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Atomic units

Throughout the lecture atomic units are used

h/2π = 1[a.u.] = 1.0546� 10�34[Js ]
me = 1[a.u.] = 9.1095� 10�31[kg ]
e = 1[a.u.] = 1.6022� 10�19[C ]

Energy

1[a.u.] = 1[Hartree] = 4.3598� 10�18[J ] = 27.211[eV ]

Length

1[a.u] = 1[bohr ] = 5.2918� 10�11[m] = 0.52918[Å]
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Born-Oppenheimer approximation

For molecules we consider only the electronic Hamiltonian, i.e. the
Born-Oppenheimer approximation is used

Ĥ = �1
2

N

∑
i=1
O2i �

N

∑
i=1

M

∑
I=1

ZI
jri �RI j

+
N

∑
j

N

∑
i>j

1
jri � rj j

where N-number of electrons, M-number of nuclei, frig-electronic
coordinates, fRI g-nuclear coordinates.
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The Schrödinger equation

The time-dependent Schrödinger equation for an N-electron system

i
∂ψ(x , t)

∂t
= Ĥψ(x , t)

x = (x1, . . . , xN )

xi = (ri , σi )

for a time-independent Hamiltonian reduces to

ĤΨn(x1, . . . , xN ) = EnΨn(x1, . . . , xN )

and the solutions to the time-dependent equation are given by

ψ(x , t) = e�iEntΨn(x1, . . . , xN )

Let Ψ0 be a ground state wavefunction and E0 a corresponding
ground state energy, i.e.

8n 6=0 E0 � En
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Wavefunction-based methods

Many quantum chemistry methods rely on a speci�c ansatz
(parameterization) for the wavefunction

Ψ0 � Ψ̃

e.g. the Hartree-Fock method (HF), Con�guration Interaction
methods (CI, MR-CI, MC-SCF, CAS-SCF, etc.), Coupled Cluster
methods (CCSD, CCSD(T), CCSDT, etc.).

In variational methods (so not in the CC methods) the energy is
obtained as the expectation value of the Hamiltonian

E0 �


Ψ̃jĤ jΨ̃

�
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Variational wavefunction-based methods

The variational principle reads

E0 �


Ψ̃jĤ jΨ̃

�
where Ψ̃ is a trial, normalized wavefunction.

In case of the variational methods, e.g. HF, CI, or SCF, the optimal
parameters C in Ψ̃ follow from optimizing the expectation value of
the Hamiltonian

E0 � Ẽ0 = min
C

�

Ψ̃(C)jĤ jΨ̃(C)

�
: Ψ̃(C)� normalized
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One-electron reduced density matrix (1-RDM)

Consider the expectation value of the kinetic energy operator

T̂ =
N

∑
i=1

�
�1
2

�
∂2

∂x2i
+

∂2

∂y2i
+

∂2

∂z2i

��
=

N

∑
i=1
t̂(ri )

T =
Z

Ψ(x1, . . . , xN )�
"
N

∑
i=1
t̂(ri )

#
Ψ(x1, . . . , xN ) dx1 . . . dxN

= N
Z

Ψ(x1, . . . , xN )� t̂(r1)Ψ(x1, . . . , xN ) dx1 . . . dxN

=
Z

δ(x1 � x 01)t̂(r1)
�
N
Z

Ψ(x 01, . . . , xN )�Ψ(x1, . . . , xN )dx2 . . . dxN

�
dx 01dx1

=
Z

δ(x1 � x 01)t̂(r1)Γ(1)(x1, x 01) dx 01dx1

Γ(1) is a one-electron reduced density matrix (1-RDM) de�ned as

Γ(1)(x1, x 01) = N
Z

Ψ(x 01, x2, . . . , xN )�Ψ(x1, x2, . . . , xN )dx2 . . . dxN
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Electron density

Consider the expectation value of the external potential operator

V̂ext =
N

∑
i=1

υext (ri )

Vext =
Z

Ψ(x1, . . . , xN )�
"
N

∑
i=1

υext (ri )

#
Ψ(x1, . . . , xN ) dx1 . . . dxN

= N
Z

Ψ(x1, . . . , xN )�υext (r1)Ψ(x1, . . . , xN ) dx1 . . . dxN

=
Z

υext (r1)
�
N
Z

Ψ(x1, . . . , xN )�Ψ(x1, . . . , xN )dx2 . . . dxN

�
dx1

=
Z

υext (r1)ρ(x1)dx1

where the electron density ρ(x1) is related to Γ(1)(x1, x 01)

ρ(x1) = N
Z

Ψ(x1, . . . , xN )�Ψ(x1, . . . , xN )dx2 . . . dxN = Γ(1)(x1, x1)
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Two-electron reduced density matrix (2-RDM)

The electron-electron interaction operator is a two-body operator

V̂ee =
1
2

N

∑
i 6=j
jri � rj j�1 =

1
2

N

∑
i 6=j
r�1ij

and its expectation value reads

Vee =
Z

Ψ(x1, . . . , xN )�
"
1
2

N

∑
i 6=j
r�1ij

#
Ψ(x1, . . . , xN ) dx1 . . . dxN

=
N(N � 1)

