Quantum OT: quantum channels and qubits Tutorial 2

Dario Trevisan

Università di Pisa dario.trevisan@unipi.it

March 12, 2025

Plan

1

- Transport plans versus couplings
- Motivation
- Purification of a state
- Correspondence between couplings and plans
- Quantum OT with quantum channels
 - Quantum transport cost
 - Distance between a state and itself
 - Modified triangle inequality
- The Gaussian case

Bibliography

Plan

Transport plans versus couplings

- Motivation
- Purification of a state
- Correspondence between couplings and plans

2) Quantum OT with quantum channels

- 3 The Gaussian case
- Bibliography

Motivation

Motivation

- In the classical OT theory, transport maps T pushing a probability $\rho(x)$ into $\sigma(y)$, are relaxed into Kantorovich couplings $\pi(x, y)$.
- The intepretation of $\pi(x, y)$ as a generalized transport map (plan) is probabilistic via conditioning

$$\pi(\mathbf{y}|\mathbf{x}) = \frac{\pi(\mathbf{x},\mathbf{y})}{\rho(\mathbf{x})},$$

which defines a Markov transition kernel.

- We propose a quantum OT where the transport plan is a quantum channel.
- These plans are in correspondence with suitable couplings, akin to Golse-Mouhot-Paul-Caglioti (GMPC) OT, but with some differences.

Quantum coupling and no-cloning

• Recall that a quantum channel Φ on a system *H* a linear, completely positive, trace preserving map between operators on *H*, in particular it preserves states:

$$\rho \in \mathcal{S}(H) \quad \mapsto \quad \Phi(\rho) = \sigma \in \mathcal{S}(H).$$

- Definition: given quantum states σ , $\rho \in S(H)$, a quantum transport plan $\Phi \in \mathcal{M}(\rho, \sigma)$ is a quantum channel such that $\Phi(\rho) = \sigma$.
- Problem: How to compute a transport cost along the plan?
- We need a joint system where both (ρ, Φ(ρ)) are defined but also strongly correlated (why ρ ⊗ Φ(ρ) is bad?).
 - \Rightarrow we need to make a copy ρ and then act with Φ on one copy.

5/30

Transpose map

Consider H and its dual H*. Being Hilbert spaces, these are naturally identified

 $|\varphi\rangle\in {\cal H}\mapsto \langle\varphi|\in {\cal H}^*.$

Given a linear operator $A: H \rightarrow H$, we define

• its adjoint $A^{\dagger}: H \to H, |\varphi\rangle \mapsto |A^{\dagger}\varphi\rangle$ such that

 $\langle \mathbf{A}^{\dagger} \varphi | \varphi \rangle = \langle \varphi | \mathbf{A} | \varphi \rangle.$

• its transpose $A^T : H^* \to H^*$, $\langle \varphi | \mapsto A^T \langle \varphi |$ such that

$$\boldsymbol{A}^{\mathsf{T}}\langle\varphi|=\langle\varphi|\boldsymbol{A}.$$

Exercise: pick an orthonormal basis $(|i\rangle)_i \subseteq H$ with dual basis $(\langle i|)_i$ and show that in coordinates $(A^{\dagger})_{ij} = \overline{A_{ji}}$, while $(A^{T})_{ij} = A_{ji}$.

6/30

Transpose map

Consider H and its dual H*. Being Hilbert spaces, these are naturally identified

 $|\varphi\rangle\in {\cal H}\mapsto \langle\varphi|\in {\cal H}^*.$

Given a linear operator $A: H \rightarrow H$, we define

• its adjoint $A^{\dagger}: H \to H, |\varphi\rangle \mapsto |A^{\dagger}\varphi\rangle$ such that

 $\langle \mathbf{A}^{\dagger} \varphi | \varphi \rangle = \langle \varphi | \mathbf{A} | \varphi \rangle.$

• its transpose $A^T : H^* \to H^*$, $\langle \varphi | \mapsto A^T \langle \varphi |$ such that

$$\boldsymbol{A}^{\mathsf{T}}\langle\varphi|=\langle\varphi|\boldsymbol{A}.$$

Exercise: pick an orthonormal basis $(|i\rangle)_i \subseteq H$ with dual basis $(\langle i|)_i$ and show that in coordinates $(A^{\dagger})_{ij} = \overline{A_{ji}}$, while $(A^{T})_{ij} = A_{ji}$.

Purification

• Given $\rho \in S(H)$, a purification of ρ is a pure state on a larger system $|\psi_{\rho}\rangle \in H \otimes K$ such that

$$\operatorname{Tr}_{\mathcal{K}}[|\psi_{\rho}\rangle\langle\psi_{\rho}|] = \rho.$$

2 Example: on a qubit system $H = \mathbb{C}^2$, if

$$ho=rac{1}{2}|0
angle\langle 0|+rac{1}{2}|1
angle\langle 1|,$$

then the Bell state

$$|\Psi^+\rangle=\frac{1}{\sqrt{2}}|00\rangle+\frac{1}{\sqrt{2}}|11\rangle\in(\mathbb{C}^2)^{\otimes 2}$$

is a purification of ρ .

Solution Notice that a purification cannot exist within classical probability, since pure states correspond to Dirac δ measures (hence also their marginals are δ 's).

Given a purification $|\psi_{\rho}\rangle \in H \otimes K$, also

- $I \otimes U_K |\psi_{
 ho}
 angle$ is a purification (U_K is any unitary)
- $|\psi_{\rho}\rangle \otimes |\phi\rangle \in H \otimes K \otimes K'$ for any additional $|\phi\rangle \in K'$.

