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Throughout the lecture atomic units are used

h/2m = 1[a.u.] = 1.0546 x 10~ 3*[Js]
me = 1[a.u.] = 9.1095 x 103! [kg]
e =1[a.u] = 1.6022 x 10 *°[(C]

Energy
1[a.u.] = 1[Hartree] = 4.3598 x 10 '8[J] = 27.211[eV]
Length

1[a.u] = 1[bohr] = 5.2918 x 10~ 1![m] = 0.52918[A]
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Born-Oppenheimer approximation

For molecules we consider only the electronic Hamiltonian, i.e. the
Born-Oppenheimer approximation is used

=Y vi-
Z ;;|r,—R| ;§|r,—rj|

where N-number of electrons, M-number of nuclei, {r,-}—electronic
coordinates, {R;}-nuclear coordinates.
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The Schrédinger equation

@ The time-dependent Schrédinger equation for an N-electron system

aP(x, t)

iT = Ayp(x,t)
x=(x1,...,xn)
Xi = (rivUi)

for a time-independent Hamiltonian reduces to
I:I‘I’,,(Xl, cooxy) = Ex¥a(xa, ..o xn)
and the solutions to the time-dependent equation are given by
P(x, t) = e*’.E"t‘Ifn(xl, )

o Let ¥y be a ground state wavefunction and Ej a corresponding
ground state energy, i.e.

vn7v50 Ey < E,
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Wavefunction-based methods

@ Many quantum chemistry methods rely on a specific ansatz
(parameterization) for the wavefunction

"P()%q!

e.g. the Hartree-Fock method (HF), Configuration Interaction
methods (Cl, MR-Cl, MC-SCF, CAS-SCF, etc.), Coupled Cluster
methods (CCSD, CCSD(T), CCSDT, etc.).

e In variational methods (so not in the CC methods) the energy is
obtained as the expectation value of the Hamiltonian
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Variational wavefunction-based methods

@ The variational principle reads
Ey < (¥|A[Y)

where ¥ is a trial, normalized wavefunction.

@ In case of the variational methods, e.g. HF, Cl, or SCF, the optimal

parameters C in ¥ follow from optimizing the expectation value of
the Hamiltonian

Eo < Ep = min {{¥(C)|A[¥(C)): ¥(C)— normalized }
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One-electron reduced density matrix (1-RDM)

Consider the expectation value of the kinetic energy operator

. N 2 22 92 N
2[ (ax 252 Tz )] 2 tr)

i=1 i
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One-electron reduced density matrix (1-RDM)

Consider the expectation value of the kinetic energy operator

R N
=Ll -pe

= N/lII(Xl,...,XN)*%(I’l)‘P(Xl,...,XN) Xm ...dXN
= /5()(1 —x1)t(r1) [N/"I’(X{ ..... xn) ¥ (x, .-, xy)dxa ... dxy | dx]dxg

= /5 x1—xq)t rl)F( )(Xl,x{) dx] dxq
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One-electron reduced density matrix (1-RDM)

Consider the expectation value of the kinetic energy operator

R N
=Ll -pe

= N/lII(Xl,...,XN)*%(I’l)‘P(Xl,...,XN) Xm ...dXN
= /5()(1 —x1)t(r1) [N/"I’(X{ ..... xn) ¥ (x, .-, xy)dxa ... dxy | dx]dxg

= /5 x1—xq)t rl)F( )(Xl,x{) dx] dxq
I'W is a one-electron reduced density matrix (1-RDM) defined as

F(l)(xl,xi) = N/‘P(x{,xz ..... xv) ¥ (xa, %, ..., xn)dxa .. . dxy
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Electron density

Consider the expectation value of the external potential operator

ext - Z Uext I’,

N
2 vext(ri)] 1II(Xl ..... XN) dxq ... dXN

_/vext r) |:N/‘Y(X1,...,XN)*‘F(X1,...,XN)dX2...dXN dxq

- / Vext (r1)p(x1 ) dx
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Electron density

Consider the expectation value of the external potential operator

ext - Z Uext I’,

N
2 vext(ri)] 1II(Xl ..... XN) dxq ... dXN

_/vext r) |:N/‘II(X1,...,XN)*‘F(X1,...,XN)dX2...dXN dxq

- / Vexe (11)p(x1 ) db

where the electron density p(x;) is related to I'M) (x, x])

p(Xl) = N/‘P(Xl ..... XN)*T(X1 ..... XN)dX2 e dXN = r(l)(Xl,Xl)
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Two-electron reduced density matrix (2-RDM)

The electron-electron interaction operator is a two-body operator

. il o1
Ve =g LIni—nl" =501

i7#] i7]
and its expectation value reads
N
Ve = /‘I’(xl ..... xn)* er,-j_l Y(xt,..., xn) dxy ... dxy
i#

N(N—-1
= <)/‘F(Xl ..... XN)*rl_zl‘I’(xl ..... xn) dxy ... dxy

XN)*‘Y(Xl ..... XN) dX3 e dXN dX1 dX2

= / r1_21F(2) (x1, x2; x1, X2 ) dx1 dxa
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F(Z)(xl, x2; X1, x2) is an element of the two-electron reduced density
matrix (2-RDM) defined as

, N(N—-1
F(2)(x1,xQ;x{,x2) — (2)
X/"P(X{,Xé,X?,,...,XN)*T(XLXQ,X:),,...,XN)C/X3...C/XN
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Expectation value of the electronic Hamiltonian

The expectation value of the electronic Hamiltonian is given in terms of
one-electron and two-electron reduced density matrices

N

A= Y o t(ri) + Zvext r)+ = Z|r,—rj|_

i=1 i=1 /7&/

E = (Y|H|Y)
— /5(x1 DRI (1, X)) dxldxa + /vext(rl)l"(l)(xl,xl)dxl

+ / |r1 — I’2|_1 r(z)(xl,XQ;Xl,Xg)dxldXQ

Kasia Pernal (Lodz University of Technology, Reduced Density Matrix Functional Theory



