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Transport plans versus couplings Motivation

Motivation

In the classical OT theory, transport maps T pushing a probability ρ(x)
into σ(y), are relaxed into Kantorovich couplings π(x , y).

The intepretation of π(x , y) as a generalized transport map (plan) is
probabilistic via conditioning

π(y |x) = π(x , y)
ρ(x)

,

which defines a Markov transition kernel.

We propose a quantum OT where the transport plan is a quantum
channel.

These plans are in correspondence with suitable couplings, akin to
Golse-Mouhot-Paul-Caglioti (GMPC) OT, but with some differences.
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Transport plans versus couplings Motivation

Quantum coupling and no-cloning

Recall that a quantum channel Φ on a system H a linear, completely
positive, trace preserving map between operators on H, in particular it
preserves states:

ρ ∈ S(H) 7→ Φ(ρ) = σ ∈ S(H).

Definition: given quantum states σ, ρ ∈ S(H), a quantum transport plan
Φ ∈ M(ρ, σ) is a quantum channel such that Φ(ρ) = σ.

Problem: How to compute a transport cost along the plan?

We need a joint system where both (ρ,Φ(ρ)) are defined but also strongly
correlated (why ρ⊗ Φ(ρ) is bad?).

⇒ we need to make a copy ρ and then act with Φ on one copy.
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Transport plans versus couplings Purification of a state

Transpose map

Consider H and its dual H∗. Being Hilbert spaces, these are naturally identified

|φ⟩ ∈ H 7→ ⟨φ| ∈ H∗.

Given a linear operator A : H → H, we define
its adjoint A† : H → H, |φ⟩ 7→ |A†φ⟩ such that

⟨A†φ|φ⟩ = ⟨φ|A|φ⟩.

its transpose AT : H∗ → H∗, ⟨φ| 7→ AT ⟨φ| such that

AT ⟨φ| = ⟨φ|A.

Exercise: pick an orthonormal basis (|i⟩)i ⊆ H with dual basis (⟨i |)i and show
that in coordinates (A†)ij = Aji , while (AT )ij = Aji .
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Transport plans versus couplings Purification of a state

Purification

1 Given ρ ∈ S(H), a purification of ρ is a pure state on a larger system
|ψρ⟩ ∈ H ⊗ K such that

TrK [|ψρ⟩⟨ψρ|] = ρ.

2 Example: on a qubit system H = C2, if

ρ =
1
2
|0⟩⟨0|+ 1

2
|1⟩⟨1|,

then the Bell state

|Ψ+⟩ = 1√
2
|00⟩+ 1√

2
|11⟩ ∈ (C2)⊗2

is a purification of ρ.
3 Notice that a purification cannot exist within classical probability, since

pure states correspond to Dirac δ measures (hence also their marginals
are δ’s).
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Transport plans versus couplings Purification of a state

Given a purification |ψρ⟩ ∈ H ⊗ K , also
I ⊗ UK |ψρ⟩ is a purification (UK is any unitary)
|ψρ⟩ ⊗ |ϕ⟩ ∈ H ⊗ K ⊗ K ′ for any additional |ϕ⟩ ∈ K ′.

To construct a canonical purification we identify H ⊗ H∗ with L2(H) (Hilbert-
Schimdt operators) via the Hilbert isometry

|ϕ⟩ ⊗ ⟨ψ| 7→ |ϕ⟩⟨ψ|

(extend by linearity). We use the notation for the inverse:

X 7→ ||X ⟩⟩ ∈ H ⊗ H∗

Exercises:
1 prove that it is indeed an isometry. Recall that the scalar products are

respectively

(|ϕ⟩ ⊗ ⟨ψ|, |ϕ′⟩ ⊗ ⟨ψ′|⟩)H⊗H∗ = ⟨ϕ|ϕ′⟩⟨ψ′|ψ⟩, (A,B)L2(H) = Tr[A†B].