2

Z
Ψ(x1, . . . , xN )�r�112 Ψ(x1, . . . , xN ) dx1 . . . dxN

=
Z
r�112

�Z N(N � 1)
2

Ψ(x1, . . . , xN )�Ψ(x1, . . . , xN ) dx3 . . . dxN

�
dx1dx2

=
Z
r�112 Γ(2)(x1, x2; x1, x2)dx1dx2
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Γ(2)(x1, x2; x1, x2) is an element of the two-electron reduced density
matrix (2-RDM) de�ned as

Γ(2)(x1, x2; x 01, x
0
2) =

N(N � 1)
2

�
Z

Ψ(x 01, x
0
2, x3, . . . , xN )�Ψ(x1, x2, x3, . . . , xN )dx3 . . . dxN
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Expectation value of the electronic Hamiltonian

The expectation value of the electronic Hamiltonian is given in terms of
one-electron and two-electron reduced density matrices

Ĥ =
N

∑
i=1
t̂(ri ) +

N

∑
i=1

υext (ri ) +
1
2

N

∑
i 6=j
jri � rj j�1

E =


ΨjĤ jΨ

�
=
Z

δ(x1 � x 01)t̂(r1)Γ(1)(x1, x 01) dx 01dx1 +
Z

υext (r1)Γ(1)(x1, x1)dx1

+
Z
jr1 � r2j�1 Γ(2)(x1, x2; x1, x2)dx1dx2
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Two-electron density matrix functional

Since the 2-RDM determines 1-RDM

Γ(1)(x1, x 01) =
2

N � 1

Z
Γ(2)(x1, x2; x 01, x2)dx2

then the energy is an explicit functional of 2-RDM

E = E [Γ(2)]

Does the exact energy result from the minimization

E0
?
= min

Γ(2)
E [Γ(2)]

Yes, if the domain is restricted to the so called N-representable Γ(2).
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N-representability of 2-RDM

Γ(2) is called N-representable if it corresponds to some
antisymmetric wavefunction Ψ (or a ensemble of wavefunctions)

9Ψ Γ(2)(x1, x2; x 01, x
0
2) =

N(N � 1)
2

Z
Ψ(x 01, x

0
2, . . . , xN )�Ψ(x1, x2, . . . , xN )dx3 . . . dxN

Some su¢ cient N-representability conditions for Γ(2) are known but
they are too restrictive (A. J. Coleman and V. I. Yukalov, [1]).

Imposing only necessary conditions on 2-RDM results in too low
energy [1,2], i.e.

min
Γ̃(2)

E [Γ̃(2)] < E0

where Γ̃(2) are 2-RDM�s satisfying some known necessary
N-representability conditions.

Kasia Pernal (Lodz University of Technology, Poland)Reduced Density Matrix Functional Theory 13 / 66



N-representability of 2-RDM

Γ(2) is called N-representable if it corresponds to some
antisymmetric wavefunction Ψ (or a ensemble of wavefunctions)

9Ψ Γ(2)(x1, x2; x 01, x
0
2) =

N(N � 1)
2

Z
Ψ(x 01, x

0
2, . . . , xN )�Ψ(x1, x2, . . . , xN )dx3 . . . dxN

Some su¢ cient N-representability conditions for Γ(2) are known but
they are too restrictive (A. J. Coleman and V. I. Yukalov, [1]).

Imposing only necessary conditions on 2-RDM results in too low
energy [1,2], i.e.

min
Γ̃(2)

E [Γ̃(2)] < E0

where Γ̃(2) are 2-RDM�s satisfying some known necessary
N-representability conditions.

Kasia Pernal (Lodz University of Technology, Poland)Reduced Density Matrix Functional Theory 13 / 66



N-representability of 2-RDM

Γ(2) is called N-representable if it corresponds to some
antisymmetric wavefunction Ψ (or a ensemble of wavefunctions)

9Ψ Γ(2)(x1, x2; x 01, x
0
2) =

N(N � 1)
2

Z
Ψ(x 01, x

0
2, . . . , xN )�Ψ(x1, x2, . . . , xN )dx3 . . . dxN

Some su¢ cient N-representability conditions for Γ(2) are known but
they are too restrictive (A. J. Coleman and V. I. Yukalov, [1]).

Imposing only necessary conditions on 2-RDM results in too low
energy [1,2], i.e.

min
Γ̃(2)

E [Γ̃(2)] < E0

where Γ̃(2) are 2-RDM�s satisfying some known necessary
N-representability conditions.