Two-electron density matrix functional

@ Since the 2-RDM determines 1-RDM
2
I’(l)(xl,xi) = m/I’(z)(xl,xz;x{,Xg)ng

then the energy is an explicit functional of 2-RDM

E = E[T?)]
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Two-electron density matrix functional

@ Since the 2-RDM determines 1-RDM
I’(l)(xl,xi) = Nz_l/r(z)(xl,xz;x{,Xg)ng
then the energy is an explicit functional of 2-RDM
E = E[r?]
@ Does the exact energy result from the minimization

Eo = min E[T?)]
r®

Yes, if the domain is restricted to the so called N-representable @,
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N-representability of 2-RDM

o '@ is called N-representable if it corresponds to some
antisymmetric wavefunction ¥ (or a ensemble of wavefunctions)

I T (xq, 0%, xp) =

N(N -1
(2>/‘P(X{,Xé,...,XN)*"P(XLXQ,...,XN)C/X:J,...C/XN
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N-representability of 2-RDM

o '@ is called N-representable if it corresponds to some
antisymmetric wavefunction ¥ (or a ensemble of wavefunctions)

I T (xq, 0%, xp) =

N(N -1
(2>/T(X{,Xé,...,XN)*"P(XLXQ,...,XN)C/X:J,...C/XN

o Some sufficient N-representability conditions for T'?) are known but
they are too restrictive (A. J. Coleman and V. I. Yukalov, [1]).
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N-representability of 2-RDM

o '@ is called N-representable if it corresponds to some
antisymmetric wavefunction ¥ (or a ensemble of wavefunctions)

I T (xq, 0%, xp) =

N(N -1
(2>/T(X{,Xé,...,XN)*"P(XLXQ,...,XN)C/X:J,...CIXN

o Some sufficient N-representability conditions for T'?) are known but
they are too restrictive (A. J. Coleman and V. I. Yukalov, [1]).

@ Imposing only necessary conditions on 2-RDM results in too low
energy [1,2], i.e.

min E[T?)] <

re

where '@ are 2-RDM'’s satisfying some known necessary

N-representability conditions.
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Different representations of RDM's

1- and 2-RDM’s may be expanded in a given orthonormal basis set

{xp(x)} as
T (x,x') = YT 20 () x4 ()"

T (x1, 50554, %) = Y Thahs 20(x1)xa ()2 (54) X5 (x4)*

pqrs
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Different representations of RDM's

1- and 2-RDM’s may be expanded in a given orthonormal basis set

{xp(x)} as
T (x, x') = YT xo () xq ()
pPq
T (x1, 50554, %) = Y Thahs 20(x1)xa ()2 (54) X5 (x4)*
pqrs

1- and 2-RDM'’s are the expectation values of the reduced density matrix
operators

r(x,x') = <‘P\f(k)(x, x/)|‘F>
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Reduced density matrix operators

@ The RDM operators are defined in terms of the creation {&;} and
annihilation {ép} operators, in a given basis set, i.e.

f(l)(x-x ZC & Xp(X)Xq(x )

A

1) (. 015, x0) = =5 2 &8 88 xp(x1)xq (x2)xr (X1) " X5 (x3)"

pqrs
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Reduced density matrix operators

@ The RDM operators are defined in terms of the creation {&;} and
annihilation {ép} operators, in a given basis set, i.e.

f(l)(x-x ZC & Xp(X)Xq(x )

A

1) (. 015, x0) = =5 2 &8 88 xp(x1)xq (x2)xr (X1) " X5 (x3)"

pqrs

o Consequently,
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Some trivial necessary N-rep conditions for RDM'’s

@ Hermiticity
1 1)* 2 2)*
Ff,q) = rgp) ' rgq)rs = rﬁsgq

@ Antisymmetricity of 2-RDM

Tpars = —Tips = ~Tpaer = Tl

@ Trace conditions
1 2 N(N—1)
er(vp) =N, ZF;(Jq)pq = >
p pq
@ Sum rule for 1-RDM and 2-RDM
N—-1

1
ngzq)rq = Trx(nr)
q
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Some less trivial necessary N-rep conditions for 2-RDM

The following P, Q, and G matrices must be positive semidefinite (P, Q,
G conditions)

Ppgrs = <6r+ Aeraqu> = 2ri(>2q)rs
Qpgrs = <éf&56;A+>

= Gsqlrp — OrqOsp — OsgT W) + 8, T — 6, T 45,11V 4 or'?),
Gpars = (& 8:8,°8p)

= 6,,TW —or2),

There are more conditions (T1, T2, T1', T2'). (M. Nakata et al. [3], Z.
Zhao et al. [4]).
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Variation of the 2-RDM functional

The approximate ground state may be obtained by minimizing the 2-RDM
functional

. 1 ,
Fo = r(rl?"r%) {thqrgp) + Z {(pq|rs) nggq}

pq paqrs

where

oa = [ Xpl(X)" [E(F) + v (1) 2 () e
(palrs) = [ xp(x)"Xal2)" Irs = ral e (x0)s02)

subject to the necessary conditions listed before.
See papers by Mazziotti [5], Nakata et al. [3], Zhao et al. [4], D. van
Neck et al. [6], and the work of Eugene DePrince et al. [27]-[28].
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Variation of the 2-RDM functional

@ Pros

e no need to handle N-electron wavefunction
e high accuracy of the ground state energies; comparable to high-level
methods like CCSD(T) or better for multireference states

o Cons

e expensive constrained optimization algorithms are needed (semidefinite
programming SDP) - high computational cost!!!
e wrong dissociation products of diatomic molecules

Talk to Eugene DePrince to learn more (everything).
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Coming back to 1-RDM ...

Can we find a ground state energy without a knowledge of 2-RDM?
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Coming back to 1-RDM ...

Can we find a ground state energy without a knowledge of 2-RDM?
In principle... YES.

@ In 1975 T. L. Gilbert proved the existence of the energy 1-RDM
functional for a local or nonlocal external potential [7].