2 Show that if X ∈ L2(H), A,B ∈ L2(H), B ∈ L2(H∗), then

A ⊗ BT ||X ⟩⟩ = ||AXB⟩⟩.
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Transport plans versus couplings Purification of a state

Given ρ ∈ S(H), its canonical purification is defined as

||√ρ⟩⟩ ∈ H ⊗ H∗,

i.e., the auxiliary system is K = H∗.To see it is a purification:
1 Use spectral theorem to diagonalize ρ =

∑
i pi |i⟩⟨i | with orthonormal

basis (|i⟩)i .
2 Then

√
ρ =

∑
i
√

pi |i⟩⟨i |, hence

||√ρ⟩⟩ =
∑

i

√
pi |i⟩ ⊗ ⟨i |.

3 Taking the partial trace:

TrH∗ [||√ρ⟩⟩⟨⟨√ρ||] =
∑

i

pi |i⟩⟨i | = ρ.

4 We also notice that

TrH [||
√
ρ⟩⟩⟨⟨√ρ||] =

∑
i

pi⟨i | ⊗ |i⟩ = ρT .

Dario Trevisan (UNIPI) NOT2025 Tutorials March 12, 2025 9 / 30



Transport plans versus couplings Purification of a state

Notice that we can extend the construction to a larger systems, e.g. letting

|ψρ⟩ ∈ H1 ⊗ H∗
2 ⊗ H3 ⊗ H∗

4

(with H1 = H2 = H3 = H4) given by

|ψρ⟩ =
∑

i

√
pi |i⟩ ⊗ ⟨i | ⊗ |i⟩ ⊗ ⟨i |.

This way,

Tr12[|ψρ⟩⟨ψρ|] = Tr34[|ψρ⟩⟨ψρ|] = Tr23[|ψρ⟩⟨ψρ|] = ||√ρ⟩⟩⟨√ρ||.

and also Tr14[|ψρ⟩⟨ψρ|] up to a swap transpose.
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Transport plans versus couplings Correspondence between couplings and plans

Couplings
We define a quantum couplings C(ρ, σ) as a state Π ∈ S(H ⊗ H∗) such that

TrH [Π] = ρT , TrH∗ [Π] = σ.

Examples:
1 (identity coupling) Π = ||√ρ⟩⟩⟨√ρ|| ∈ C(ρ, ρ).
2 (product coupling) Π = σ ⊗ ρT .

Remarks:
if σ = |ϕ⟩⟨ϕ| is pure, then C(σ, ρ) = {σ ⊗ ρT}.
C(ρ, σ) is in natural correspondence with C(σ, ρ), via the swap transpose:

|ϕ⟩ ⊗ ⟨ψ| 7→ |ψ⟩ ⊗ ⟨ϕ|.

Acting with a partial transpose on Π ∈ C(ρ, σ) we obtain Π′ ∈ L1(H ⊗ H)
such that

Tr2[Π
′] = σ, Tr1[Π

′] = ρ.

However it is not a coupling in the sense of GMPC (except special cases)
since partial transpose is not completely positive.
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Transport plans versus couplings Correspondence between couplings and plans

Correspondence between couplings and plans

Given a quantum transport plan Φ ∈ M(ρ, σ), (Φ(ρ) = σ, we induce the
coupling

ΠΦ =
(
Φ⊗ IL(H∗)

)
||√ρ⟩⟩⟨⟨√ρ|| ∈ C(ρ, σ).

Indeed,
ΠΦ is positive by complete positivity of Φ,
we have

TrH∗ [ΠΦ] = ΦTrH∗ [||√ρ⟩⟩⟨⟨√ρ||] = Φρ = σ,

and
TrH [ΠΦ] = TrH [||

√
ρ⟩⟩⟨⟨√ρ||] = ρT .