To construct a canonical purification we identify $H \otimes H^*$ with $L^2(H)$ (Hilbert-Schimdt operators) via the Hilbert isometry

 $|\phi\rangle\otimes\langle\psi|\mapsto|\phi\rangle\langle\psi|$

(extend by linearity). We use the notation for the inverse:

 $X\mapsto ||X
angle
angle\in H\otimes H^*$

Exercises:

prove that it is indeed an isometry. Recall that the scalar products are respectively

 $(|\phi\rangle \otimes \langle \psi|, |\phi'\rangle \otimes \langle \psi'| \rangle)_{H \otimes H *} = \langle \phi|\phi'\rangle \langle \psi'|\psi\rangle, \qquad (A, B)_{L^2(H)} = \operatorname{Tr}[A^{\dagger}B].$

3 Show that if $X \in L^2(H)$, $A, B \in L^2(H)$, $B \in L^2(H^*)$, then

Given a purification $|\psi_{\rho}\rangle \in H \otimes K$, also

- $I \otimes U_K |\psi_{
 ho}
 angle$ is a purification (U_K is any unitary)
- $|\psi_{\rho}\rangle \otimes |\phi\rangle \in H \otimes K \otimes K'$ for any additional $|\phi\rangle \in K'$.

To construct a canonical purification we identify $H \otimes H^*$ with $L^2(H)$ (Hilbert-Schimdt operators) via the Hilbert isometry

$$|\phi\rangle\otimes\langle\psi|\mapsto|\phi\rangle\langle\psi|$$

(extend by linearity). We use the notation for the inverse:

 $X\mapsto ||X
angle
angle\in H\otimes H^*$

Exercises:

 prove that it is indeed an isometry. Recall that the scalar products are respectively

 $(|\phi\rangle \otimes \langle \psi|, |\phi'\rangle \otimes \langle \psi'|\rangle)_{H\otimes H*} = \langle \phi|\phi'\rangle \langle \psi'|\psi\rangle, \qquad (A,B)_{L^2(H)} = \mathsf{Tr}[A^{\dagger}B].$

3 Show that if $X \in L^2(H)$, $A, B \in L^2(H)$, $B \in L^2(H^*)$, then

$$A \otimes B^T ||X\rangle\rangle = ||AXB\rangle\rangle.$$

Given $\rho \in S(H)$, its canonical purification is defined as

 $||\sqrt{\rho}\rangle\rangle\in H\otimes H^*,$

i.e., the auxiliary system is $K = H^*$. To see it is a purification:

- Use spectral theorem to diagonalize ρ = Σ_i p_i |i⟩⟨i| with orthonormal basis (|i⟩)_i.
- **2** Then $\sqrt{\rho} = \sum_{i} \sqrt{p_i} |i\rangle \langle i|$, hence

$$||\sqrt{\rho}\rangle\rangle = \sum_{i} \sqrt{p_{i}} |i\rangle \otimes \langle i|.$$

Taking the partial trace:

$$\operatorname{Tr}_{H^*}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||] = \sum_i p_i |i\rangle\langle i| = \rho.$$

We also notice that

$$\operatorname{Tr}_{H}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||] = \sum_{i} \boldsymbol{p}_{i}\langle i|\otimes|i\rangle = \rho^{T}.$$

Notice that we can extend the construction to a larger systems, e.g. letting

 $|\psi_{
ho}
angle\in H_{1}\otimes H_{2}^{*}\otimes H_{3}\otimes H_{4}^{*}$

(with $H_1 = H_2 = H_3 = H_4$) given by

$$|\psi_{\rho}
angle = \sum_{i} \sqrt{p_{i}} |i
angle \otimes \langle i| \otimes |i
angle \otimes \langle i|.$$

This way,

 $\mathrm{Tr}_{12}[|\psi_{\rho}\rangle\langle\psi_{\rho}|] = \mathrm{Tr}_{34}[|\psi_{\rho}\rangle\langle\psi_{\rho}|] = \mathrm{Tr}_{23}[|\psi_{\rho}\rangle\langle\psi_{\rho}|] = ||\sqrt{\rho}\rangle\rangle\langle\sqrt{\rho}||.$

and also $Tr_{14}[|\psi_{\rho}\rangle\langle\psi_{\rho}|]$ up to a swap transpose.

Couplings

We define a quantum couplings $C(\rho, \sigma)$ as a state $\Pi \in S(H \otimes H^*)$ such that

 $\operatorname{Tr}_{H}[\Pi] = \rho^{T}, \qquad \operatorname{Tr}_{H^{*}}[\Pi] = \sigma.$

Examples:

- (identity coupling) $\Pi = ||\sqrt{\rho}\rangle\rangle\langle\sqrt{\rho}|| \in C(\rho, \rho).$
- (product coupling) $\Pi = \sigma \otimes \rho^T$.

Remarks:

- if $\sigma = |\phi\rangle\langle\phi|$ is pure, then $\mathcal{C}(\sigma, \rho) = \{\sigma \otimes \rho^T\}$.
- $C(\rho, \sigma)$ is in natural correspondence with $C(\sigma, \rho)$, via the swap transpose:

 $|\phi\rangle\otimes\langle\psi|\mapsto|\psi\rangle\otimes\langle\phi|.$

• Acting with a partial transpose on $\Pi \in C(\rho, \sigma)$ we obtain $\Pi' \in L^1(H \otimes H)$ such that

$$\operatorname{Tr}_2[\Pi'] = \sigma, \quad \operatorname{Tr}_1[\Pi'] = \rho.$$

However it is not a coupling in the sense of GMPC (except special cases) since partial transpose is not completely positive.

Dario Trevisan (UNIPI)

NOT2025 Tutorials

Couplings

We define a quantum couplings $C(\rho, \sigma)$ as a state $\Pi \in S(H \otimes H^*)$ such that

$$\operatorname{Tr}_{H}[\Pi] = \rho^{T}, \qquad \operatorname{Tr}_{H^{*}}[\Pi] = \sigma.$$

Examples:

- (identity coupling) $\Pi = ||\sqrt{\rho}\rangle\rangle\langle\sqrt{\rho}|| \in C(\rho, \rho).$
- **2** (product coupling) $\Pi = \sigma \otimes \rho^T$.