@ Gilbert theorem: a ground state wavefunction is determined by the
v-representable one-electron reduced density matrix, r® — ¢,

Note that the expectation value of the nonlocal potential is given by
1-RDM, i.e.

v = /v(x, XTI (x, x") dxdx’
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Proof of Gilbert theorem

Assume two different (by more than a constant) nonlocal potentials 0;
and 0 giving rise to two different wavefunctions ¥ and ¥; yielding the

same 1-RDM's T{!) = T{!) = 7).
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Proof of Gilbert theorem

Assume two different (by more than a constant) nonlocal potentials 0;
and 0 giving rise to two different wavefunctions ¥ and ¥; yielding the
same 1-RDM's T{!) = T{!) = 7).

On one hand, due to the variational theorem

E& = <T1|H1“P1> < <T2|H1“P2>
E02 = <T2|F/2|‘Y2> < <‘P1|F/2|‘Y1>
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Proof of Gilbert theorem

Assume two different (by more than a constant) nonlocal potentials 0;
and 0 giving rise to two different wavefunctions ¥ and ¥; yielding the
same 1-RDM's T{!) = T{!) = 7).

On one hand, due to the variational theorem

E& = <T1|H1“P1> < <T2|H1“P2>
E02 = <‘P2|F/2|‘Y2> < <‘P1|/:/2|‘Y1>

and
AE = ((Y2||¥2) — E7) + ((¥1|Fa|¥1) — E5) >0

Kasia Pernal (Lodz University of Technology, Reduced Density Matrix Functional Theory



On the other hand, since Ay — A, = 01 — 05 then
AE = <‘II2“:/1 — /"\12‘11;2> + <\II1“:/2 - 'L\I1|‘II1>
= / [01(x, x") = va(x,x")] T'(x, x") dxdx’
+/ [v2(x, x") — v1(x,x")] T(x, x") dxdx’
=0
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On the other hand, since Ay — A, = 01 — 05 then
AE = (¥,|Hy — FpY2) + (¥1|Fo — Ay [¥1)
= / [vl(x, x') — U2(X,X/)] ['(x, x")dxdx’
+/ [v2(x, x") — v1(x,x")] T(x, x") dxdx’
=0
So one obtains contradicting equations

AE >0
AE =0

which proves the Gilbert theorem.
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Energy functional

@ Gilbert theorem establishes the existence of the energy functional for
v-representable 1-RDM's

ETW] = Tr [(% + 0ext)r(1)} + I

where F[T™)] is a universal functional.
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Energy functional

@ Gilbert theorem establishes the existence of the energy functional for
v-representable 1-RDM's

ETW] = Tr [(% + 0ext)r(1)} + I

where F[T™)] is a universal functional.

@ Levy proposed a functional defined for all pure state N-representable
1-RDM'’s as follows [8]

ETW] = Tr [(Hﬁext)rﬁ,”}ju min (| Vee|¥)
yor)
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Energy functional

o A given density matrix I'1) is pure state N-representable (N-rep) if
there exists an antisymmetric N-electron wavefunction ¥ such that

F,(,l) € N-rep if
¥ T (xq, x]) = N/‘I’(x{,xz,...,XN)*‘I’(Xl,xz,...,XN)dXQ...dXN
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Energy functional

o A given density matrix I'1) is pure state N-representable (N-rep) if
there exists an antisymmetric N-electron wavefunction ¥ such that

F,(,l) € N-rep if

¥ T (xq, x]) = N/‘I’(x{,xz, coo X)) (X1 x2, - xy)dXo L dXy
@ Density matrix variational principle for Levy’s functional

VT® € Norep By < E[TY)
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Energy functional

o A given density matrix I'1) is pure state N-representable (N-rep) if
there exists an antisymmetric N-electron wavefunction ¥ such that

F,(,l) € N-rep if
¥ T (xq, x]) = N/‘I’(x{,XQ,...,XN)*‘I’(Xl,xz,...,XN)dXQ...dXN

@ Density matrix variational principle for Levy’s functional
VT® € Norep By < E[TY)

@ Pure state N-representability conditions for 1-RDM have been
presented recently [29]-[30]. They are impractical for real systems
[31]. Talk to Christian Schilling and Julia Liebert.
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Ensemble N-representable 1-RDM'’s

o A given density matrix I'1) is ensemble N-representable if there
exists an ensemble-state N-particle density matrix

TNV (X Xhi Xt ) :Zw,-‘{’,-(x{,...,X,'V)*‘I’,-(Xl,...,xN)
Zw; = 1I
Vil w; >0
such that

r(l)(xl,xi) = NZCJ;/‘F,’(X{,...,XN)*‘II,'(Xl,...,XN)dXQ...dX/\/

@ The necessary and sufficient ensemble N-representability conditions
for 1-RDM'’s are known and they are easy to be imposed.
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Spectral representation of 1-RDM

Consider a Hermitian and normalized 1-RDM

T (x,x") = Y5 xp () xq(x')
Pq

T (x,x") =TH (X, x)*, l",(,z) = Fgl)*

/r(1>(x,x)dx — YTl =N
pp
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Spectral representation of 1-RDM

Consider a Hermitian and normalized 1-RDM

= Y T e () xa(x')*
Pq

T (x,x) =T (<, x)*, T =T
/r(1>(x,x)dx — YTl =N
pp

Hermiticity of reduced density matrix allows for its spectral representation

Z"p Pp(x)pp(x)*

where the numbers {n,} are eigenvalues of T(\) while the functions
{¢p(x)} are the corresponding eigenfunctions

/T(l)(x,x')([)p(xl)dxl = np ¢p(x)
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Properties of natural occupation numbers and natural

spinorbitals

e {np} - natural occupation numbers
e {¢p(x)} - natural spinorbitals

@ For a Hermitian and normalized 1-RDM the following properties are
satisfied

e orthonormality of natural spinorbitals

/ Pp(x x)dx = dpq

e natural occupation numbers are real and sum up to N

an:N
P
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Necessary N-representability conditions for 1-RDM