The correspondence is a bijection.
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Transport plans versus couplings Correspondence between couplings and plans

Let Π ∈ C(ρ, σ) ⊆ S(H ⊗ H∗), and use spectral theorem:

Π =
∑

i

pi ||Ai⟩⟩⟨⟨Ai ||

with Ai ∈ L(H) orthonormal basis,
∑

i pi = 1.
For simplicity assume that ρ > 0 is invertible. Define

Φ(X ) =
∑

i

√
pi Ai ρ

− 1
2 X ρ−

1
2 A†

i
√

pi =
∑

i

BiXB†
i

which a Kraus representation with Bi =
√

piAiρ
−1/2:∑

i

B†
i Bi =

∑
i

piρ
−1/2A†

i Aiρ
−1/2 = ρ−1/2

(∑
i

piA
†
i Ai

)
ρ−1/2

= ρ−1/2ρρ−1/2 = IH .

Then, Φ(ρ) =
∑

i piAiA
†
i = (σT )T = σ using the exercise below.

Exercise: Show that

TrH [||X ⟩⟩⟨⟨X ||] = (XX †)T , TrH∗ [||X ⟩⟩⟨⟨X ||] = X †X .
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Quantum OT with quantum channels Quantum transport cost

Quantum transport cost

We now follow closely the GMPC, but with our notion of couplings: given a
cost observable C, we minimize Tr[CΠ]

Fix R1, . . . ,RN , self-adjoint operators on H. Define the quadratic cost
operator:

C =
N∑

i=1

(Ri ⊗ IH∗ − IH ⊗ RT
i )

2

Given states ρ, σ ∈ S(H) and Π ∈ C(ρ, σ), the quantum transport cost is

C(Π) = Tr[CΠ] ≥ 0.

Minimizing yields the square quantum Wasserstein (pseudo-)distance:

D(ρ, σ)2 = inf
Π∈C(ρ,σ)

C(Π).
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Quantum OT with quantum channels Quantum transport cost

Example/ Exercise

By compactness, the inf in in fact a min, i.e., there exists an optimal
coupling, which also yields an optimal plan Φ ∈ M(ρ, σ).
If Π = σ ⊗ ρT , then

C(Π) = Tr[σ ⊗ ρT C]

=
N∑

i=1

Tr[σR2
i ] + Tr[ρR2

i ]− 2Tr[σRi ] Tr[ρRi ]

If either σ (or ρ) is a pure state, then

D(σ, ρ) =

√√√√ N∑
i=1

Tr[σR2
i ] + Tr[ρR2

i ]− 2Tr[σRi ] Tr[ρRi ].

Dario Trevisan (UNIPI) NOT2025 Tutorials March 12, 2025 16 / 30



Quantum OT with quantum channels Quantum transport cost

Can we write explicitly C(Π) in terms of quantum transport plans Φ?
Recall that

Π =
(
Φ⊗ IL1(H∗)

)
||√ρ⟩⟩⟨⟨√ρ||.

we have (letting Φ† the adjoint of the channel)

Tr[ΠC] = Tr[||√ρ⟩⟩⟨⟨√ρ||
(
Φ† ⊗ IL(H∗)

)
C]

= ⟨⟨√ρ||
(
Φ† ⊗ IL1(H∗)

)
C||√ρ⟩⟩.

With slight abuse, write Ri = Ri ⊗ IH∗ and RT
i = IH ⊗ RT

i , and notice that
they commute so that

(Ri − RT
i )

2 = R2
i + (R2

i )
T − 2Ri ⊗ RT

i .

We get(
Φ† ⊗ IL(H∗)

)
(Ri − RT

i )
2 = Φ†(R2

i ) + (R2
i )

T − 2Φ†(Ri)⊗ RT
i .

where Φ† denotes the adjoint of Φ, Tr[AΦ(B)] = Tr[Φ†(A)B].
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Quantum OT with quantum channels Quantum transport cost

We want to to rewrite

⟨⟨√ρ||Φ†(R2
i ) + (R2

i )
T − 2Φ†(Ri)⊗ RT

i ||
√
ρ⟩⟩.

Recall that A ⊗ BT ||X ⟩⟩ = ||AXB⟩⟩, so
1 For the first term:

⟨⟨√ρ||Φ†(R2
i )||

√
ρ⟩⟩ = ⟨⟨√ρ||Φ†(R2

i )
√
ρ⟩⟩

= Tr[
√
ρΦ†(R2

i )
√
ρ] = Tr[ρΦ†(R2

i )]

= Tr[Φ(ρ)R2
i ] = Tr[σR2

i ].