Remarks:

- if $\sigma = |\phi\rangle\langle\phi|$ is pure, then $\mathcal{C}(\sigma, \rho) = \{\sigma \otimes \rho^T\}.$
- $C(\rho, \sigma)$ is in natural correspondence with $C(\sigma, \rho)$, via the swap transpose:

 $|\phi\rangle\otimes\langle\psi|\mapsto|\psi\rangle\otimes\langle\phi|.$

• Acting with a partial transpose on $\Pi \in C(\rho, \sigma)$ we obtain $\Pi' \in L^1(H \otimes H)$ such that

$$\operatorname{Tr}_2[\Pi'] = \sigma, \quad \operatorname{Tr}_1[\Pi'] = \rho.$$

However it is not a coupling in the sense of GMPC (except special cases) since partial transpose is not completely positive.

Couplings

We define a quantum couplings $C(\rho, \sigma)$ as a state $\Pi \in S(H \otimes H^*)$ such that

$$\operatorname{Tr}_{H}[\Pi] = \rho^{T}, \qquad \operatorname{Tr}_{H^{*}}[\Pi] = \sigma.$$

Examples:

- (identity coupling) $\Pi = ||\sqrt{\rho}\rangle\rangle\langle\sqrt{\rho}|| \in \mathcal{C}(\rho, \rho).$
- **2** (product coupling) $\Pi = \sigma \otimes \rho^T$.

Remarks:

- if $\sigma = |\phi\rangle\langle\phi|$ is pure, then $\mathcal{C}(\sigma, \rho) = \{\sigma \otimes \rho^T\}$.
- $C(\rho, \sigma)$ is in natural correspondence with $C(\sigma, \rho)$, via the swap transpose:

$$|\phi\rangle\otimes\langle\psi|\mapsto|\psi\rangle\otimes\langle\phi|.$$

Acting with a partial transpose on Π ∈ C(ρ, σ) we obtain Π' ∈ L¹(H ⊗ H) such that

$$\operatorname{Tr}_2[\Pi'] = \sigma, \quad \operatorname{Tr}_1[\Pi'] = \rho.$$

However it is not a coupling in the sense of GMPC (except special cases) since partial transpose is not completely positive.

Dario Trevisan (UNIPI)

NOT2025 Tutorials

Correspondence between couplings and plans

Given a quantum transport plan $\Phi \in \mathcal{M}(\rho, \sigma)$, $(\Phi(\rho) = \sigma$, we induce the coupling

$$\Pi_{\Phi} = \left(\Phi \otimes \mathbb{I}_{\mathcal{L}(\mathcal{H}^*)} \right) || \sqrt{\rho} \rangle \rangle \langle \langle \sqrt{\rho} || \in \mathcal{C}(\rho, \sigma).$$

Indeed,

Π_Φ is positive by complete positivity of Φ,

• we have

 $\mathrm{Tr}_{H^*}[\Pi_{\Phi}] = \Phi \,\mathrm{Tr}_{H^*}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||] = \Phi\rho = \sigma,$

and

$$\operatorname{Tr}_{H}[\Pi_{\Phi}] = \operatorname{Tr}_{H}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||] = \rho^{T}.$$

The correspondence is a bijection.

12/30

Correspondence between couplings and plans

Given a quantum transport plan $\Phi \in \mathcal{M}(\rho, \sigma)$, $(\Phi(\rho) = \sigma$, we induce the coupling

$$\Pi_{\Phi} = \left(\Phi \otimes \mathbb{I}_{\mathcal{L}(\mathcal{H}^*)} \right) || \sqrt{\rho} \rangle \rangle \langle \langle \sqrt{\rho} || \in \mathcal{C}(\rho, \sigma).$$

Indeed,

Π_Φ is positive by complete positivity of Φ,

we have

$$\operatorname{Tr}_{H^*}[\Pi_{\Phi}] = \Phi \operatorname{Tr}_{H^*}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||] = \Phi\rho = \sigma,$$

and

$$\mathrm{Tr}_{H}[\Pi_{\Phi}] = \mathrm{Tr}_{H}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||] = \rho^{T}.$$

The correspondence is a bijection.

12/30

Correspondence between couplings and plans

Given a quantum transport plan $\Phi \in \mathcal{M}(\rho, \sigma)$, $(\Phi(\rho) = \sigma$, we induce the coupling

$$\Pi_{\Phi} = \left(\Phi \otimes \mathbb{I}_{\mathcal{L}(\mathcal{H}^*)} \right) ||\sqrt{\rho}\rangle \rangle \langle \langle \sqrt{\rho} || \in \mathcal{C}(\rho, \sigma).$$

Indeed,

Π_Φ is positive by complete positivity of Φ,

we have

$$\operatorname{Tr}_{H^*}[\Pi_{\Phi}] = \Phi \operatorname{Tr}_{H^*}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||] = \Phi\rho = \sigma,$$

and

$$\mathrm{Tr}_{H}[\Pi_{\Phi}] = \mathrm{Tr}_{H}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||] = \rho^{T}.$$

The correspondence is a bijection.