Kasia Pernal (Lodz University of Technology, Poland)Reduced Density Matrix Functional Theory 13 / 66



Di¤erent representations of RDM�s

1- and 2-RDM�s may be expanded in a given orthonormal basis set
fχp(x)g as

Γ(1)(x , x 0) = ∑
pq

Γ(1)pq χp(x)χq(x 0)�

Γ(2)(x1, x2; x 01, x
0
2) = ∑

pqrs
Γ(2)pqrs χp(x1)χq(x2)χr (x 01)

�χs (x 02)
�

1- and 2-RDM�s are the expectation values of the reduced density matrix
operators

Γ(k )(x , x 0) =
D

ΨjΓ̂(k )(x , x 0)jΨ
E
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Reduced density matrix operators

The RDM operators are de�ned in terms of the creation
�
ĉ+p
	
and

annihilation fĉpg operators, in a given basis set, i.e.

Γ̂(1)(x , x 0) = ∑
pq
ĉ+q ĉp χp(x)χq(x 0)�

Γ̂(2)(x1, x2; x 01, x
0
2) =

1
2 ∑
pqrs

ĉ+r ĉ
+
s ĉq ĉp χp(x1)χq(x2)χr (x 01)

�χs (x 02)
�

Consequently,

Γ(1)pq =


Ψjĉ+q ĉp jΨ

�
Γ(2)pqrs =

1
2



Ψjĉ+r ĉ+s ĉq ĉp jΨ

�
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Some trivial necessary N-rep conditions for RDM�s

Hermiticity
Γ(1)pq = Γ(1)

�
qp , Γ(2)pqrs = Γ(2)

�
rspq

Antisymmetricity of 2-RDM

Γ(2)pqrs = �Γ(2)qprs = �Γ(2)pqsr = Γ(2)qpsr

Trace conditions

∑
p

Γ(1)pp = N , ∑
pq

Γ(2)pqpq =
N(N � 1)

2

Sum rule for 1-RDM and 2-RDM

∑
q

Γ(2)pqrq =
N � 1
2

Γ(1)pr
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Some less trivial necessary N-rep conditions for 2-RDM

The following P, Q, and G matrices must be positive semide�nite (P, Q,
G conditions)

Ppqrs =


ĉ+r ĉ

+
s ĉq ĉp

�
= 2Γ(2)pqrs

Qpqrs =


ĉr ĉs ĉ+q ĉ

+
p

�
= δsqδrp � δrqδsp � δsqΓ(1)rp + δrqΓ(1)sp � δrpΓ(1)sq + δspΓ(1)rq + 2Γ(2)rspq

Gpqrs =


ĉ+r ĉs ĉ

+
q ĉp

�
= δsqΓ(1)pr � 2Γ(2)psrq

There are more conditions (T1, T2, T1�, T2�). (M. Nakata et al. [3], Z.
Zhao et al. [4]).
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Variation of the 2-RDM functional

The approximate ground state may be obtained by minimizing the 2-RDM
functional

E0 = min
Γ(1),Γ(2)

(
∑
pq
hpqΓ(1)qp + ∑

pqrs
hpqjrsi Γ(2)rspq

)

where

hpq =
Z

χp(x)� [t̂(r) + υext (r)] χq(x)dx

hpqjrsi =
Z

χp(x1)�χq(x2)� jr1 � r2j�1 χr (x1)χs (x2)dx1dx2

subject to the necessary conditions listed before.
See papers by Mazziotti [5], Nakata et al. [3], Zhao et al. [4], D. van
Neck et al. [6], and the work of Eugene DePrince et al. [27]-[28].
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Variation of the 2-RDM functional

Pros

no need to handle N-electron wavefunction
high accuracy of the ground state energies; comparable to high-level
methods like CCSD(T) or better for multireference states

Cons

expensive constrained optimization algorithms are needed (semide�nite
programming SDP) - high computational cost!!!
wrong dissociation products of diatomic molecules

Talk to Eugene DePrince to learn more (everything).
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Coming back to 1-RDM ...

Can we �nd a ground state energy without a knowledge of 2-RDM?

In principle... YES.

In 1975 T. L. Gilbert proved the existence of the energy 1-RDM
functional for a local or nonlocal external potential [7].

Gilbert theorem: a ground state wavefunction is determined by the
v-representable one-electron reduced density matrix, Γ(1) ! Ψ0.

Note that the expectation value of the nonlocal potential is given by
1-RDM, i.e.

υ =
Z

υ(x , x 0)Γ(1)(x , x 0)dxdx 0
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Proof of Gilbert theorem

Assume two di¤erent (by more than a constant) nonlocal potentials υ̂1
and υ̂2 giving rise to two di¤erent wavefunctions Ψ1 and Ψ2 yielding the
same 1-RDM�s Γ(1)1 = Γ(1)2 = Γ(1).