Assume T() to be pure state N-representable, i.e. there exists a
wavefunction |¥) such that

T (x, x') = <‘I’\f(1)(x,xl)|‘lf>
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Necessary N-representability conditions for 1-RDM

Assume T() to be pure state N-representable, i.e. there exists a
wavefunction |¥) such that

T (x, x') = <‘I’\f(1)(x,xl)|‘lf>
Using the natural spinorbitals as a basis set the 1-RDM operator reads

f(l)(xv x') = Zé;ép (PP(X)(PQ(XI)*
pq
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Necessary N-representability conditions for 1-RDM

Assume T() to be pure state N-representable, i.e. there exists a
wavefunction |¥) such that

T (x, x') = <‘I’\f(1)(x,xl)|‘lf>
Using the natural spinorbitals as a basis set the 1-RDM operator reads
= Zé;ép Pp(X)@q(x')"
pq
and
r(l)(X’ x') = Z< CP|‘II> Pp(x)pq(x)"
pPq

= an 4’p(X)(Pp(XI)*
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Necessary N-representability conditions for 1-RDM

Assume T() to be pure state N-representable, i.e. there exists a
wavefunction |¥) such that

T (x, x') = <‘I’\f(1)(x,xl)|‘lf>
Using the natural spinorbitals as a basis set the 1-RDM operator reads
= Zé;ép Pp(X)@q(x')"
pq
and
r(l)(X’ x') = Z< CP|‘II> Pp(x)pq(x)"
pPq

= an 4’p(X)(Pp(XI)*

Consequently,

(Y]ef&|¥) = npbpq
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Necessary N-representability conditions for 1-RDM

We obtained

where
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Necessary N-representability conditions for 1-RDM

We obtained

where

: ot 4pte — £ —
Since (use ¢,¢, + ¢, ¢, = 1 and &,¢, = 0)

R12 _ ada ata
p = Cp pCp Cp

~

N, is a projection operator.

Kasia Pernal (Lodz University of Technology, Reduced Density Matrix Functional Theory



Necessary N-representability conditions for 1-RDM

We obtained
np = (¥R, [¥)

where

N Ad A

Ny =¢, ¢
Since (use &,¢, +¢,¢, =1 and &,¢, = 0)

2 At s oata _ oada adata A ata R
= G G =86 — 8858 =85 =N,

Np is a projection operator.
The expectation value of the projection operator is nonnegative and not

greater than 1 so
0<n, <1
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Necessary and sufficient ensemble N-representability

conditions for 1-RDM

@ The necessary conditions for pure or ensemble N-representability
conditions of TY) read

rm* — @
Tr[r] = N
0<n, <1

@ A. J. Coleman proved that these are also sufficient conditions for
ensemble N-representability (for a proof see [2] or a book by R. G.
Parr and W. Yang [9], p.43].
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Necessary and sufficient ensemble N-representability

conditions for 1-RDM

@ The necessary conditions for pure or ensemble N-representability
conditions of TY) read

rm* — @
Tr[r] = N
0<n, <1

@ A. J. Coleman proved that these are also sufficient conditions for
ensemble N-representability (for a proof see [2] or a book by R. G.
Parr and W. Yang [9], p.43].

As opposed to '@ there is no N-representability problem for @y
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Energy functional for ensemble N-representable density

matrices

@ S. M. Valone extended Levy construction of the density matrix
functional to ensemble N-representable density matrices [10]

E[rg‘l)] =Tr |:(?‘L + ﬁext)f‘gl)} * (Nr)nin(l) Tr |:\A/ f‘(N)}
T'W—T¢

where Fgl) stands for ensemble N-representable 1-RDM, the
minimization is performed with respect to ensemble-state density

matrices that reduce to a given I’gl), and

Tr [ Ve FV] = Zw,<‘1f\vee\‘1f>
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Energy functional for ensemble N-representable density

matrices

@ S. M. Valone extended Levy construction of the density matrix
functional to ensemble N-representable density matrices [10]
Ert) = Tr [(H aenggl)} + min Tr [\7 f("”}
]"(N)—>rél)

where Fgl) stands for ensemble N-representable 1-RDM, the

minimization is performed with respect to ensemble-state density
matrices that reduce to a given I’gl), and

Tr [ Ve FV] = Zw, (¥ | Vee )
@ One can show that
Ey < E[Fgl)]

so the ground state may be achieved by searching the space of
ensemble N-representable density matrices.
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Reduced density matrix functional theory (RDMFT)
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Reduced density matrix functional theory (RDMFT)

@ The functional exists but, unlike for 2-RDM functional, the form of
the electron-electron interaction term is not known (similarly to DFT).
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Reduced density matrix functional theory (RDMFT)

@ The functional exists but, unlike for 2-RDM functional, the form of
the electron-electron interaction term is not known (similarly to DFT).

@ The kinetic energy functional is given explicitly (unlike in DFT).

Kasia Pernal (Lodz University of Technology, Reduced Density Matrix Functional Theory



Reduced density matrix functional theory (RDMFT)
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Reduced density matrix functional theory (RDMFT)

@ The functional exists but, unlike for 2-RDM functional, the form of
the electron-electron interaction term is not known (similarly to DFT).

@ The kinetic energy functional is given explicitly (unlike in DFT).

@ The necessary and sufficient ensemble N-representability conditions
for T(M) are known and they are rather easy to impose.

@ Thus, having a density matrix functional, the ground state is found by
minimizing the functional with respect to N-rep 1-RDM

Eo= min E[TW]
N-rep T(1)
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Constructing approximate density matrix functionals

How to construct an approximate functional?

@ Insights from wavefunction theories.
@ Reconstructions of diagonal part of 2-RDM in terms of 1-RDM.

@ Proposing a simple form that involves some parameters and finding
the parameters empirically.

