{n} \|H\|_L/2) \mathbb{I}) \le 2^n \exp(-\delta^2/2).$$

Since dim $((\mathbb{C}^2)^{\otimes n}) = 2^n$ , it yields that the relative distribution of eigenvalues is (roughly) concentrated as a Gaussian with mean Tr $[H]/2^n$  and standard deviation  $\sqrt{n} \|H\|_L/2$ .

## Transport-entropy inequalities

A classical tool to establish concentration are inequalities of the form

$$W_1(p,q) \le \sqrt{\frac{n}{2} D(p \| q)} \,. \tag{1}$$

for probabilities p, q, and

$$D(p||q) = \sum_{x} p(x) \ln(p(x)/q(x))$$

#### is the relative entropy (or Kullback-Leibler divergence).

- If (1) holds for a given *q* and for every *p*, then duality yields a form of Gaussian concentration.
- Relevant cases (due to K. Marton) are: *q* product state or *q* Markov state (i.e., the law of a Markov chain) under some assumptions.
- We establish the quantum analogue of (1) for product states on qubits. For non-product states there are partial results.

## Transport-entropy inequalities

A classical tool to establish concentration are inequalities of the form

$$W_1(p,q) \le \sqrt{\frac{n}{2} D(p \| q)} \,. \tag{1}$$

for probabilities p, q, and

$$D(p||q) = \sum_{x} p(x) \ln(p(x)/q(x))$$

is the relative entropy (or Kullback-Leibler divergence).

- If (1) holds for a given *q* and for every *p*, then duality yields a form of Gaussian concentration.
- Relevant cases (due to K. Marton) are: *q* product state or *q* Markov state (i.e., the law of a Markov chain) under some assumptions.
- We establish the quantum analogue of (1) for product states on qubits. For non-product states there are partial results.

## Quantum Marton's inequality

For any  $\rho, \sigma \in \mathcal{S}((\mathbb{C}^2)^{\otimes n})$ , with

$$\sigma = \sigma_1 \otimes \ldots \otimes \sigma_n$$

product state, the following inequality holds:

$$\|\rho - \sigma\|_{W_1} \leq \sqrt{\frac{n}{2} S(\rho \| \sigma)},$$

where the relative entropy is defined as

$$S(\rho \| \sigma) = Tr[\rho (In(\rho) - In(\sigma))].$$

## Quantum Pinsker's inequality

If n = 1, then any  $\sigma$  is product and  $W_1$  is the trace distance, hence the inequality becomes

 $\|\rho - \sigma\|_1 \leq \sqrt{2 S(\rho \|\sigma)}.$ 

This is known as Pinsker's inequality in the quantum case (of a single qubit). Sketch of proof:

- Establish the classical Pinsker's inequality for classical probabilities r, s on a two point set, e.g.  $\{-, +\}$ .
- ② Introduce the orthogonal projectors  $\Pi_+ = 1_{\{\rho \sigma \ge 0\}}$ ,  $\Pi_- = 1_{\{\rho \sigma < 0\}}$  and probabilities on  $\{-, +\}$

$$r_{\pm} = \operatorname{Tr}[\Pi_{\pm}\rho], \quad s_{\pm} = \operatorname{Tr}[\Pi_{\pm}\sigma].$$

So that

$$\|\rho - \sigma\|_1 = |r_+ - s_+| + |r_- - s_-| = \|r - s\|_1 \le \sqrt{2S(r\|s)}.$$

The pair {Π<sub>+</sub>, Π<sub>-</sub>} gives a measurement (Helstrom). Conclude by monotonicity of the relative entropy:

### $S(r||s) \leq S(\rho||\sigma).$

NOT2025 Tutorials

## Quantum Pinsker's inequality

If n = 1, then any  $\sigma$  is product and  $W_1$  is the trace distance, hence the inequality becomes

 $\|\rho - \sigma\|_1 \leq \sqrt{2 \, \mathcal{S}(\rho \| \sigma)}.$ 

This is known as Pinsker's inequality in the quantum case (of a single qubit). Sketch of proof:

- Establish the classical Pinsker's inequality for classical probabilities r, s on a two point set, e.g.  $\{-, +\}$ .
- ② Introduce the orthogonal projectors  $\Pi_+ = 1_{\{\rho-\sigma \ge 0\}}$ ,  $\Pi_- = 1_{\{\rho-\sigma<0\}}$  and probabilities on  $\{-,+\}$

$$r_{\pm} = \operatorname{Tr}[\Pi_{\pm}\rho], \quad s_{\pm} = \operatorname{Tr}[\Pi_{\pm}\sigma].$$