On one hand, due to the variational theorem

E 10 =


Ψ1jĤ1jΨ1

�
<


Ψ2jĤ1jΨ2

�
E 20 =



Ψ2jĤ2jΨ2

�
<


Ψ1jĤ2jΨ1

�
and

∆E =
�


Ψ2jĤ1jΨ2
�
� E 10

�
+
�


Ψ1jĤ2jΨ1
�
� E 20

�
> 0
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On the other hand, since Ĥ1 � Ĥ2 = υ̂1 � υ̂2 then

∆E =


Ψ2jĤ1 � Ĥ2jΨ2

�
+


Ψ1jĤ2 � Ĥ1jΨ1

�
=
Z �

υ1(x , x 0)� υ2(x , x 0)
�

Γ(x , x 0)dxdx 0

+
Z �

υ2(x , x 0)� υ1(x , x 0)
�

Γ(x , x 0)dxdx 0

= 0

So one obtains contradicting equations

∆E > 0
∆E = 0

which proves the Gilbert theorem.
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Energy functional

Gilbert theorem establishes the existence of the energy functional for
υ-representable 1-RDM�s

E [Γ(1)] = Tr
h
(t̂ + υ̂ext )Γ(1)

i
+ F [Γ(1)]

where F [Γ(1)] is a universal functional.

Levy proposed a functional de�ned for all pure state N-representable
1-RDM�s as follows [8]

E [Γ(1)p ] = Tr
h
(t̂ + υ̂ext )Γ

(1)
p

i
+ min

Ψ!Γ(1)p



ΨjV̂ee jΨ

�
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Energy functional

A given density matrix Γ(1) is pure state N-representable (N-rep) if
there exists an antisymmetric N-electron wavefunction Ψ such that

Γ(1)p 2 N-rep if

9Ψ Γ(1)(x1, x 01) = N
Z

Ψ(x 01, x2, . . . , xN )�Ψ(x1, x2, . . . , xN )dx2 . . . dxN

Density matrix variational principle for Levy�s functional

8 Γ(1)p 2 N-rep E0 � E [Γ(1)p ]

Pure state N-representability conditions for 1-RDM have been
presented recently [29]-[30]. They are impractical for real systems
[31]. Talk to Christian Schilling and Julia Liebert.
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Ensemble N-representable 1-RDM�s

A given density matrix Γ(1) is ensemble N-representable if there
exists an ensemble-state N-particle density matrix

Γ(N )(x 01, . . . , x 0N ; x1, . . . , xN ) = ∑
i

ωiΨi (x 01, . . . , x 0N )
�Ψi (x1, . . . , xN )

∑
i

ωi = 1

8i ωi � 0

such that

Γ(1)(x1, x 01) = N∑
i

ωi

Z
Ψi (x 01, . . . , xN )�Ψi (x1, . . . , xN )dx2 . . . dxN

The necessary and su¢ cient ensemble N-representability conditions
for 1-RDM�s are known and they are easy to be imposed.
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Spectral representation of 1-RDM

Consider a Hermitian and normalized 1-RDM

Γ(1)(x , x 0) = ∑
pq

Γ(1)pq χp(x)χq(x 0)�

Γ(1)(x , x 0) = Γ(1)(x 0, x)�, Γ(1)pq = Γ(1)
�

qpZ
Γ(1)(x , x)dx = ∑

pp
Γ(1)pp = N

Hermiticity of reduced density matrix allows for its spectral representation

Γ(1)(x , x 0) = ∑
p
np ϕp(x)ϕp(x 0)�

where the numbers fnpg are eigenvalues of Γ(1) while the functions
fϕp(x)g are the corresponding eigenfunctionsZ

Γ(1)(x , x 0)ϕp(x 0)dx 0 = np ϕp(x)
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Properties of natural occupation numbers and natural
spinorbitals

fnpg - natural occupation numbers
fϕp(x)g - natural spinorbitals
For a Hermitian and normalized 1-RDM the following properties are
satis�ed

orthonormality of natural spinorbitalsZ
ϕp(x)�ϕq(x)dx = δpq

natural occupation numbers are real and sum up to N

∑
p
np = N
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Necessary N-representability conditions for 1-RDM

Assume Γ(1) to be pure state N-representable, i.e. there exists a
wavefunction jΨi such that

Γ(1)(x , x 0) =
D

ΨjΓ̂(1)(x , x 0)jΨ
E

Using the natural spinorbitals as a basis set the 1-RDM operator reads

Γ̂(1)(x , x 0) = ∑
pq
ĉ+q ĉp ϕp(x)ϕq(x 0)�

and

Γ(1)(x , x 0) = ∑
pq



Ψjĉ+q ĉp jΨ

�
ϕp(x)ϕq(x 0)�

= ∑
p
np ϕp(x)ϕp(x 0)�

Consequently, 

Ψjĉ+q ĉp jΨ

�
= npδpq
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Ψjĉ+q ĉp jΨ

�
ϕp(x)ϕq(x 0)�

= ∑
p
np ϕp(x)ϕp(x 0)�

Consequently, 
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Necessary N-representability conditions for 1-RDM

We obtained
np =



ΨjN̂p jΨ

�
where

N̂p = ĉ+p ĉp

Since (use ĉp ĉ+p + ĉ
+
p ĉp = 1 and ĉp ĉp = 0)

N̂2p = ĉ
+
p ĉp ĉ

+
p ĉp = ĉ

+
p ĉp � ĉ+p ĉ+p ĉp ĉp = ĉ+p ĉp = N̂p

N̂p is a projection operator.
The expectation value of the projection operator is nonnegative and not
greater than 1 so

0 � np � 1
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+
p ĉp ĉ
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Necessary and su¢ cient ensemble N-representability
conditions for 1-RDM

The necessary conditions for pure or ensemble N-representability
conditions of Γ(1) read

Γ(1)
+
= Γ(1)

Tr[Γ(1)] = N
0 � np � 1

A. J. Coleman proved that these are also su¢ cient conditions for
ensemble N-representability (for a proof see [2] or a book by R. G.
Parr and W. Yang [9], p.43].