Kasia Pernal (Lodz University of Technology, Reduced Density Matrix Functional Theory



Hartree-Fock density matrix

@ One-electron density matrix assumes a simple form for a single
N-electron determinant.
@ In fact one can show that [11]

1) ¢1(x) ()
¥(x1, -, X,V)zllw 2(:X1) 2(:X2) ) @2 ()
o) onbo) .. gniw)

= W)= pﬁ:l Pp(x)@p(x)"
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Hartree-Fock density matrix

@ One-electron density matrix assumes a simple form for a single
N-electron determinant.
@ In fact one can show that [11]

1) ¢1(x) ()
¥(x1, -, X,V)zllw 2(:X1) 2(:X2) ) @2 ()
o) onbo) .. gniw)

= W)= pﬁ:l Pp(x)@p(x)"

@ — The occupation numbers of 1-RDM corresponding to a Slater
wavefunction are integer

Vp<N n,=1
Vp>N n,=0
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Occupation numbers for uncorrelated and correlated

wavefunction

@ <= A density matrix whose all occupation numbers are integer (0 or
1) is pure state N-representable and a Slater determinant is the
corresponding wavefunction.
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Occupation numbers for uncorrelated and correlated

wavefunction

@ <= A density matrix whose all occupation numbers are integer (0 or
1) is pure state N-representable and a Slater determinant is the
corresponding wavefunction.

@ A density matrix for a multideterminantal wavefunction possesses
fractional occupation numbers, 0 < n, < 1.
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Occupation numbers for uncorrelated and correlated

wavefunction

@ <= A density matrix whose all occupation numbers are integer (0 or
1) is pure state N-representable and a Slater determinant is the
corresponding wavefunction.

@ A density matrix for a multideterminantal wavefunction possesses
fractional occupation numbers, 0 < n, < 1.

@ Are all occupation numbers fractional for a correlated wavefunction in
case of electronic 3D systems? There are some arguments that for Hy
molecule at some values of interatomic distances there exists n, = 0
(J. Cioslowski and K. Pernal [20]).
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Occupation numbers for uncorrelated and correlated

wavefunction

@ <= A density matrix whose all occupation numbers are integer (0 or
1) is pure state N-representable and a Slater determinant is the
corresponding wavefunction.

@ A density matrix for a multideterminantal wavefunction possesses
fractional occupation numbers, 0 < n, < 1.

@ Are all occupation numbers fractional for a correlated wavefunction in
case of electronic 3D systems? There are some arguments that for Hy
molecule at some values of interatomic distances there exists n, = 0
(J. Cioslowski and K. Pernal [20]).

@ Note that an ensemble of Slater determinants leads to 1-RDM with
fractional occupation numbers.
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Hartree-Fock energy expression in terms of 1-RDM

@ For a single determinantal wavefunction 2-RDM is explicitly given in
terms of 1-RDM

T (xq, %0 %], %) = %[r(l)(xl,x{)r(l)(xz, X))
—TW(x, )T (x0, x])]
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Hartree-Fock energy expression in terms of 1-RDM

@ For a single determinantal wavefunction 2-RDM is explicitly given in
terms of 1-RDM

I G304, ) = 5[0 G, )T (0, )
—TM (a,x)TM (30, 1))
@ So the expression for the energy
E = /5(x1 — X)) + Ve (r)ITW (1, x{) dxfdxg

+ / rlalr(Q)(XI,XZ; X1, X2 ) dxy dxo
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takes form
EHF — / S(xt — X)[F(r) + vexe (k1) ]T® (x1, x}) d
1
—|—5/rﬁlf(l)(xl,xl)T(l)(xz,x2)dx1dx2
1

- = fﬁlr(l)(Xl,Xg)r(l)(XQ,Xl)dxldXQ
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@ The first term in the energy is the so-called one-particle energy term
Eone[TM] = Eyin[TM)] + Eee[T)]
@ The 2nd term is called Hartree (or Coulomb repulsion) energy
EH[F(l)] = ;/|r1 — r2|_1 r(l)(Xl,Xl)r(l)(XQ,X2>dX1dX2
= %/‘rl — 1o 7 p(x1)p(x2) dxy dxo
© The 3rd term is an exchange interaction

1 _
EX [F(l)] = ——= |I‘1 — I‘2| 1 |r(1)(X1,X2)|2dX1dX2
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Hartree-Fock density matrix functional

The simplest explicit density matrix functional may be defined as

EMFITW] = Eppe[TW] 4 E4[TW] + Ex[TW)]
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Hartree-Fock density matrix functional

The simplest explicit density matrix functional may be defined as
EMFITW] = Eppe[TW] 4 E4[TW] + Ex[TW)]

Let EMF be a Hartree-Fock energy (obtained from solving Hartree-Fock
equations).
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Hartree-Fock density matrix functional

The simplest explicit density matrix functional may be defined as
EMFITW] = Eppe[TW] 4 E4[TW] + Ex[TW)]

Let EMF be a Hartree-Fock energy (obtained from solving Hartree-Fock

equations).

Obviously, EMF[T(M] is not smaller than EMF for any T(1) with integer

occupation numbers.
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Hartree-Fock density matrix functional

The simplest explicit density matrix functional may be defined as
EMFITW] = Eppe[TW] 4 E4[TW] + Ex[TW)]

Let EMF be a Hartree-Fock energy (obtained from solving Hartree-Fock

equations).

Obviously, EMF[T(M] is not smaller than EMF for any T(1) with integer

occupation numbers.
E. Lieb showed that it is true for any N-representable 1-RDM [12], i.e.

VN-rep T EHF < EHFP()]
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Hartree-Fock density matrix functional

The simplest explicit density matrix functional may be defined as
EMFITW] = Eppe[TW] 4 E4[TW] + Ex[TW)]

Let EMF be a Hartree-Fock energy (obtained from solving Hartree-Fock

equations).

Obviously, EMF[T(M] is not smaller than EMF for any T(1) with integer

occupation numbers.
E. Lieb showed that it is true for any N-representable 1-RDM [12], i.e.