• Let $\Pi \in \mathcal{C}(\rho, \sigma) \subseteq \mathcal{S}(H \otimes H^*)$, and use spectral theorem:

$$\Pi = \sum_{i} p_{i} ||A_{i}\rangle\rangle\langle\langle A_{i}||$$

with $A_i \in L(H)$ orthonormal basis, $\sum_i p_i = 1$. • For simplicity assume that $\rho > 0$ is invertible. Define

$$\Phi(X) = \sum_{i} \sqrt{p_i} A_i \rho^{-\frac{1}{2}} X \rho^{-\frac{1}{2}} A_i^{\dagger} \sqrt{p_i} = \sum_{i} B_i X B_i^{\dagger}$$

which a Kraus representation with $B_i = \sqrt{p_i} A_i \rho^{-1/2}$

$$\sum_{i} B_{i}^{\dagger} B_{i} = \sum_{i} p_{i} \rho^{-1/2} A_{i}^{\dagger} A_{i} \rho^{-1/2} = \rho^{-1/2} \left(\sum_{i} p_{i} A_{i}^{\dagger} A_{i} \right) \rho^{-1/2}$$
$$= \rho^{-1/2} \rho \rho^{-1/2} = \mathbb{I}_{H}.$$

• Then, $\Phi(\rho) = \sum_{i} p_{i} A_{i} A_{i}^{\dagger} = (\sigma^{T})^{T} = \sigma$ using the exercise below.

Exercise: Show that

 $\operatorname{Tr}_{H}[||X\rangle\rangle\langle\langle X||] = (XX^{\dagger})^{T}, \qquad \operatorname{Tr}_{H^{*}}[||X\rangle\rangle\langle\langle X||] = X^{\dagger}X.$

Dario Trevisan (UNIPI)

NOT2025 Tutorials

• Let $\Pi \in \mathcal{C}(\rho, \sigma) \subseteq \mathcal{S}(H \otimes H^*)$, and use spectral theorem:

$$\Pi = \sum_i p_i || A_i
angle
angle \langle \langle A_i ||$$

with $A_i \in L(H)$ orthonormal basis, $\sum_i p_i = 1$.

For simplicity assume that *ρ* > 0 is invertible. Define

$$\Phi(X) = \sum_{i} \sqrt{p_i} A_i \rho^{-\frac{1}{2}} X \rho^{-\frac{1}{2}} A_i^{\dagger} \sqrt{p_i} = \sum_{i} B_i X B_i^{\dagger}$$

which a Kraus representation with $B_i = \sqrt{p_i} A_i \rho^{-1/2}$:

$$\sum_{i} B_{i}^{\dagger} B_{i} = \sum_{i} p_{i} \rho^{-1/2} A_{i}^{\dagger} A_{i} \rho^{-1/2} = \rho^{-1/2} \left(\sum_{i} p_{i} A_{i}^{\dagger} A_{i} \right) \rho^{-1/2}$$
$$= \rho^{-1/2} \rho \rho^{-1/2} = \mathbb{I}_{H}.$$

• Then, $\Phi(\rho) = \sum_{i} \rho_{i} A_{i} A_{i}^{\dagger} = (\sigma^{T})^{T} = \sigma$ using the exercise below.

Exercise: Show that

 $\operatorname{Tr}_{H}[||X\rangle\rangle\langle\langle X||] = (XX^{\dagger})^{T}, \qquad \operatorname{Tr}_{H^{*}}[||X\rangle\rangle\langle\langle X||] = X^{\dagger}X.$

• Let $\Pi \in \mathcal{C}(\rho, \sigma) \subseteq \mathcal{S}(H \otimes H^*)$, and use spectral theorem:

$$\Pi = \sum_{i} p_{i} ||A_{i}\rangle\rangle\langle\langle A_{i}||$$

with $A_i \in L(H)$ orthonormal basis, $\sum_i p_i = 1$.

• For simplicity assume that $\rho > 0$ is invertible. Define

$$\Phi(X) = \sum_{i} \sqrt{p_i} A_i \rho^{-\frac{1}{2}} X \rho^{-\frac{1}{2}} A_i^{\dagger} \sqrt{p_i} = \sum_{i} B_i X B_i^{\dagger}$$

which a Kraus representation with $B_i = \sqrt{p_i} A_i \rho^{-1/2}$:

$$\sum_{i} B_{i}^{\dagger} B_{i} = \sum_{i} p_{i} \rho^{-1/2} A_{i}^{\dagger} A_{i} \rho^{-1/2} = \rho^{-1/2} \left(\sum_{i} p_{i} A_{i}^{\dagger} A_{i} \right) \rho^{-1/2}$$
$$= \rho^{-1/2} \rho \rho^{-1/2} = \mathbb{I}_{H}.$$

• Then, $\Phi(\rho) = \sum_{i} \rho_{i} A_{i} A_{i}^{\dagger} = (\sigma^{T})^{T} = \sigma$ using the exercise below.

Exercise: Show that

$$\mathsf{Tr}_{H}[||X\rangle\rangle\langle\langle X||] = (XX^{\dagger})^{T}, \qquad \mathsf{Tr}_{H^{*}}[||X\rangle\rangle\langle\langle X||] = X^{\dagger}X$$

Plan

Quantum OT with quantum channels

- Quantum transport cost
- Distance between a state and itself
- Modified triangle inequality

3) The Gaussian case

Bibliography

Quantum transport cost

We now follow closely the GMPC, but with our notion of couplings: given a cost observable C, we minimize $Tr[C\Pi]$

• Fix R_1, \ldots, R_N , self-adjoint operators on H. Define the quadratic cost operator:

$$C = \sum_{i=1}^{N} (R_i \otimes \mathbb{I}_{H^*} - \mathbb{I}_H \otimes R_i^T)^2$$

• Given states ρ , $\sigma \in S(H)$ and $\Pi \in C(\rho, \sigma)$, the quantum transport cost is

$$C(\Pi) = \operatorname{Tr}[C\Pi] \geq 0.$$

• Minimizing yields the square quantum Wasserstein (pseudo-)distance:

$$D(\rho, \sigma)^2 = \inf_{\Pi \in \mathcal{C}(\rho, \sigma)} C(\Pi).$$

Quantum transport cost

We now follow closely the GMPC, but with our notion of couplings: given a cost observable C, we minimize $Tr[C\Pi]$