As opposed to Γ(2) there is no N-representability problem for Γ(1)!
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Energy functional for ensemble N-representable density
matrices

S. M. Valone extended Levy construction of the density matrix
functional to ensemble N-representable density matrices [10]

E [Γ(1)e ] = Tr
h
(t̂ + υ̂ext )Γ̂

(1)
e

i
+ min

Γ(N )!Γ(1)e
Tr
h
V̂ee Γ̂(N )

i
where Γ(1)e stands for ensemble N-representable 1-RDM, the
minimization is performed with respect to ensemble-state density
matrices that reduce to a given Γ(1)e , and

Tr
h
V̂ee Γ̂(N )

i
= ∑

i
ωi


Ψi jV̂ee jΨi

�

One can show that
E0 � E [Γ(1)e ]

so the ground state may be achieved by searching the space of
ensemble N-representable density matrices.
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Reduced density matrix functional theory (RDMFT)

The functional exists but, unlike for 2-RDM functional, the form of
the electron-electron interaction term is not known (similarly to DFT).

The kinetic energy functional is given explicitly (unlike in DFT).

The necessary and su¢ cient ensemble N-representability conditions
for Γ(1) are known and they are rather easy to impose.
Thus, having a density matrix functional, the ground state is found by
minimizing the functional with respect to N-rep 1-RDM

E0 = min
N -rep Γ(1)

E [Γ(1)]
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Constructing approximate density matrix functionals

How to construct an approximate functional?

Insights from wavefunction theories.

Reconstructions of diagonal part of 2-RDM in terms of 1-RDM.

Proposing a simple form that involves some parameters and �nding
the parameters empirically.
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Hartree-Fock density matrix

One-electron density matrix assumes a simple form for a single
N-electron determinant.
In fact one can show that [11]

Ψ(x1, . . . , xN ) =
1p
N !

���������
ϕ1(x1) ϕ1(x2) . . . ϕ1(xN )
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN )
...

...
. . .

...
ϕN (x1) ϕN (x2) . . . ϕN (xN )

���������
() Γ(1)(x , x 0) =

N

∑
p=1

ϕp(x)ϕp(x 0)�

=) The occupation numbers of 1-RDM corresponding to a Slater
wavefunction are integer

8p � N np = 1

8p > N np = 0
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Occupation numbers for uncorrelated and correlated
wavefunction

(= A density matrix whose all occupation numbers are integer (0 or
1) is pure state N-representable and a Slater determinant is the
corresponding wavefunction.

A density matrix for a multideterminantal wavefunction possesses
fractional occupation numbers, 0 < np < 1.

Are all occupation numbers fractional for a correlated wavefunction in
case of electronic 3D systems? There are some arguments that for H2
molecule at some values of interatomic distances there exists np = 0
(J. Cioslowski and K. Pernal [20]).

Note that an ensemble of Slater determinants leads to 1-RDM with
fractional occupation numbers.
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Hartree-Fock energy expression in terms of 1-RDM

For a single determinantal wavefunction 2-RDM is explicitly given in
terms of 1-RDM

Γ(2)(x1, x2; x 01, x
0
2) =

1
2
[Γ(1)(x1, x 01)Γ

(1)(x2, x 02)

� Γ(1)(x1, x 02)Γ
(1)(x2, x 01)]

So the expression for the energy

E =
Z

δ(x1 � x 01)[t̂(r1) + υext (r1)]Γ(1)(x1, x 01) dx
0
1dx1

+
Z
r�112 Γ(2)(x1, x2; x1, x2)dx1dx2

Kasia Pernal (Lodz University of Technology, Poland)Reduced Density Matrix Functional Theory 36 / 66



Hartree-Fock energy expression in terms of 1-RDM

For a single determinantal wavefunction 2-RDM is explicitly given in
terms of 1-RDM

Γ(2)(x1, x2; x 01, x
0
2) =

1
2
[Γ(1)(x1, x 01)Γ

(1)(x2, x 02)

� Γ(1)(x1, x 02)Γ
(1)(x2, x 01)]