VN-rep T EHF < EHFP()]
Therefore minimization of £/F[[(1)] leads to the same solution as
Hartree-Fock equations

min EMF[rM] = gHF
N-rep T(1)
We do not gain anything over the Hartree-Fock method, the
optimal 1-RDM is the same as the one obtained from the HF
wavefunction (integer occupation numbers)!
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Two-electron system in a singlet spin state

Consider a real-valued singlet wavefunction for a two-electron system [13]

rl)ﬂé( ) Xxp(r2)a(2) ‘
(r)B(1) Xq(r2)B(2)

Y (x1, x2) Z pq
V25

where aand 8 are spin functions.
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Two-electron system in a singlet spin state

Consider a real-valued singlet wavefunction for a two-electron system [13]

Y (x1, x2) Z pq
V25

Xp(r)a(1)  xp(r2)a(2) ‘
Xa(r)B(1)  xq(r2)B(2)

where aand 8 are spin functions.
The spin symmetry

S‘21IJ _

imposes the symmetry on the real matrix C (see for example [14])

c’'=cC
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Two-electron system in a singlet spin state

Consider a real-valued singlet wavefunction for a two-electron system [13]

) Xp(r)a(l)  xp(r2)a(2)
Flx.x) % PI ] xq(r)B(1) xq(rz)ﬁ(2)‘

where aand 8 are spin functions.
The spin symmetry

5%Y =
imposes the symmetry on the real matrix C (see for example [14])
c’'=c

The normalization of '¥ implies

Z ng =
Pq
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The wavefunction can be rewritten as follows

" (x1,x) = i[06(1)!3(2) —a(2)B(1)] ) Goaxp(r1)xq(r2)

2 pPq
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The wavefunction can be rewritten as follows

" (x1,x) = \%[“(1”3(2) —a(2)B(1)] ) Goaxp(r1)xq(r2)

The matrix C is symmetric so it can be diagonalized
C=U"cU
where c is a diagonal matrix, U is unitary and

chzl
p

Kasia Pernal (Lodz University of Technology, Reduced Density Matrix Functional Theory



The wavefunction can be rewritten as follows

" (x1,x) = k[“(l)ﬁ(@ —a(2)B(1)] ) Goaxp(r1)xq(r2)

The matrix C is symmetric so it can be diagonalized
C=U"cU
where c is a diagonal matrix, U is unitary and

chzl
p

The wavefunction in a diagonal form reads

¥ (1, ) = \2[%(1)5(2) — a(2)B(1)] X cpp(r1) gp(r2)

Pp(r) = Z UpgXq(r)
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A corresponding one-electron density matrix follows immediately as
F(l)(xl,X{ = 2/‘1’ X{,Xg)‘F(Xl,Xg)dXQ
= ZC Pp(r)a(1)gp(r)a(l) + @p(r)B(1)@p(r1)B(1)]
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A corresponding one-electron density matrix follows immediately as
F(l)(xl,X{ = 2/‘1’ X{,Xg)‘F(Xl,Xg)dXQ
= ZC Pp(r)a(1)gp(r)a(l) + @p(r)B(1)@p(r1)B(1)]

The spinorbitals {@,a, ¢,B} are the natural spinorbitals and {cg} are the
natural occupation numbers

Kasia Pernal (Lodz University of Technology, Reduced Density Matrix Functional Theory



The exact 1-RDM functional for singlet two-el systems

@ The expression for energy for a singlet wavefunction in a
representation of the natural spinorbitals takes a simple form

g2 <11'P|H| T> = 22‘3 hpp+chcq (PpPqlPq®p)
Pq

hop = [ @o(6) [E(r) + e (1)] @, ()

<¢p§0q’€0q§0p = /Gop r ¢q<r2) |r1 _"2|_1 Goq(r1>§0p<r2)d"1d"2
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The exact 1-RDM functional for singlet two-el systems

@ The expression for energy for a singlet wavefunction in a
representation of the natural spinorbitals takes a simple form

g2 <11'P|H| T> = 22‘3 hpp+chcq (PpPqlPq®p)
Pq
oo = [ 9o(0) [E(0) + vese (1] g (¥)
<§9p§0q’€0q§0p> = /Gop(rl)ﬁoq('?) |r1 — I’2|_1 Goq(r1>§0p<r2)d"1d"2

@ The exact ground state energy is obtained by minimizing E2>~¢ with
respect to orbitals and {c,} coefficients subject to conditions

2 _
Ypcp =1
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Since \/n, = £¢, it is possible to define an implicit density matrix
functional [15]

E>e M) = B2 [{n,}, {@p(r)}]
= 2Z”phpp + ’{T}'? prfqv png (PpPql PqPp)
P 7 pq

where 1-RDM is assumed to be N-representable, i.e.

and
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An almost exact functional for singlet two-el systems

Numerical experience shows that after minimization of the energy the sign
of the ¢; coefficient corresponding to mostly occupied orbital is opposite
to the sign of the rest [16]

Vp>1 cc <0
Vp.g>1 cqc, >0
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An almost exact functional for singlet two-el systems

Numerical experience shows that after minimization of the energy the sign
of the ¢; coefficient corresponding to mostly occupied orbital is opposite

to the sign of the rest [16]

Vp>1 cc <0
Vp.g>1 cqc, >0

The functional for two-electron system reads then
E*{no} {@p()}] = 2) nphpp + n1 (@191|p19p1)
p

-2 Z V1 (@p @1 P19p) + Z v NpNq (@pPqlPqPp)

p>1 p>1,g>1
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An almost exact functional for singlet two-el systems

Numerical experience shows that after minimization of the energy the sign
of the ¢; coefficient corresponding to mostly occupied orbital is opposite

to the sign of the rest [16]

Vp>1 cc <0
Vp.g>1 cqc, >0

The functional for two-electron system reads then
E*{no} {@p()}] = 2) nphpp + n1 (@191|p19p1)
p

-2 Z V1 (@p @1 P19p) + Z v NpNq (@pPqlPqPp)

p>1 p>1,g>1

A two-electron case is a paradigm in RDMFT.
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Approximate density matrix functionals