• Fix $R_1, ..., R_N$, self-adjoint operators on H. Define the quadratic cost operator:

$$C = \sum_{i=1}^{N} (R_i \otimes \mathbb{I}_{H^*} - \mathbb{I}_H \otimes R_i^T)^2$$

• Given states ρ , $\sigma \in S(H)$ and $\Pi \in C(\rho, \sigma)$, the quantum transport cost is

$$C(\Pi) = \operatorname{Tr}[C\Pi] \geq 0.$$

• Minimizing yields the square quantum Wasserstein (pseudo-)distance:

$$D(\rho,\sigma)^2 = \inf_{\Pi \in \mathcal{C}(\rho,\sigma)} C(\Pi).$$

Quantum transport cost

We now follow closely the GMPC, but with our notion of couplings: given a cost observable C, we minimize $Tr[C\Pi]$

• Fix $R_1, ..., R_N$, self-adjoint operators on H. Define the quadratic cost operator:

$$C = \sum_{i=1}^{N} (R_i \otimes \mathbb{I}_{H^*} - \mathbb{I}_H \otimes R_i^T)^2$$

• Given states ρ , $\sigma \in S(H)$ and $\Pi \in C(\rho, \sigma)$, the quantum transport cost is

$$C(\Pi) = \operatorname{Tr}[C\Pi] \geq 0.$$

• Minimizing yields the square quantum Wasserstein (pseudo-)distance:

$$D(\rho,\sigma)^2 = \inf_{\Pi \in \mathcal{C}(\rho,\sigma)} C(\Pi).$$

Example/ Exercise

- By compactness, the inf in in fact a min, i.e., there exists an optimal coupling, which also yields an optimal plan Φ ∈ M(ρ, σ).
- If $\Pi = \sigma \otimes \rho^T$, then

$$C(\Pi) = \operatorname{Tr}[\sigma \otimes \rho^{T} C]$$

= $\sum_{i=1}^{N} \operatorname{Tr}[\sigma R_{i}^{2}] + \operatorname{Tr}[\rho R_{i}^{2}] - 2 \operatorname{Tr}[\sigma R_{i}] \operatorname{Tr}[\rho R_{i}]$

• If either σ (or ρ) is a pure state, then

$$D(\sigma, \rho) = \sqrt{\sum_{i=1}^{N} \operatorname{Tr}[\sigma R_i^2] + \operatorname{Tr}[\rho R_i^2] - 2 \operatorname{Tr}[\sigma R_i] \operatorname{Tr}[\rho R_i]}.$$

Can we write explicitly $C(\Pi)$ in terms of quantum transport plans Φ ?

Recall that

 $\mathsf{\Pi} = \left(\Phi \otimes \mathbb{I}_{L^1(H^*)} \right) ||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||.$

• we have (letting Φ^{\dagger} the adjoint of the channel)

$$\begin{aligned} \mathsf{Tr}[\mathsf{\Pi} \boldsymbol{C}] &= \mathsf{Tr}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||\left(\Phi^{\dagger}\otimes\mathbb{I}_{\mathcal{L}(H^{*})}\right)\boldsymbol{C}]\\ &= \langle\langle\sqrt{\rho}||\left(\Phi^{\dagger}\otimes\mathbb{I}_{\mathcal{L}^{1}(H^{*})}\right)\boldsymbol{C}||\sqrt{\rho}\rangle\rangle. \end{aligned}$$

 With slight abuse, write R_i = R_i ⊗ I_{H*} and R_i^T = I_H ⊗ R_i^T, and notice that they commute so that

$$(R_i - R_i^T)^2 = R_i^2 + (R_i^2)^T - 2R_i \otimes R_i^T.$$

We get

$$\left(\Phi^{\dagger}\otimes\mathbb{I}_{L(H^{*})}\right)(R_{i}-R_{i}^{T})^{2}=\Phi^{\dagger}(R_{i}^{2})+(R_{i}^{2})^{T}-2\Phi^{\dagger}(R_{i})\otimes R_{i}^{T}.$$

where Φ^{\dagger} denotes the adjoint of Φ , $Tr[A\Phi(B)] = Tr[\Phi^{\dagger}(A)B]$.

17/30

Can we write explicitly $C(\Pi)$ in terms of quantum transport plans Φ ?

Recall that

$$\mathsf{\Pi} = \left(\Phi \otimes \mathbb{I}_{L^1(H^*)} \right) || \sqrt{\rho} \rangle \rangle \langle \langle \sqrt{\rho} ||.$$

• we have (letting Φ^{\dagger} the adjoint of the channel)

$$\mathsf{Tr}[\mathsf{\Pi} C] = \mathsf{Tr}[||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}|| \left(\Phi^{\dagger} \otimes \mathbb{I}_{\mathcal{L}(H^{*})}\right) C]$$
$$= \langle\langle\sqrt{\rho}|| \left(\Phi^{\dagger} \otimes \mathbb{I}_{\mathcal{L}^{1}(H^{*})}\right) C||\sqrt{\rho}\rangle\rangle.$$

 With slight abuse, write R_i = R_i ⊗ I_{H*} and R_i^T = I_H ⊗ R_i^T, and notice that they commute so that

$$(R_i - R_i^T)^2 = R_i^2 + (R_i^2)^T - 2R_i \otimes R_i^T.$$

We get

$$\left(\Phi^{\dagger}\otimes\mathbb{I}_{\mathcal{L}(\mathcal{H}^{*})}
ight)(\mathcal{R}_{i}-\mathcal{R}_{i}^{\mathsf{T}})^{2}=\Phi^{\dagger}(\mathcal{R}_{i}^{2})+(\mathcal{R}_{i}^{2})^{\mathsf{T}}-2\Phi^{\dagger}(\mathcal{R}_{i})\otimes\mathcal{R}_{i}^{\mathsf{T}}.$$

where Φ^{\dagger} denotes the adjoint of Φ , $Tr[A\Phi(B)] = Tr[\Phi^{\dagger}(A)B]$.

