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Motivation

@ In the classical OT theory, transport maps T pushing a probability p(x)
into o(y), are relaxed into Kantorovich couplings 7 (x, y).

@ The intepretation of =(x, y) as a generalized transport map (plan) is
probabilistic via conditioning

m(y[x) =
which defines a Markov transition kernel.

@ We propose a quantum OT where the transport plan is a quantum
channel.

@ These plans are in correspondence with suitable couplings, akin to
Golse-Mouhot-Paul-Caglioti (GMPC) OT, but with some differences.
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Quantum coupling and no-cloning

@ Recall that a quantum channel ¢ on a system H a linear, completely
positive, trace preserving map between operators on H, in particular it
preserves states:

peSH) — &(p)=0eSH).
@ Definition: given quantum states o, p € S(H), a quantum transport plan
& € M(p, o) is a quantum channel such that ®(p) = o.
@ Problem: How to compute a transport cost along the plan?

@ We need a joint system where both (p, ®(p)) are defined but also strongly
correlated (why p ® ®(p) is bad?).

= we need to make a copy p and then act with ® on one copy.
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Transpose map

Consider H and its dual H*. Being Hilbert spaces, these are naturally identified

lp) € Hi (o € H".
Given a linear operator A: H — H, we define
e its adjoint AT : H — H, |¢) — |ATy) such that

(ATglp) = (p|Alg).

e its transpose AT : H* — H*, (¢| — AT {y| such that

AT (] = (¢|A.
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Transpose map

Consider H and its dual H*. Being Hilbert spaces, these are naturally identified
lp) € H— (p] € H".
Given a linear operator A: H — H, we define
e its adjoint AT : H — H, |¢) — |ATe) such that
(ATplp) = (plAlp).
e its transpose AT : H* — H*, (¢| — AT {y| such that

AT (] = (¢|A.

Exercise: pick an orthonormal basis (|/)

nal i C H with dual basis ({i|); and show
that in coordinates (A"); = Aj;, while (AT); =
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Purification

@ Given p € S(H), a purification of p is a pure state on a larger system
lv,) € H® K such that

Trclltp) (¥pl] = p.
@ Example: on a qubit system H = C?, if

1 1
p = 510){0 + 5 [1)(1],
then the Bell state

Wy = 1 jo0) + i2|11> e (C?)°2

NNV
is a purification of p.
© Notice that a purification cannot exist within classical probability, since

pure states correspond to Dirac § measures (hence also their marginals
are 4's).
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Transport plans versus couplings Purification of a state

Given a purification |¢,) € H® K, also
@ |/ ® Ukl|y,) is a purification (Uk is any unitary)
° |Y,) ®|¢) € H® K ® K’ for any additional |¢) € K.

To construct a canonical purification we identify H @ H* with L2(H) (Hilbert-
Schimdt operators) via the Hilbert isometry
9) @ (¥] = |9) (V|

(extend by linearity). We use the notation for the inverse:
X—=||X)) e H® H
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Given a purification |¢,) € H® K, also
@ |/ ® Ukl|y,) is a purification (Uk is any unitary)
° |Y,) ®|¢) € H® K ® K’ for any additional |¢) € K.

To construct a canonical purification we identify H @ H* with L2(H) (Hilbert-
Schimdt operators) via the Hilbert isometry

|6) @ (] =[O} (V]
(extend by linearity). We use the notation for the inverse:
X—=||X)) e H® H

Exercises:

@ prove that it is indeed an isometry. Recall that the scalar products are
respectively

(19) @ (¥, 1) @ (W'D pgm. = (916N W' [0), (A B)zgmy = Tr[ATB].
@ Show that if X € L2(H), A, B € L3(H), B € L2(H*), then
A BT||X)) = [|AXB).
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Transport plans versus couplings Purification of a state

Given p € S(H), its canonical purification is defined as

IVp) e HO HY,

i.e., the auxiliary system is K = H*.To see it is a purification:

@ Use spectral theorem to diagonalize p = >_; p;|i)(i| with orthonormal
basis (]/));.

Q@ Then \/p=>",/pili)(i], hence
V) =3 vali) @ il

© Taking the partial trace:

TI’H* [

VAT =3 piiil = p.

© We also notice that
Tralllve)) ({(Vell] = Zmil ®i)y=p".
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Transport plans versus couplings Purification of a state

@ Notice that we can extend the construction to a larger systems, e.g. letting
[¥,) € Hi @ Hy ® Hy @ Hj
(Wlth Hy = H> = H3 = H4) given by

¥0) = Z Vpili) @ (il @ [i) @ (i

@ This way,

Tria[[) (Vpl] = Traallv,) (o]l = Trasl[tn) (pl] = VoD {(Vpll-

and also Try4[|v,)(1,|] up to a swap transpose.
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Couplings
We define a quantum couplings C(p, o) as a state I € S(H ® H*) such that
Try[N] = p, Try«[M] = 0.
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Couplings
We define a quantum couplings C(p, o) as a state I € S(H ® H*) such that

Try[N =p’, Tru-[N] =o.