So the expression for the energy

E =
Z

δ(x1 � x 01)[t̂(r1) + υext (r1)]Γ(1)(x1, x 01) dx
0
1dx1

+
Z
r�112 Γ(2)(x1, x2; x1, x2)dx1dx2

Kasia Pernal (Lodz University of Technology, Poland)Reduced Density Matrix Functional Theory 36 / 66



takes form

EHF =
Z

δ(x1 � x 01)[t̂(r1) + υext (r1)]Γ(1)(x1, x 01) dx
0
1dx1

+
1
2

Z
r�112 Γ(1)(x1, x1)Γ(1)(x2, x2)dx1dx2

� 1
2

Z
r�112 Γ(1)(x1, x2)Γ(1)(x2, x1)dx1dx2
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1 The �rst term in the energy is the so-called one-particle energy term

Eone [Γ(1)] = Ekin [Γ(1)] + Eext [Γ(1)]

2 The 2nd term is called Hartree (or Coulomb repulsion) energy

EH [Γ(1)] =
1
2

Z
jr1 � r2j�1 Γ(1)(x1, x1)Γ(1)(x2, x2)dx1dx2

=
1
2

Z
jr1 � r2j�1 ρ(x1)ρ(x2)dx1dx2

3 The 3rd term is an exchange interaction

EX [Γ(1)] = �
1
2

Z
jr1 � r2j�1 jΓ(1)(x1, x2)j2dx1dx2
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Hartree-Fock density matrix functional

The simplest explicit density matrix functional may be de�ned as

EHF [Γ(1)] = Eone [Γ(1)] + EH [Γ(1)] + EX [Γ(1)]

Let EHF be a Hartree-Fock energy (obtained from solving Hartree-Fock
equations).
Obviously, EHF [Γ(1)] is not smaller than EHF for any Γ(1) with integer
occupation numbers.
E. Lieb showed that it is true for any N-representable 1-RDM [12], i.e.

8N-rep Γ(1) EHF � EHF [Γ(1)]
Therefore minimization of EHF [Γ(1)] leads to the same solution as
Hartree-Fock equations

min
N -rep Γ(1)

EHF [Γ(1)] = EHF

We do not gain anything over the Hartree-Fock method, the
optimal 1-RDM is the same as the one obtained from the HF
wavefunction (integer occupation numbers)!
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Two-electron system in a singlet spin state

Consider a real-valued singlet wavefunction for a two-electron system [13]

1Ψ(x1, x2) =
1p
2

∑
pq
Cpq

���� χp(r1)α(1) χp(r2)α(2)
χq(r1)β(1) χq(r2)β(2)

����
where α and β are spin functions.

The spin symmetry
Ŝ2Ψ = 0

imposes the symmetry on the real matrix C (see for example [14])

CT = C

The normalization of 1Ψ implies

∑
pq
C 2pq = 1
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The wavefunction can be rewritten as follows

1Ψ(x1, x2) =
1p
2
[α(1)β(2)� α(2)β(1)]∑

pq
Cpqχp(r1)χq(r2)

The matrix C is symmetric so it can be diagonalized

C = UT cU

where c is a diagonal matrix, U is unitary and

∑
p
c2p = 1

The wavefunction in a diagonal form reads

1Ψ(x1, x2) =
1p
2
[α(1)β(2)� α(2)β(1)]∑

p
cpϕp(r1)ϕp(r2)

ϕp(r) = ∑
q
Upqχq(r)
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A corresponding one-electron density matrix follows immediately as

Γ(1)(x1, x 01) = 2
Z

Ψ(x 01, x2)Ψ(x1, x2)dx2

= ∑
p
c2p [ϕp(r1)α(1)ϕp(r

0
1)α(1

0) + ϕp(r1)β(1)ϕp(r01)β(1
0)]

The spinorbitals fϕpα, ϕpβg are the natural spinorbitals and
�
c2p
	
are the

natural occupation numbers

c2p = npα = npβ

∑
p

�
npα + npβ

�
= 2
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The exact 1-RDM functional for singlet two-el systems

The expression for energy for a singlet wavefunction in a
representation of the natural spinorbitals takes a simple form

E 2�el =

1ΨjĤ j1Ψ� = 2∑

p
c2phpp +∑

pq
cpcq hϕpϕq jϕqϕpi

hpp =
Z

ϕp(r) [t̂(r) + υext (r)] ϕp(r)dr

hϕpϕq jϕqϕpi =
Z

ϕp(r1)ϕq(r2) jr1 � r2j�1 ϕq(r1)ϕp(r2)dr1dr2

The exact ground state energy is obtained by minimizing E 2�el with
respect to orbitals and fcpg coe¢ cients subject to conditions
∑p c

2
p = 1.
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Since
p
np = �cp it is possible to de�ne an implicit density matrix

functional [15]

E 2�el [Γ(1)] = E 2�el [fnpg , fϕp(r)g]
= 2∑

p
nphpp +min

ffr g
∑
pq
fp fq

p
npnq hϕpϕq jϕqϕpi

where 1-RDM is assumed to be N-representable, i.e.Z
ϕp(r)ϕq(r)dr = δpq

∑
p
np = 1

0 � np � 1

and
8p fp = �1
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An almost exact functional for singlet two-el systems