We want to to rewrite

$$\langle\langle\sqrt{
ho}||\Phi^{\dagger}(\boldsymbol{R}_{i}^{2})+(\boldsymbol{R}_{i}^{2})^{T}-2\Phi^{\dagger}(\boldsymbol{R}_{i})\otimes\boldsymbol{R}_{i}^{T}||\sqrt{
ho}
angle
angle.$$

Recall that $A \otimes B^T ||X\rangle\rangle = ||AXB\rangle\rangle$, so

For the first term:

$$\begin{split} \langle \langle \sqrt{\rho} || \Phi^{\dagger}(R_{i}^{2}) || \sqrt{\rho} \rangle \rangle &= \langle \langle \sqrt{\rho} || \Phi^{\dagger}(R_{i}^{2}) \sqrt{\rho} \rangle \rangle \\ &= \operatorname{Tr}[\sqrt{\rho} \Phi^{\dagger}(R_{i}^{2}) \sqrt{\rho}] = \operatorname{Tr}[\rho \Phi^{\dagger}(R_{i}^{2})] \\ &= \operatorname{Tr}[\Phi(\rho) R_{i}^{2}] = \operatorname{Tr}[\sigma R_{i}^{2}]. \end{split}$$

Similarly, for the second term:

$$\begin{split} \langle \langle \sqrt{\rho} || (R_i^2)^T || \sqrt{\rho} \rangle \rangle &= \langle \langle \sqrt{\rho} || \sqrt{\rho} R_i^2 \rangle \rangle \\ &= \mathrm{Tr} [\sqrt{\rho} \sqrt{\rho} R_i^2] = \mathrm{Tr} [\rho R_i^2] \end{split}$$

We want to to rewrite

$$\langle\langle\sqrt{
ho}||\Phi^{\dagger}(R_{i}^{2})+(R_{i}^{2})^{T}-2\Phi^{\dagger}(R_{i})\otimes R_{i}^{T}||\sqrt{
ho}\rangle\rangle.$$

Recall that $A \otimes B^T ||X\rangle\rangle = ||AXB\rangle\rangle$, so

For the first term:

$$\begin{split} \langle \langle \sqrt{\rho} || \Phi^{\dagger}(\boldsymbol{R}_{i}^{2}) || \sqrt{\rho} \rangle \rangle &= \langle \langle \sqrt{\rho} || \Phi^{\dagger}(\boldsymbol{R}_{i}^{2}) \sqrt{\rho} \rangle \rangle \\ &= \operatorname{Tr}[\sqrt{\rho} \Phi^{\dagger}(\boldsymbol{R}_{i}^{2}) \sqrt{\rho}] = \operatorname{Tr}[\rho \Phi^{\dagger}(\boldsymbol{R}_{i}^{2})] \\ &= \operatorname{Tr}[\Phi(\rho) \boldsymbol{R}_{i}^{2}] = \operatorname{Tr}[\sigma \boldsymbol{R}_{i}^{2}]. \end{split}$$

Similarly, for the second term:

$$\begin{split} \langle \langle \sqrt{\rho} || (\boldsymbol{R}_{i}^{2})^{T} || \sqrt{\rho} \rangle \rangle &= \langle \langle \sqrt{\rho} || \sqrt{\rho} \boldsymbol{R}_{i}^{2} \rangle \rangle \\ &= \mathrm{Tr} [\sqrt{\rho} \sqrt{\rho} \boldsymbol{R}_{i}^{2}] = \mathrm{Tr} [\rho \boldsymbol{R}_{i}^{2}]. \end{split}$$

For the third term:

$$\begin{split} \langle \langle \sqrt{\rho} || \Phi^{\dagger}(\boldsymbol{R}_{i}) \otimes \boldsymbol{R}_{i}^{\mathsf{T}} || \sqrt{\rho} \rangle \rangle &= \langle \langle \sqrt{\rho} || \Phi^{\dagger}(\boldsymbol{R}_{i}) \sqrt{\rho} \boldsymbol{R}_{i} \rangle \rangle \\ &= \mathsf{Tr}[\sqrt{\rho} \Phi^{\dagger}(\boldsymbol{R}_{i}) \sqrt{\rho} \boldsymbol{R}_{i}] = \mathsf{Tr}[\boldsymbol{R}_{i} \sqrt{\rho} \Phi^{\dagger}(\boldsymbol{R}_{i}) \sqrt{\rho}] \\ &= \langle \langle \sqrt{\rho} \boldsymbol{R}_{i} || \Phi^{\dagger}(\boldsymbol{R}_{i}) \sqrt{\rho} \rangle . \end{split}$$

Summing upon i = 1, ..., n, we obtain the equivalent expressions

$$C(\Pi) = \sum_{i=1}^{N} \operatorname{Tr}[\sigma R_{i}^{2}] + \operatorname{Tr}[\rho R_{i}^{2}] - 2 \operatorname{Tr}[R_{i}\sqrt{\rho}\Phi^{\dagger}(R_{i})\sqrt{\rho}]$$

=
$$\sum_{i=1}^{N} \langle \langle \sqrt{\sigma}R_{i} || \sqrt{\sigma}R_{i} \rangle \rangle + \langle \langle \sqrt{\rho}R_{i} || \sqrt{\rho}R_{i} \rangle \rangle - 2 \langle \langle \sqrt{\rho}R_{i} || \Phi^{\dagger}(R_{i})\sqrt{\rho} \rangle \rangle.$$