Examples:

@ (identity coupling) N = [[\/p)){y/pl| € C(p; p).
@ (product coupling) M=o ® p’.
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Couplings
We define a quantum couplings C(p, o) as a state I € S(H ® H*) such that
Try[N] = p, Try«[M] = 0.

Examples:
@ (identity coupling) M = || /7)) (/7| € C(p. p).
@ (product coupling) M=o ® p’.
Remarks:
e if o = |¢)(¢| is pure, then C(,p) = {oc @ pT}.
@ C(p,o) is in natural correspondence with C(a, p), via the swap transpose:

#) @ (¢ = [9) © (4]

@ Acting with a partial transpose on N € C(p, o) we obtain N’ € L'(H ® H)
such that
T[] =0, Tr['] = p.
However it is not a coupling in the sense of GMPC (except special cases)
since partial transpose is not completely positive.
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Correspondence between couplings and plans

Given a quantum transport plan & € M(p, o), (®(p) = o, we induce the
coupling

Mo = (® @Iy n)) IVe) (VI € Clp, 0).
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Transport plans versus couplings Cor

pli and plans

Correspondence between couplings and plans

Given a quantum transport plan & € M(p, o), (®(p) = o, we induce the
coupling

Mo = (® @Iy n)) IVe) (VI € Clp, 0).

Indeed,
@ [y is positive by complete positivity of @,
@ we have
Try-[Mo] = & Try-[[[Vo) (Vo] = ®p =0,
@ and
Tru[Mo] = Trulllv/e)) (Volll = "
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Transport plans versus couplings Cor

pli and plans

Correspondence between couplings and plans

Given a quantum transport plan & € M(p, o), (®(p) = o, we induce the
coupling

Mo = (® @Iy n)) IVe) (VI € Clp, 0).

Indeed,
@ [y is positive by complete positivity of @,
@ we have
Try-[Mo] = & Try-[[[Vo) (Vo] = ®p =0,
@ and

TralMe] = Trulll Vo)) ((Valll = o

The correspondence is a bijection.
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Transport plans versus couplings Corresp pli and plans

@ LetN e C(p,0) C S(H® H*), and use spectral theorem:
M=> pillA)) (Al
i

with A; € L(H) orthonormal basis, > ; p; = 1.
@ For simplicity assume that p > 0 is invertible. Define

O(X) =Y VBiAip i Xp tAlpi=Y BXB]
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Transport plans versus couplings Corresp pli and plans

@ LetN € C(p,0) C S(H ® H*), and use spectral theorem:
M=> pillA)) (Al
i

with A; € L(H) orthonormal basis, > ; p; = 1.
@ For simplicity assume that p > 0 is invertible. Define

O(X)=_ VPiAip tXp tAlVBi =) BiXB]
i i
which a Kraus representation with B; = \/p;jA;p~"/2:

ST BB =Y p VA A = 2 (z p,.A;A,) g2
i i

I

=p " Ppp™ 2 =1y

@ Then, ®(p) = 3, piAAl = (¢7)T = o using the exercise below.
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Transport plans versus couplings Corresp pli and plans

@ LetN € C(p,0) C S(H ® H*), and use spectral theorem:
M=> pillA)) (Al
i

with A; € L(H) orthonormal basis, > ; p; = 1.
@ For simplicity assume that p > 0 is invertible. Define

O(X)=_ VPiAip tXp tAlVBi =) BiXB]
i i
which a Kraus representation with B; = \/p;jA;p~"/2:

S BB => pip ' PAIApT R = p1/ (Z P/A,TA,) p~'/2
i i i

=p " Ppp™ 2 =1y

@ Then, ®(p) = 3, piAAl = (¢7)T = o using the exercise below.

Exercise: Show that
TrallI X)) (X[ = (XXT)T, Tra[[IX) (X[l = XTX.
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Quantum OT with quantum channels

e Quantum OT with quantum channels
@ Quantum transport cost
@ Distance between a state and itself
@ Modified triangle inequality
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Quantum transport cost

We now follow closely the GMPC, but with our notion of couplings: given a
cost observable C, we minimize Tr[C]
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Quantum transport cost

We now follow closely the GMPC, but with our notion of couplings: given a
cost observable C, we minimize Tr[C]

@ Fix Ry, ..., Ry, self-adjoint operators on H. Define the quadratic cost
operator:

N
C = Z(R, QI — Iy ® R,-T)z
i=1
@ Given states p, 0 € S(H) and I € C(p, o), the quantum transport cost is
C(M = Tr[CN] > 0.
@ Minimizing yields the square quantum Wasserstein (pseudo-)distance:

D 2= inf mn.
(p,0) nelcn(p’U)C()
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Quantum transport cost

We now follow closely the GMPC, but with our notion of couplings: given a
cost observable C, we minimize Tr[C]

@ Fix Ry, ..., Ry, self-adjoint operators on H. Define the quadratic cost
operator:

N
C = Z(R, QI — Iy ® R,-T)z
i=1
@ Given states p, 0 € S(H) and I € C(p, o), the quantum transport cost is
C(M = Tr[CN] > 0.
@ Minimizing yields the square quantum Wasserstein (pseudo-)distance:

D 2= inf mn.
(p,0) nelcn(p’U)C()
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Example/ Exercise

@ By compactness, the inf in in fact a min, i.e., there exists an optimal
coupling, which also yields an optimal plan ® € M(p, o).

e lfMN=0®p',then

C(N) =Trloe®p'C]
N
= Tr[oR?]+ Tr[pR?] — 2 Tr[o R Tr[pR]
i=1

@ If either o (or p) is a pure state, then

N
D(a,p) = J > TroR?] + TrpR?] — 2 Tr[o R Tr[pR).

i=1
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Quantum OT with quantum channels Quantum transport cost

Can we write explicitly C(IM) in terms of quantum transport plans ¢?
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Quantum OT with quantum channels Quantum transport cost

Can we write explicitly C(IM) in terms of quantum transport plans ¢?
@ Recall that

M= (®@Iw) Vo) (V-

@ we have (letting ®' the adjoint of the channel)

Tr[NC] = Trlllve) ((Voll (7 & Ip-)) CI
= (VoI (¢ @ L)) ClIVP))-

@ With slight abuse, write R; = R; @ Iy- and RT = I; ® R/, and notice that
they commute so that

(Ri—R/?=R?+(R®)" -2R;® R.
@ We get
(¢ @ Ti(ney) (R — RT)? = &1 (R?) + (RF)T — 20" (R) @ R

where ¢ denotes the adjoint of ®, Tr[A®(B)] = Tr[®T(A)B].
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Quantum OT with quantum channels Quantum transport cost

We want to to rewrite

(VoI (R?) + (R)T — 20T(R) @ R lv/p).-
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Quantum OT with quantum channels Quantum transport cost

We want to to rewrite

(VoI (R?) + (R)T — 20T(R) @ R lv/p).-

Recall that A® BT || X)) = ||AXB)), so
@ For the first term:

(VAlloT (RR)IIVA) = ((ValloT (RP) V)
= Tr[ypot (RR)\/7] = Trlpo! (RP)]
= Tr[d>(p)R,-2] = Tr[aR,-2].

@ Similarly, for the second term:

(VAlIRD)TIIVAY) = ((Vallv/ARR))
= TrlypyBRE] = TrloRP).
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Quantum OT with quantum channels Quantum transport cost

For the third term:

((VolleT(R) @ R[[vp)) = (Vpll®T(R)v/pR:))
= Trly/p®' (R)v/pRi] = Tr[Riy/p®' (R) /7]
= ({(VPRI|®T(R)Vp))-
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Quantum OT with quantum channels Quantum transport cost

For the third term:

((VolleT(R) @ R[[vp)) = (Vpll®T(R)v/pR:))
= Trly/p®' (R)v/pRi] = Tr[Riy/p®' (R) /7]
= ({(VPRI|®T(R)Vp))-

Summing upon i = 1,...,n, we obtain the equivalent expressions

2

Z Tr[oR?] + Tr[pR?] — 2 Tr[Ri/p®' (Ri) /7l
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Distance between a state and itself
Distance between a state and itself

@ Ifo= pand b= HL‘(H)! then I = H\/ﬁ>><<\/ﬁ|| and

N
C(N) =2 Tr[pR?] — Tr[y/pRiv/pRI.

i=1

@ One has the general inequality

D?(p,0) > 1 C(lIvVen {((Vpll) + %C(Hx/«?>><<ﬁll)-
@ For o = p it yields that the identity channel is an optimal plan

D(p, p) = C(IlvP) ((v/7ll)-
@ We can also connect D? with the Wigner-Yanase square norm

N

PP Z [Ria p]v i[Riv p]) .
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Quantum OT with quantum channels Distance between a state and itself

We define the Quantum W, divergence as

]
Wa(a, p) = \/02(0—, p) = 5 (D*(0,0) + D*(p. p))- (1)
We conjecture that W is an actual distance under minimal assumptions.

Proposition (De Palma, Virosztek, Titkos, T.)

If dim(H) < oo and
@ the observables {R,-},‘-":1 generate algebraically all operators,
@ p and ¢ are invertible,

then
Wao(p,o)=0 = p=0o

and the identity channel is the only optimizer.