Numerical experience shows that after minimization of the energy the sign
of the c1 coe¢ cient corresponding to mostly occupied orbital is opposite
to the sign of the rest [16]

8p > 1 c1cp < 0

8p, q > 1 cqcp > 0

The functional for two-electron system reads then

E 2�el [fnpg , fϕp(r)g] = 2∑
p
nphpp + n1 hϕ1ϕ1jϕ1ϕ1i

�2 ∑
p>1

p
npn1 hϕpϕ1jϕ1ϕpi+ ∑

p>1,q>1

p
npnq hϕpϕq jϕqϕpi

A two-electron case is a paradigm in RDMFT.
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Approximate density matrix functionals

Approximate functionals proposed so far are of the form

E [fnpg , fϕp(x)g] = ∑
p
nphpp + EH [fnpg , fϕp(x)g]

+ Exc [fnpg , fϕp(x)g]

The Hartree term in terms of the natural occupation numbers and the
natural spinorbitals reads

EH [fnpg , fϕp(x)g] =
1
2 ∑
pq
npnq hϕpϕq jϕpϕqi

The exchange-correlation functional involves only exchange integrals

Exc [fnpg , fϕp(x)g] =
1
2 ∑
pq
G (np , nq) hϕpϕq jϕqϕpi

G (x , y) = G (y , x)

Kasia Pernal (Lodz University of Technology, Poland)Reduced Density Matrix Functional Theory 46 / 66



Approximate density matrix functionals

Approximate functionals proposed so far are of the form

E [fnpg , fϕp(x)g] = ∑
p
nphpp + EH [fnpg , fϕp(x)g]

+ Exc [fnpg , fϕp(x)g]

The Hartree term in terms of the natural occupation numbers and the
natural spinorbitals reads

EH [fnpg , fϕp(x)g] =
1
2 ∑
pq
npnq hϕpϕq jϕpϕqi

The exchange-correlation functional involves only exchange integrals

Exc [fnpg , fϕp(x)g] =
1
2 ∑
pq
G (np , nq) hϕpϕq jϕqϕpi

G (x , y) = G (y , x)

Kasia Pernal (Lodz University of Technology, Poland)Reduced Density Matrix Functional Theory 46 / 66



Approximate density matrix functionals

Approximate functionals proposed so far are of the form

E [fnpg , fϕp(x)g] = ∑
p
nphpp + EH [fnpg , fϕp(x)g]

+ Exc [fnpg , fϕp(x)g]

The Hartree term in terms of the natural occupation numbers and the
natural spinorbitals reads

EH [fnpg , fϕp(x)g] =
1
2 ∑
pq
npnq hϕpϕq jϕpϕqi

The exchange-correlation functional involves only exchange integrals

Exc [fnpg , fϕp(x)g] =
1
2 ∑
pq
G (np , nq) hϕpϕq jϕqϕpi

G (x , y) = G (y , x)

Kasia Pernal (Lodz University of Technology, Poland)Reduced Density Matrix Functional Theory 46 / 66



Power functional

In case of the Hartree-Fock functional (no correlation) the G function
takes form

G (np , nq) = �npnq

The simplest step beyond HF would be

G (np , nq) = � (npnq)α

α < 1

How to choose α?
Note that the electron-electron repulsion functional reads

Eee [fnpg , fϕp(x)g] =
1
2 ∑
pq
npnq hϕpϕq jϕpϕqi�

1
2 ∑
pq
(npnq)

α hϕpϕq jϕqϕpi

On the other hand, the exact Eee energy expression involves 2-RDM

Eee = ∑
pqrs

Γ(2)rspq hϕpϕq jϕr ϕs i
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Power functional

A comparison of Eee [fnpg , fϕp(x)g] with the exact Eee would suggest

Γ(2)rspq =
1
2
[npnqδpr δqs � (npnq)α δqr δps ]

The antisymmetry condition

Γ(2)rspq = �Γ(2)rsqp = �Γ(2)srpq ) α = 1

The sum rule

∑
q

Γ(2)pqrq =
N � 1
2

Γ(1)pr =
N � 1
2

npδpr ) α =
1
2

Other choices of α would violate both conditions for the underlying
Γ(2).
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BB functional

The choice of α = 1
2 leads to the so-called Buijse-Baerends [17] functional

also known as Müller [18] or corrected Hartree functional [19]

Exc [fnpg , fϕp(x)g] = �
1
2 ∑
pq
(npnq)

1/2 hϕpϕq jϕqϕpi

It is known that BB produces too much correlation energy [19, 21].
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H2 molecule FH molecule

HF: Hartree-Fock, FCI: full con�guration interaction, MRCI:
multireference con�guration interaction, BB: α = 1/2 power functional.
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Empirical power functional

It has been found that α = 0.578 works best for the correlation energy of
molecules and α = 0.55 reproduces well correlation energy of the
homogeneous electron gas (N.N. Lathiotakis et al., [22])
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BBC3 functional

Based on the knowledge of a density matrix functional for
two-electron system a number of corrections to the BB (α = 1/2)
functional has been proposed (O.V. Gritsenko et al. [21]) resulting in
the BBC3 functional.