So that

$$\|\rho - \sigma\|_1 = |r_+ - s_+| + |r_- - s_-| = \|r - s\|_1 \le \sqrt{2S(r\|s)}.$$

The pair {Π<sub>+</sub>, Π<sub>-</sub>} gives a measurement (Helstrom). Conclude by monotonicity of the relative entropy:

### $S(r||s) \leq S(\rho||\sigma).$

NOT2025 Tutorials

## Quantum Pinsker's inequality

If n = 1, then any  $\sigma$  is product and  $W_1$  is the trace distance, hence the inequality becomes

 $\|\rho - \sigma\|_1 \leq \sqrt{2 S(\rho \| \sigma)}.$ 

This is known as Pinsker's inequality in the quantum case (of a single qubit). Sketch of proof:

- Setablish the classical Pinsker's inequality for classical probabilities r, s on a two point set, e.g.  $\{-, +\}$ .
- 2 Introduce the orthogonal projectors  $\Pi_+ = 1_{\{\rho \sigma \ge 0\}}$ ,  $\Pi_- = 1_{\{\rho \sigma < 0\}}$  and probabilities on  $\{-, +\}$

$$r_{\pm} = \operatorname{Tr}[\Pi_{\pm}\rho], \quad s_{\pm} = \operatorname{Tr}[\Pi_{\pm}\sigma].$$

So that

$$\|\rho - \sigma\|_1 = |r_+ - s_+| + |r_- - s_-| = \|r - s\|_1 \le \sqrt{2S(r\|s)}.$$

The pair {Π<sub>+</sub>, Π<sub>-</sub>} gives a measurement (Helstrom). Conclude by monotonicity of the relative entropy:

$$S(r||s) \leq S(\rho||\sigma).$$

NOT2025 Tutorials

## Proof of quantum Marton's inequality

Write

$$\rho - \sigma = \sum_{i=1}^{n} \left( \rho_{1...i} \otimes \sigma_{i+1...n} - \rho_{1...i-1} \otimes \sigma_{i...n} \right)$$

Or Apply Pinsker's inequality for every i = 1, ..., n:

 $\|\rho_{1\dots i}\otimes\sigma_{i+1\dots n}-\rho_{1\dots i-1}\otimes\sigma_{i\dots n}\|_{1}\leq \sqrt{2\,S\left(\rho_{1\dots i}\otimes\sigma_{i+1\dots n}\|\rho_{1\dots i-1}\otimes\sigma_{i\dots n}\right)}$ 

3 Summing upon *i* and using concavity of  $\sqrt{\cdot}$ ,

$$\|\rho - \sigma\|_{W_1} \leq \sqrt{\frac{n}{2} \sum_{i=1}^{n} S\left(\rho_{1\dots i} \otimes \sigma_{i+1\dots n} \|\rho_{1\dots i-1} \otimes \sigma_{i\dots n}\right)}$$

Conclude by the identity

$$S(\rho_{1\dots i} \otimes \sigma_{i+1\dots n} \| \rho_{1\dots i-1} \otimes \sigma_{i\dots n}) = S(\rho_{1\dots i} \| \rho_{1\dots i-1} \otimes \sigma_i)$$
  
=  $-S(\rho_{1\dots i}) + S(\rho_{1\dots i-1}) - \operatorname{Tr}[\rho_i \ln \sigma_i]$ 

#### and telescopic summation.

Dario Trevisan (UNIPI)

## Proof of quantum Marton's inequality

Write

$$\rho - \sigma = \sum_{i=1}^{n} \left( \rho_{1...i} \otimes \sigma_{i+1...n} - \rho_{1...i-1} \otimes \sigma_{i...n} \right)$$

2 Apply Pinsker's inequality for every i = 1, ..., n:

 $\|\rho_{1\dots i}\otimes\sigma_{i+1\dots n}-\rho_{1\dots i-1}\otimes\sigma_{i\dots n}\|_{1}\leq\sqrt{2\,S\left(\rho_{1\dots i}\otimes\sigma_{i+1\dots n}\|\rho_{1\dots i-1}\otimes\sigma_{i\dots n}\right)}$ 

Summing upon *i* and using concavity of  $\sqrt{\cdot}$ ,

$$\|\rho - \sigma\|_{W_1} \leq \sqrt{\frac{n}{2} \sum_{i=1}^{n} \mathcal{S}(\rho_{1...i} \otimes \sigma_{i+1...n} \|\rho_{1...i-1} \otimes \sigma_{i...n})}$$

Conclude by the identity

$$S(\rho_{1...i} \otimes \sigma_{i+1...n} \| \rho_{1...i-1} \otimes \sigma_{i...n}) = S(\rho_{1...i} \| \rho_{1...i-1} \otimes \sigma_i)$$
  
= -S(\(\rho\_{1...i}\)) + S(\(\rho\_{1...i-1}\)) - \Tr[\(\rho\_i \ln \\sigma\_i\)]

and telescopic summation.