2 Similarly, for the second term:

⟨⟨√ρ||(R2
i )

T ||√ρ⟩⟩ = ⟨⟨√ρ||√ρR2
i ⟩⟩

= Tr[
√
ρ
√
ρR2

i ] = Tr[ρR2
i ].
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1 For the first term:

⟨⟨√ρ||Φ†(R2
i )||

√
ρ⟩⟩ = ⟨⟨√ρ||Φ†(R2

i )
√
ρ⟩⟩

= Tr[
√
ρΦ†(R2

i )
√
ρ] = Tr[ρΦ†(R2

i )]

= Tr[Φ(ρ)R2
i ] = Tr[σR2

i ].

2 Similarly, for the second term:

⟨⟨√ρ||(R2
i )

T ||√ρ⟩⟩ = ⟨⟨√ρ||√ρR2
i ⟩⟩

= Tr[
√
ρ
√
ρR2

i ] = Tr[ρR2
i ].
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Quantum OT with quantum channels Quantum transport cost

For the third term:

⟨⟨√ρ||Φ†(Ri)⊗ RT
i ||

√
ρ⟩⟩ = ⟨⟨√ρ||Φ†(Ri)

√
ρRi⟩⟩

= Tr[
√
ρΦ†(Ri)

√
ρRi ] = Tr[Ri

√
ρΦ†(Ri)

√
ρ]

= ⟨⟨√ρRi ||Φ†(Ri)
√
ρ⟩⟩.

Summing upon i = 1, . . . ,n, we obtain the equivalent expressions

C(Π) =
N∑

i=1

Tr[σR2
i ] + Tr[ρR2

i ]− 2Tr[Ri
√
ρΦ†(Ri)

√
ρ]

=
N∑

i=1

⟨⟨
√
σRi ||

√
σRi⟩⟩+ ⟨⟨√ρRi ||

√
ρRi⟩⟩ − 2⟨⟨√ρRi ||Φ†(Ri)

√
ρ⟩⟩.
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Quantum OT with quantum channels Distance between a state and itself

Distance between a state and itself

If σ = ρ and Φ = IL1(H), then Π = ||√ρ⟩⟩⟨⟨√ρ|| and

C(Π) = 2
N∑

i=1

Tr[ρR2
i ]− Tr[

√
ρRi

√
ρRi ].

One has the general inequality

D2(ρ, σ) ≥ 1
2

C(||√ρ⟩⟩⟨⟨√ρ||) + 1
2

C(||
√
σ⟩⟩⟨⟨

√
σ||).

For σ = ρ it yields that the identity channel is an optimal plan

D2(ρ, ρ) = C(||√ρ⟩⟩⟨⟨√ρ||).

We can also connect D2 with the Wigner-Yanase square norm

D2(ρ, ρ) =
1
4

N∑
i=1

gρ (i [Ri, ρ] , i [Ri, ρ]) .
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Quantum OT with quantum channels Distance between a state and itself

We define the Quantum W2 divergence as

W2(σ, ρ) =

√
D2(σ, ρ)− 1

2
(D2(σ, σ) + D2(ρ, ρ)). (1)

We conjecture that W2 is an actual distance under minimal assumptions.

Proposition (De Palma, Virosztek, Titkos, T.)

If dim(H) <∞ and

the observables {Ri}d
i=1 generate algebraically all operators,

ρ and σ are invertible,
then

W2(ρ, σ) = 0 ⇒ ρ = σ

and the identity channel is the only optimizer.
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Quantum OT with quantum channels Distance between a state and itself

quantum Wasserstein isometries

In Gehér et al., state transformations (called QW -isometries)

J : S(H) → S(H) D2(J(σ), J(ρ)) = D2(σ, ρ)

for a given quantum system H and a set {Ri}d
i=1 are introduced.