@ Approximate functionals proposed so far are of the form

[{”p} {‘Pp Z”phpp+EH[{”p} {G"p( )}
+Exc{{”p}v{(PP(X)}]
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Approximate density matrix functionals

@ Approximate functionals proposed so far are of the form

[{”p} {‘Pp Z”phpp+EH[{”p} {G"p( )}
+Exc{{”p}v{(PP(X)}]

@ The Hartree term in terms of the natural occupation numbers and the
natural spinorbitals reads

Enl{np} {pp(x) Z”p”q (PpPql PpPq)

pq
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Approximate density matrix functionals

@ Approximate functionals proposed so far are of the form

[{”p} {‘Pp Z”phpp+EH[{”p} {G"p( )}
+EXC[{”p}v{(Pp(X)}]

@ The Hartree term in terms of the natural occupation numbers and the
natural spinorbitals reads

Enl{np} {pp(x) Z”p”q (PpPql PpPq)

Pq

@ The exchange-correlation functional involves only exchange integrals
1
EXC[{”p} ' {(pp(x)}] = > Z G(np, ng) <§0p§0q|§0q(Pp>
Pq

G(x,y) = G(y,x)
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Power functional

In case of the Hartree-Fock functional (no correlation) the G function
takes form
G(np, ng) = —npng
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Power functional

In case of the Hartree-Fock functional (no correlation) the G function
takes form

G(np, ng) = —npng
The simplest step beyond HF would be
G(np, ng) = — (’7;7’767)Dé
a<l1

How to choose a?
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Power functional

In case of the Hartree-Fock functional (no correlation) the G function
takes form

G(np, ng) = —npng
The simplest step beyond HF would be
G(np, ng) = — (’7p’7qyé
a<l1

How to choose a?
Note that the electron-electron repulsion functional reads

Eee[{np} {pp(x)}] = %Z”p"q (PpPqlPpPq) — % Z (”p”q)a (PpPql@qpp)

pq

On the other hand, the exact E.e energy expression involves 2-RDM

Eee = Y Tispa (@p@qlprs)

pars
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Power functional

A comparison of Eee[{np},{®p(x)}] with the exact E.. would suggest

[ay

2
Fﬁsgq = E[np”qépréqs - (nPnQ)Dé 5qf5p5]
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Power functional

A comparison of Eee[{np},{®p(x)}] with the exact E.. would suggest

[ay

2
Fﬁsgq = E[np”qépréqs - (nPnQ)Dé 5qf5p5]

@ The antisymmetry condition

r'd,=-r%,=-T8, = a=1

@ The sum rule

(2) _N—l(l)_N—l 1
E Tpgrg = Iy = Npdpr = &= -
7 2 2 2
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Power functional

A comparison of Eee[{np},{®p(x)}] with the exact E.. would suggest

[ay

2
Fﬁsgq = E[np”qépréqs - (nPnQ)Dé 5qf5p5]

@ The antisymmetry condition

rggq = _rggp = _rggq = a=1
@ The sum rule
@  N—-1_aq) N-1 1
;qu)rq - l"pr) = Npbpr = Q&= 3

@ Other choices of & would violate both conditions for the underlying
re.
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BB functional

The choice of & = % leads to the so-called Buijse-Baerends [17] functional
also known as Miiller [18] or corrected Hartree functional [19]

XC[{”p} {q’p *Z ”p”q (Pp§0q‘§0q§0p>

It is known that BB produces too much correlation energy [19, 21].
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Empirical power functional

It has been found that & = 0.578 works best for the correlation energy of
molecules and &« = 0.55 reproduces well correlation energy of the
homogeneous electron gas (N.N. Lathiotakis et al., [22])
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o FIG. 1. (Color online) Correlation energy as a function of the
Wigner-Seitz radius for the homogeneous electron gas. RDMFT
FIG. 2. (Color online) Percentage deviation of the correlation results are obtained using various approximations to the xc func-
energy, obtained using various 1-RDM functionals, from the exact tional. Monte Carlo results are taken from Ref. [21] (see also Ref.
CCSD(T) results. [22]).
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BBC3 functional

@ Based on the knowledge of a density matrix functional for
two-electron system a number of corrections to the BB (« = 1/2)
functional has been proposed (O.V. Gritsenko et al. [21]) resulting in
the BBC3 functional.
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@ Based on the knowledge of a density matrix functional for
two-electron system a number of corrections to the BB (« = 1/2)
functional has been proposed (O.V. Gritsenko et al. [21]) resulting in
the BBC3 functional.

@ In BBC3 the natural orbitals are divided into sets of
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BBC3 functional

@ Based on the knowledge of a density matrix functional for
two-electron system a number of corrections to the BB (« = 1/2)
functional has been proposed (O.V. Gritsenko et al. [21]) resulting in

the BBC3 functional.
@ In BBC3 the natural orbitals are divided into sets of

e strongly occupied (occ) orbitals; 1 —np < 1,
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BBC3 functional

@ Based on the knowledge of a density matrix functional for
two-electron system a number of corrections to the BB (« = 1/2)
functional has been proposed (O.V. Gritsenko et al. [21]) resulting in
the BBC3 functional.

o In BBC3 the natural orbitals are divided into sets of

e strongly occupied (occ) orbitals; 1 —np < 1,
o weakly occupied (virt), n, < 1,
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BBC3 functional

@ Based on the knowledge of a density matrix functional for
two-electron system a number of corrections to the BB (« = 1/2)
functional has been proposed (O.V. Gritsenko et al. [21]) resulting in
the BBC3 functional.

o In BBC3 the natural orbitals are divided into sets of

e strongly occupied (occ) orbitals; 1 —np < 1,

o weakly occupied (virt), n, < 1,
o frontier (frn) that includes bonding and antibonding orbitals.
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BBC3 functional

@ Based on the knowledge of a density matrix functional for
two-electron system a number of corrections to the BB (« = 1/2)
functional has been proposed (O.V. Gritsenko et al. [21]) resulting in
the BBC3 functional.

o In BBC3 the natural orbitals are divided into sets of

e strongly occupied (occ) orbitals; 1 —np < 1,

o weakly occupied (virt), n, < 1,
o frontier (frn) that includes bonding and antibonding orbitals.
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BBC3 functional

@ Based on the knowledge of a density matrix functional for
two-electron system a number of corrections to the BB (« = 1/2)
functional has been proposed (O.V. Gritsenko et al. [21]) resulting in
the BBC3 functional.