19/30

For the third term:

$$\begin{split} \langle \langle \sqrt{\rho} || \Phi^{\dagger}(\boldsymbol{R}_{i}) \otimes \boldsymbol{R}_{i}^{\mathsf{T}} || \sqrt{\rho} \rangle \rangle &= \langle \langle \sqrt{\rho} || \Phi^{\dagger}(\boldsymbol{R}_{i}) \sqrt{\rho} \boldsymbol{R}_{i} \rangle \rangle \\ &= \operatorname{Tr}[\sqrt{\rho} \Phi^{\dagger}(\boldsymbol{R}_{i}) \sqrt{\rho} \boldsymbol{R}_{i}] = \operatorname{Tr}[\boldsymbol{R}_{i} \sqrt{\rho} \Phi^{\dagger}(\boldsymbol{R}_{i}) \sqrt{\rho}] \\ &= \langle \langle \sqrt{\rho} \boldsymbol{R}_{i} || \Phi^{\dagger}(\boldsymbol{R}_{i}) \sqrt{\rho} \rangle . \end{split}$$

Summing upon i = 1, ..., n, we obtain the equivalent expressions

$$\begin{split} \mathcal{C}(\Pi) &= \sum_{i=1}^{N} \operatorname{Tr}[\sigma R_{i}^{2}] + \operatorname{Tr}[\rho R_{i}^{2}] - 2 \operatorname{Tr}[R_{i}\sqrt{\rho} \Phi^{\dagger}(R_{i})\sqrt{\rho}] \\ &= \sum_{i=1}^{N} \langle \langle \sqrt{\sigma} R_{i} || \sqrt{\sigma} R_{i} \rangle \rangle + \langle \langle \sqrt{\rho} R_{i} || \sqrt{\rho} R_{i} \rangle \rangle - 2 \langle \langle \sqrt{\rho} R_{i} || \Phi^{\dagger}(R_{i})\sqrt{\rho} \rangle \rangle. \end{split}$$

Distance between a state and itself

• If $\sigma = \rho$ and $\Phi = \mathbb{I}_{L^1(H)}$, then $\Pi = ||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||$ and

$$C(\Pi) = 2\sum_{i=1}^{N} \operatorname{Tr}[\rho R_{i}^{2}] - \operatorname{Tr}[\sqrt{\rho}R_{i}\sqrt{\rho}R_{i}].$$

• One has the general inequality

$$D^2(
ho,\sigma) \geq rac{1}{2}C(||\sqrt{
ho}
angle
angle \langle \sqrt{
ho}||) + rac{1}{2}C(||\sqrt{\sigma}
angle
angle \langle \sqrt{\sigma}||).$$

• For $\sigma = \rho$ it yields that the identity channel is an optimal plan

$$D^{2}(\rho,\rho) = C(||\sqrt{\rho}\rangle\rangle\langle\langle\sqrt{\rho}||).$$

• We can also connect D² with the Wigner-Yanase square norm

$$D^2(
ho,
ho) = rac{1}{4}\sum_{i=1}^N g_
ho\left(\mathbf{i}\left[\mathbf{R}_{\mathbf{i}},\,
ho
ight],\,\mathbf{i}\left[\mathbf{R}_{\mathbf{i}},\,
ho
ight]
ight).$$

We define the Quantum W_2 divergence as

$$W_2(\sigma,\rho) = \sqrt{D^2(\sigma,\rho) - \frac{1}{2} \left(D^2(\sigma,\sigma) + D^2(\rho,\rho) \right)}.$$
 (1)

We conjecture that W_2 is an actual distance under minimal assumptions.

Proposition (De Palma, Virosztek, Titkos, T.)

If dim(H) < ∞ and

- the observables $\{R_i\}_{i=1}^d$ generate algebraically all operators,
- ρ and σ are invertible,

then

$$W_2(\rho,\sigma) = 0 \quad \Rightarrow \quad \rho = \sigma$$

and the identity channel is the only optimizer.

quantum Wasserstein isometries

In Gehér et al., state transformations (called QW-isometries)

$$J: \mathcal{S}(H) \to \mathcal{S}(H)$$
 $D^2(J(\sigma), J(\rho)) = D^2(\sigma, \rho)$

for a given quantum system *H* and a set $\{R_i\}_{i=1}^d$ are introduced.

• For $H = \mathbb{C}^2$ and $\{X, Z\}$, the situation is already non-trivial:

- Isometries of the Bloch ball that fix the X, Z plane (rotations or symmetries) induce (trivial) QW-isometries
- There are QW-isometries that are neither injective nor surjective (on pure states)
- Inside the ball (i.e., for non pure states) there is rigidity: up to conjugation with trivial isometries, J is either the identity or

$$\rho = \rho(b_x, b_y, b_z) \quad \mapsto \quad J(\rho) = \rho(b_x, -b_y, b_z).$$

A modified triangle inequality

• Given ρ , σ , $\tau \in S(H)$, we have the following modified triangle inequality:

$$D(\rho,\sigma) \leq D(\rho,\tau) + D(\tau,\tau) + D(\tau,\sigma).$$

- Interpretation: we pay some price to stay in τ and "prepare" to move from τ to σ .
- We do not know whether the term $D(\tau, \tau)$ can in general be removed.
- Bunth et al. showed that triangle inequality hold W_2 if (at least) one state is pure.
- A similar inequality is not known for the GMPC case.

Plan

- Transport plans versus couplings
- 2) Quantum OT with quantum channels

3 The Gaussian case

Bibliography

Bosonic (Gaussian) systems

• Bosonic quantum particles (e.g. photons) with position *Q* and momentum *P* obey the canonical commutation relations

(CCR) $[Q, P] = \mathbf{i}\mathbb{I}_H.$

• They provide a non-commutative analogue of \mathbb{R}^2 :

$$|\psi(\mathbf{x})\rangle \in H = L^2(\mathbb{R}): \qquad Q|\psi\rangle = |\mathbf{x}\psi(\mathbf{x})\rangle, \qquad P|\psi\rangle = -\mathbf{i}|\frac{d}{d\mathbf{x}}\psi(\mathbf{x})\rangle$$

(with natural domains).