For H = C2 and {X ,Z}, the situation is already non-trivial:
1 Isometries of the Bloch ball that fix the X , Z plane (rotations or symmetries)

induce (trivial) QW -isometries
2 There are QW -isometries that are neither injective nor surjective (on pure

states)
3 Inside the ball (i.e., for non pure states) there is rigidity: up to conjugation

with trivial isometries, J is either the identity or

ρ = ρ(bx , by , bz) 7→ J(ρ) = ρ(bx ,−by , bz).
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Quantum OT with quantum channels Modified triangle inequality

A modified triangle inequality

Given ρ, σ, τ ∈ S(H), we have the following modified triangle inequality:

D(ρ, σ) ≤ D(ρ, τ) + D(τ, τ) + D(τ, σ).

Interpretation: we pay some price to stay in τ and “prepare” to move from
τ to σ.

We do not know whether the term D(τ, τ) can in general be removed.
Bunth et al. showed that triangle inequality hold W2 if (at least) one state
is pure.

A similar inequality is not known for the GMPC case.
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The Gaussian case

Bosonic (Gaussian) systems

Bosonic quantum particles (e.g. photons) with position Q and
momentum P obey the canonical commutation relations

(CCR) [Q,P] = iIH .

They provide a non-commutative analogue of R2:

|ψ(x)⟩ ∈ H = L2(R) : Q|ψ⟩ = |xψ(x)⟩, P|ψ⟩ = −i| d
dx
ψ(x)⟩

(with natural domains).
Ladder (annihilation/creation) operators

a =
Q + iP√

2
a† =

Q − iP√
2

.

Number operator: N = a†a.

Exercise Write a, a† and N as differential operators (on smooth functions)
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The Gaussian case

Vacuum state: |0⟩ such that N|0⟩ = 0. Fock states:

|n⟩ = (a†)n
√

n!
|0⟩.

Coherent states, for α = q + ip ∈ C are defined as

|α⟩ = e−|α|2/2
∞∑

n=0

αn
√

n!
|n⟩.

they are not an orthogonal systems – but are an overcomplete basis:

1
π

∫
C
|α⟩⟨α|dα = IH .

Gaussian states are ρ = exp(pol(a,a†)) ∈ S(H) with pol(·, ·) second
degree polynomial (not generic however!).

Exercise: Compute explicitly the first 3 Fock states |0⟩, |1⟩, |2⟩ ∈ L2(R). Show
that they are orthonormal.
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The Gaussian case

The setting extends to m modes, with self-adjoint (unbounded) operators
Q1, . . . ,Qm, P1, . . . ,Pm on H = L2(Rm) satisfying

[Qi , Pj ] = i δij IH , [Qi , Qj ] = [Pi , Pj ] = 0 , i , j = 1, . . . , m .

Define the quadratures {R1, . . . ,R2m} = {Q1, . . . ,Qm,P1, . . . ,Pm}.
A Gaussian state is an exponential of a quadratic polynomial in the Ri ’s:

ρ = exp

−1
2

2m∑
i, j=1

(Ri − ri IH)hij (Rj − rj IH) + c

 ,

We consider the quadratic cost operator, and the associated quantum
Wasserstein distance

C =
2m∑
i=1

(Ri ⊗ IH∗ − IH ⊗ RT
i )

2, D(ρ, σ)2 = inf
Π∈C(ρ,σ)

C(Π).

(careful with domains! compare with classical non compact case).
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The Gaussian case

OT between Gaussian states

Theorem: let ρ, σ ∈ S(H) be Gaussian states. Then

D(ρ, σ)2 = Tr[CΠopt ]

for some
Gaussian coupling Πopt ∈ S(H ⊗ H∗)

corresponding to a plan Φopt that is a Gaussian quantum channel (i.e.,
maps Gaussian states into Gaussian states).

Remarks:

1 Gaussian states are a finite dimensional sub-manifold → possible
numerical schemes.

2 In the case of “isotropic” Gaussians (thermal states) ω(ν) with covariance
matrix νI2m we have an explicit formula.

3 Ask Fanch Coudreuse for more on this!
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