In BBC3 the natural orbitals are divided into sets of

strongly occupied (occ) orbitals; 1� np � 1,
weakly occupied (virt), np � 1,
frontier (frn) that includes bonding and antibonding orbitals.

GBBC 3(np , nq) =

8>>>>>><>>>>>>:

p
npnp , (p 6= q; p, q 2 virt)

�npnq , (p 6= q; p, q 2 occ)
_ (p 2 occ , q 2 frn)
_ (q 2 occ , p 2 frn)

�n2p , (p = q; p /2 frn)
�pnpnq , otherwise
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the BBC3 functional.

In BBC3 the natural orbitals are divided into sets of
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AC3 functional

Special treatment of frontier orbitals leads to the proper description
of the molecules with stretched bonds.

BBC3 requires selecting frontier orbitals prior to calculations. It leads
to numerical problems.
To select the orbitals automatically (based on their occupation
number) a damping function was introduced leading to the AC3
functional (D. R. Rohr et al., [23])

GAC 3(np , nq) = fpq
p
npnq [1�Dpq(np , nq)]� npnqDpq(np , nq)

fpq =
�
+1 , (p 6= q; p, q > N/2)
�1 , otherwise

where it is assumed that the orbitals are ordered according to the
descending occupation numbers.
The damping function includes two empirical parameters optimized
for HF and H2O molecules.
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Piris natural orbital functionals (PNOFi)

In Hartree-Fock theory the 2-RDM is given by the antisymmetrized
product of 1-RDM, i.e.

HF Γ(2)pqrs = Γ(1)pr Γ(1)qs � Γ(1)ps Γ(1)qr

The missing part in the exact 2-RDM is called a cumulant density matrix,
λ

Γ(2)pqrs = Γ(1)pr Γ(1)qs � Γ(1)ps Γ(1)qr + λpqrs

M. Piris et al. have proposed a number of approximations to λ in terms of
the occupation numbers that resulted in a series of natural orbital
functionals PNOFi (i= 0, 1, 2, 3, 4, 5, 6, 7) [24,32].
The approximations satisfy certain necessary N-representability conditions
for 2-RDM like the proper antisymmetry, sum rule etc.
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Piris natural orbital functionals

PNOFi is also of the form that is a generalization of the HF
functional. It is a functional of the natural orbitals and the
occupation numbers, namely

EPNOFi [fnpg , fϕp(x)g] = ∑
p
nphpp +

1
2 ∑
pq
npnq hϕpϕq jϕpϕqi

+
1
2 ∑
pq
GPNOFipq (n) hϕpϕq jϕqϕpi

where
GPNOFipq (n) = �npnq +Λpq(n)

PNOF0 functional is de�ned as [25]

GPNOF 0pq (n) = �npnq +
�
fpq
p
npnq + npnq

�
(1� δpq)

fpq =
�
+1 , (p 6= q; p, q > N/2)
�1 , otherwise
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Dissociation of molecules with density matrix functionals

The following density matrix functionals are employed to reproduce
potential energy curves of a number of molecules:

AC3 - based on the exact functional for singlet two-electron systems,
computationally more practical modi�cation of the BBC3 functional
[23],

ML - functional obtained by assuming a general form of the
exchange-correlation functional

Exc [fnpg , fϕp(x)g] =
1
2 ∑
pq
GML(np , nq) hϕpϕq jϕqϕpi

GML(np , nq) = �
1
2
npnq

a0 + a1npnq
1+ b1npnq

and �nding the empirical parameters fa0, a1, b1g by �tting energy to
accurate values [26],
PNOF0 - one of the functionals of Piris, obtained by reconstructing
2-RDM in terms of 1-RDM [25].
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Dissociation of a single NH bond of the NH3 molecule [23]

HF - Hartree-Fock; CI - con�guration interaction; AC3, ML, PNOF0 -
density matrix functionals; BLYP - density functional.
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Dissociation of the FH molecule [23]

HF - Hartree-Fock; CI - con�guration interaction; AC3, ML, PNOF0 -
density matrix functionals; BLYP - density functional.
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Dissociation of a single CH bond of the CH4 molecule [23]

HF - Hartree-Fock; CI - con�guration interaction; AC3, ML, PNOF0 -
density matrix functionals; BLYP - density functional.
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Dissociation of a single HC bond of the HCN molecule [23]

HF - Hartree-Fock; CI - con�guration interaction; AC3, ML, PNOF0 -
density matrix functionals; BLYP - density functional.
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Challenges for RDMFT

Conditions for functionals.

More accurate functionals for molecules.

Description of open-shell (other spin states than singlets) systems
with RDMFT.

Functionals for excited states.

Functionals for solids.

E¢ cient optimization algorithms for functionals.
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