Dario Trevisan (UNIPI) NOT2025 Tutorials March 12, 2025 21/30



Distance between a state and itself
quantum Wasserstein isometries

@ In Gehér et al., state transformations (called QW-isometries)
J:S(H) =~ S(H)  D(J(0),J(p) = D(0.p)
for a given quantum system H and a set {.‘?,-}f’:1 are introduced.

@ For H=C? and {X, Z}, the situation is already non-trivial:
@ Isometries of the Bloch ball that fix the X, Z plane (rotations or symmetries)
induce (trivial) QW-isometries
© There are QW-isometries that are neither injective nor surjective (on pure
states)
© Inside the ball (i.e., for non pure states) there is rigidity: up to conjugation
with trivial isometries, J is either the identity or

p=p(bx,by,bz) — J(p) = p(bx,—by,bz).
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A modified triangle inequality

@ Given p, o, 7 € S(H), we have the following modified triangle inequality:

D(p,0) < D(p,7) + D(r,7) + D(r,0).

@ Interpretation: we pay some price to stay in 7 and “prepare” to move from
Tlo 0.

@ We do not know whether the term D(r, 7) can in general be removed.

@ Bunth et al. showed that triangle inequality hold W if (at least) one state
is pure.

@ A similar inequality is not known for the GMPC case.
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Plan

e The Gaussian case
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Bosonic (Gaussian) systems

@ Bosonic quantum particles (e.g. photons) with position Q and
momentum P obey the canonical commutation relations

(CCR) [Q,P]=ily.
@ They provide a non-commutative analogue of R?:

[W(x) e H=L*R): Q) =Ix¢(x)),  Pl)= —i%w(x»

(with natural domains).
@ Ladder (annihilation/creation) operators
Q+iP Q-iP
a= a = .
V2 V2

@ Number operator: N = a'a.

Exercise Write a, a' and N as differential operators (on smooth functions)
NOT2025 Tutorials March 12, 2025

25/30



The Gaussian case

@ Vacuum state: |0) such that N|0) = 0. Fock states:

@ Coherent states, for o = g + ip € C are defined as

|a> — ef|a\2/2i Ln|n>
n=0 \/ﬁ

they are not an orthogonal systems — but are an overcomplete basis:

1
;/C|a><a\daf]IH.

@ Gaussian states are p = exp(pol(a, a')) € S(H) with pol(-, -) second
degree polynomial (not generic however!).
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The Gaussian case

@ Vacuum state: |0) such that N|0) = 0. Fock states:

@ Coherent states, for o = g + ip € C are defined as

) = e 2y 2y
o) = —\N).
n=0 \/ﬁ
they are not an orthogonal systems — but are an overcomplete basis:
1
— [ |a){alda =1p.
T Jc

@ Gaussian states are p = exp(pol(a, a')) € S(H) with pol(-, -) second
degree polynomial (not generic however!).

Exercise: Compute explicitly the first 3 Fock states |0), [1), |2) € L?(R). Show
that they are orthonormal.
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The Gaussian case

@ The setting extends to m modes, with self-adjoint (unbounded) operators
Qi,...,Qm, P1,...,Pyon H=L2(R™) satisfying

[Q;, ID,]:iéfj]IH, [Q;, Qj]Z[P/,Pj]ZO, iLhj=1,...,m.

@ Define the quadratures {Ry,...,Rom} ={Q4,...,Qm, P1,..., Pm}.
@ A Gaussian state is an exponential of a quadratic polynomial in the R;’s:

p=exp —*Z(R fily) by (R — rilw) + ¢ |
i, j=1

@ We consider the quadratic cost operator, and the associated quantum
Wasserstein distance

2m
_ ) L T\2 2 _
C=) (Riely —Iy®R[)?  D(p,0) HE%U) c(n.

i=1

(careful with domains! compare with classical non compact case).
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OT between Gaussian states

Theorem: let p, o € S(H) be Gaussian states. Then
D(p, 0)2 = Tr[Cnopt]

for some
@ Gaussian coupling Mgy € S(H @ H*)

@ corresponding to a plan ¢, that is a Gaussian quantum channel (i.e.,
maps Gaussian states into Gaussian states).
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OT between Gaussian states

Theorem: let p, o € S(H) be Gaussian states. Then
D(p, 0)2 = Tr[ClMopt]

for some
@ Gaussian coupling Mgy € S(H @ H*)

@ corresponding to a plan ¢, that is a Gaussian quantum channel (i.e.,
maps Gaussian states into Gaussian states).

Remarks:

@ Gaussian states are a finite dimensional sub-manifold — possible
numerical schemes.

@ In the case of “isotropic” Gaussians (thermal states) w(r) with covariance
matrix vk, we have an explicit formula.

© Ask Fanch Coudreuse for more on this!
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