@ In BBC3 the natural orbitals are divided into sets of
e strongly occupied (occ) orbitals; 1 —np < 1,

o weakly occupied (virt), n, < 1,
o frontier (frn) that includes bonding and antibonding orbitals.

Vil . (P # g p.q € virt)
—nyng,  (p# @ p.q € oc)
BBC3 _ V. (p€occ, g€ frn)
6 (np, ng) = V (g € occ, p € frn)
—n (p=gq; p ¢ fm)
| —\/fphg . otherwise
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AC3 functional

@ Special treatment of frontier orbitals leads to the proper description
of the molecules with stretched bonds.
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AC3 functional

@ Special treatment of frontier orbitals leads to the proper description
of the molecules with stretched bonds.

o BBC3 requires selecting frontier orbitals prior to calculations. It leads
to numerical problems.
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AC3 functional

@ Special treatment of frontier orbitals leads to the proper description
of the molecules with stretched bonds.

o BBC3 requires selecting frontier orbitals prior to calculations. It leads
to numerical problems.

o To select the orbitals automatically (based on their occupation
number) a damping function was introduced leading to the AC3
functional (D. R. Rohr et al., [23])

GAC3<’7pv ng) = foq/ png[1 — Dpg(np, ng)] — npngDpq(np, ng)
f_J 1. (p#q pa>N/2)
Pa —1, otherwise

where it is assumed that the orbitals are ordered according to the
descending occupation numbers.
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AC3 functional

@ Special treatment of frontier orbitals leads to the proper description
of the molecules with stretched bonds.

o BBC3 requires selecting frontier orbitals prior to calculations. It leads
to numerical problems.

o To select the orbitals automatically (based on their occupation
number) a damping function was introduced leading to the AC3
functional (D. R. Rohr et al., [23])

GAC3<’7pv ng) = foq/ png[1 — Dpg(np, ng)] — npngDpq(np, ng)

f_J 1. (p#q pa>N/2)
Pa —1, otherwise

where it is assumed that the orbitals are ordered according to the
descending occupation numbers.

@ The damping function includes two empirical parameters optimized
for HF and H,O molecules.

Kasia Pernal (Lodz University of Technology, Reduced Density Matrix Functional Theory



Piris natural orbital functionals (PNOFi)

In Hartree-Fock theory the 2-RDM is given by the antisymmetrized
product of 1-RDM, i.e.

HFrl(Jq)rs — r[()r)l"(l) r;(JS) (l)
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The missing part in the exact 2-RDM is called a cumulant density matrix,
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M. Piris et al. have proposed a number of approximations to A in terms of
the occupation numbers that resulted in a series of natural orbital
functionals PNOFi (i=0,1,2,3,4,5,6,7) [24,32].

The approximations satisfy certain necessary N-representability conditions
for 2-RDM like the proper antisymmetry, sum rule etc.
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Piris natural orbital functionals

@ PNOFi is also of the form that is a generalization of the HF
functional. It is a functional of the natural orbitals and the
occupation numbers, namely
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where .
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e PNOFO functional is defined as [25]

G;ZNOFO(“) = —npng + (foq\/Mpg + Npng) (1= dpq)
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Dissociation of molecules with density matrix functionals

The following density matrix functionals are employed to reproduce
potential energy curves of a number of molecules:

@ AC3 - based on the exact functional for singlet two-electron systems,
computationally more practical modification of the BBC3 functional
[23],
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Dissociation of molecules with density matrix functionals

The following density matrix functionals are employed to reproduce
potential energy curves of a number of molecules:

@ AC3 - based on the exact functional for singlet two-electron systems,
computationally more practical modification of the BBC3 functional
23],

@ ML - functional obtained by assuming a general form of the
exchange-correlation functional

Ecline} {050)}] = 3 ¥ 6" (1. 10) (9595l 9995)

1 ag + ainpn
GML(n. n.) = —=nyn, 20T 1MpMg
(nP nQ) 2npnq 1+ blnpnq
and finding the empirical parameters {ag, a1, b1 } by fitting energy to
accurate values [26],
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Dissociation of molecules with density matrix functionals

The following density matrix functionals are employed to reproduce
potential energy curves of a number of molecules:

@ AC3 - based on the exact functional for singlet two-electron systems,
computationally more practical modification of the BBC3 functional
23],

@ ML - functional obtained by assuming a general form of the
exchange-correlation functional

Ecline} {050)}] = 3 ¥ 6" (1. 10) (9595l 9995)

1 ag + ainyn
GML , _ _ - <0 T 4dlfiptlq
(nP nQ) 2npnq 1 + blnpnq
and finding the empirical parameters {ag, a1, b1 } by fitting energy to
accurate values [26],
@ PNOFO - one of the functionals of Piris, obtained by reconstructing
2-RDM in terms of 1-RDM [25].
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Dissociation of a single NH bond of the NH3 molecule [23]
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HF - Hartree-Fock; Cl - configuration interaction; AC3, ML, PNOFO -
density matrix functionals; BLYP - density functional.
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Dissociation of the FH molecule [23]
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Dissociation of a single CH bond of the CH4 molecule [23]
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Dissociation of a single HC bond of the HCN molecule [23]
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Challenges for RDMFT

Conditions for functionals.

More accurate functionals for molecules.

Description of open-shell (other spin states than singlets) systems
with RDMFT.

Functionals for excited states.

Functionals for solids.

Efficient optimization algorithms for functionals.
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