Dario Trevisan (UNIPI)

## Proof of Gaussian concentration inequality

Solution Assume without loss of generality Tr[H] = 0 and  $||H||_L \le 1$ . We prove,

 $\operatorname{Tr}[e^{tH}] \leq 2^n \exp(nt^2/8), \text{ for every } t > 0,$ 

so that concentration follows by Markov inequality.

Choose σ = I/2<sup>n</sup> (maximally mixed state), which is a product state. Duality and Marton's inequality give

$$t\operatorname{Tr}[H\rho] = t\operatorname{Tr}[H(\rho - \sigma)] \le t \|\rho - \sigma\|_{W_1} \le t \sqrt{\frac{n}{2}S(\rho\|\sigma)} \le \frac{nt^2}{8} + S(\rho\|\sigma).$$

3 Set  $\rho = e^{tH} / \operatorname{Tr}[e^{tH}]$  so that  $\ln \rho = tH - \ln \operatorname{Tr}[e^{tH}]$  and

 $S(\rho \| \sigma) = \operatorname{Tr}[\rho \ln \rho] + \ln 2^n = t \operatorname{Tr}[H\rho] - \ln \operatorname{Tr}[e^{tH}] + \ln 2^n.$ 

Conclude that

$$\ln \operatorname{Tr}[e^{tH}] \le \frac{nt^2}{8} + \ln 2^n.$$

## Proof of Gaussian concentration inequality

**()** Assume without loss of generality Tr[H] = 0 and  $||H||_L \le 1$ . We prove,

$$\operatorname{Tr}[e^{tH}] \leq 2^n \exp(nt^2/8), \text{ for every } t > 0,$$

so that concentration follows by Markov inequality.

Choose σ = I/2<sup>n</sup> (maximally mixed state), which is a product state. Duality and Marton's inequality give

$$t\operatorname{Tr}[H\rho] = t\operatorname{Tr}[H(\rho-\sigma)] \leq t \|\rho-\sigma\|_{W_1} \leq t \sqrt{\frac{n}{2}S(\rho\|\sigma)} \leq \frac{nt^2}{8} + S(\rho\|\sigma).$$

3 Set 
$$\rho = e^{tH} / \operatorname{Tr}[e^{tH}]$$
 so that  $\ln \rho = tH - \ln \operatorname{Tr}[e^{tH}]$  and

$$S(\rho \| \sigma) = \operatorname{Tr}[\rho \ln \rho] + \ln 2^n = t \operatorname{Tr}[H\rho] - \ln \operatorname{Tr}[e^{tH}] + \ln 2^n.$$

Conclude that

•

$$\ln \operatorname{Tr}[e^{tH}] \leq \frac{nt^2}{8} + \ln 2^n.$$

## Further applications/problems

- Quantum generative models: qWGAN (Kiani et al.)
- Quantum matching problem (Rouzé/França)
- Quantum Ricci curvature (Gao/Rouzé)

#### Problems:

- Efficient computation/approximation
- In Geometric inequalities on quantum Hamming cube
- Mixing times for semigroups

## Further applications/problems

- Quantum generative models: qWGAN (Kiani et al.)
- Quantum matching problem (Rouzé/França)
- Quantum Ricci curvature (Gao/Rouzé)

#### Problems:

- Efficient computation/approximation
- Geometric inequalities on quantum Hamming cube
- Mixing times for semigroups

### Plan

- 1) OT on the Hamming cube
- 2  $W_1$  on qubits
- 3 Quantum Lipschitz constant
- 4  $W_1$  continuity of Shannon Entropy
- Gaussian concentration inequalities



#### Nielsen, M. A., and Chuang, I.

Quantum computation and quantum information Cambridge University Press, 2010.

#### Polyanskiy, Y. and Wu, Y.

Wasserstein continuity of entropy and outer bounds for interference channels

IEEE Transactions on Information Theory, 2016.

Marton, K.

Bounding  $\overline{d}$ -distance by informational divergence: a method to prove measure concentration

The Annals of Probability, 1996.

Gozlan, N., and Léonard, C. Transport inequalities. A survey Markov Processes and Related Fields. 2010.

De Palma, G., and Rouzé, C. Quantum concentration inequalities Annales Henri Poincaré, 2022.



#### De Palma, G., and Trevisan, D.

The Wasserstein distance of order 1 for quantum spin systems on infinite lattices

Annales Henri Poincaré. Vol. 24. No. 12.