• Ladder (annihilation/creation) operators

$$a=rac{{m Q}+{f i}{m P}}{\sqrt{2}}\quad a^{\dagger}=rac{{m Q}-{f i}{m P}}{\sqrt{2}}.$$

• Number operator: $N = a^{\dagger}a$.

Exercise Write *a*, a^{\dagger} and *N* as differential operators (on smooth functions)

• Vacuum state: $|0\rangle$ such that $N|0\rangle = 0$. Fock states:

$$|n
angle = rac{(a^{\dagger})^n}{\sqrt{n!}}|0
angle.$$

• Coherent states, for $\alpha = q + ip \in \mathbb{C}$ are defined as

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$

they are not an orthogonal systems – but are an overcomplete basis:

$$\frac{1}{\pi} \int_{\mathbb{C}} |\alpha\rangle \langle \alpha | \boldsymbol{d} \alpha = \mathbb{I}_{\boldsymbol{H}}.$$

Gaussian states are ρ = exp(pol(a, a[†])) ∈ S(H) with pol(·, ·) second degree polynomial (not generic however!).

Exercise: Compute explicitly the first 3 Fock states $|0\rangle$, $|1\rangle$, $|2\rangle \in L^{2}(\mathbb{R})$. Show that they are orthonormal.

Dario Trevisan (UNIPI)

• Vacuum state: $|0\rangle$ such that $N|0\rangle = 0$. Fock states:

$$|n
angle = rac{(a^{\dagger})^n}{\sqrt{n!}}|0
angle.$$

• Coherent states, for $\alpha = q + ip \in \mathbb{C}$ are defined as

$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$

they are not an orthogonal systems – but are an overcomplete basis:

$$\frac{1}{\pi} \int_{\mathbb{C}} |\alpha\rangle \langle \alpha | \boldsymbol{d} \alpha = \mathbb{I}_{\boldsymbol{H}}.$$

Gaussian states are ρ = exp(pol(a, a[†])) ∈ S(H) with pol(·, ·) second degree polynomial (not generic however!).

Exercise: Compute explicitly the first 3 Fock states $|0\rangle$, $|1\rangle$, $|2\rangle \in L^2(\mathbb{R})$. Show that they are orthonormal.

• The setting extends to *m* modes, with self-adjoint (unbounded) operators $Q_1, \ldots, Q_m, P_1, \ldots, P_m$ on $H = L^2(\mathbb{R}^m)$ satisfying

$$[Q_i, P_j] = \mathbf{i} \, \delta_{ij} \, \mathbb{I}_H, \qquad [Q_i, Q_j] = [P_i, P_j] = 0, \qquad i, j = 1, \ldots, m.$$

- Define the quadratures $\{R_1, \ldots, R_{2m}\} = \{Q_1, \ldots, Q_m, P_1, \ldots, P_m\}.$
- A Gaussian state is an exponential of a quadratic polynomial in the R_i's:

$$ho = \exp\left(-rac{1}{2}\sum_{i,j=1}^{2m}\left(\mathbf{R}_i - \mathbf{r}_i\,\mathbb{I}_H\right)\mathbf{h}_{ij}\left(\mathbf{R}_j - \mathbf{r}_j\,\mathbb{I}_H\right) + \mathbf{c}
ight),$$

• We consider the quadratic cost operator, and the associated quantum Wasserstein distance

$$C = \sum_{i=1}^{2m} (R_i \otimes \mathbb{I}_{H^*} - \mathbb{I}_H \otimes R_i^{\mathsf{T}})^2, \quad D(\rho, \sigma)^2 = \inf_{\Pi \in \mathcal{C}(\rho, \sigma)} C(\Pi).$$

(careful with domains! compare with classical non compact case).

OT between Gaussian states

Theorem: let ρ , $\sigma \in S(H)$ be Gaussian states. Then

 $D(\rho, \sigma)^2 = \operatorname{Tr}[C\Pi_{opt}]$

for some

- Gaussian coupling $\Pi_{opt} \in \mathcal{S}(H \otimes H^*)$
- corresponding to a plan Φ_{opt} that is a Gaussian quantum channel (i.e., maps Gaussian states into Gaussian states).

Remarks:

- Gaussian states are a finite dimensional sub-manifold \rightarrow possible numerical schemes.
- 2 In the case of "isotropic" Gaussians (thermal states) $\omega(\nu)$ with covariance matrix νl_{2m} we have an explicit formula.
- Ask Fanch Coudreuse for more on this!

28/30

OT between Gaussian states

Theorem: let ρ , $\sigma \in S(H)$ be Gaussian states. Then

 $D(\rho, \sigma)^2 = \operatorname{Tr}[C\Pi_{opt}]$

for some

- Gaussian coupling $\Pi_{opt} \in \mathcal{S}(H \otimes H^*)$
- corresponding to a plan Φ_{opt} that is a Gaussian quantum channel (i.e., maps Gaussian states into Gaussian states).

Remarks:

- Gaussian states are a finite dimensional sub-manifold \rightarrow possible numerical schemes.
- 2 In the case of "isotropic" Gaussians (thermal states) $\omega(\nu)$ with covariance matrix νI_{2m} we have an explicit formula.
- Ask Fanch Coudreuse for more on this!

Plan

- Transport plans versus couplings
- Quantum OT with quantum channels
- 3) The Gaussian case
- Bibliography

De Palma, G., and Trevisan, D.

Quantum optimal transport with quantum channels Annales Henri Poincaré, 2021.

Bunth, Gergely, et al.

Metric property of quantum Wasserstein divergences Physical Review A 110.2 (2024): 022211.

Maas, Jan, et al., eds. Optimal transport on quantum structures Springer Nature Switzerland, 2024.