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Quantum Systems From Classical to Quantum

Classical vs Quantum: a dictionary

E (discrete)

e ∈ E

A ⊆ E

f : E → C
bounded
real-valued
non-negative (psd)

|f |2

∑
x∈E f (x)

ℓp(E) =
{

f :
∑

x∈E |f (x)|p <∞
}

H Hilbert space

|ψ⟩ ∈ H

V < H (closed subspace)

A : D(A) ⊆ H → H linear operator
bounded operator
self-adjoint
non-negative

|A|2 = A†A

Tr[A]

ℓp(H) =
{

A : Tr[(A†A)p/2] <∞
}
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Quantum Systems From Classical to Quantum

Classical vs Quantum: a dictionary

probability densities p

δx

Markov operator (transition kernel)

Product E × F

Partial sum
∑

x f (x , y)∑
(x,y) f (x , y) =

∑
x
∑

y f (x , y)

Marginal pE(x) =
∑

y p(x , y)

S(p) = −
∑

x p(x) lnp(x)

D(p||q) =
∑

x p(x) ln(p(x)/q(x))

quantum states ρ ∈ S(H)

|ψ⟩⟨ψ| (pure state)

CPTP operator

Product space H ⊗ K

Partial trace TrH [A]

Tr[A] = TrK [TrH [A]]

Marginal ρH = TrK [ρ]

S(ρ) = −Tr[ρ ln ρ]

D(ρ||σ) = Tr[ρ(ln ρ− lnσ)]
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Quantum Systems From Classical to Quantum

States and density matrices

Given a state π on a (finite dimensional) space H, pick basis (|ψi⟩)i and write
its density matrix (πi,j)ij :

π =
∑
i,j

πi,j |ψi⟩⟨ψj |.

Then:
(πi,j)ij is Hermitian positive semidefinite
The diagonal (πi,i)i is a classical probability density
By the spectral theorem one can always diagonalize

π =
∑

i

pi |φi⟩⟨φi |

but the basis (|φi⟩)i depends on π.
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Quantum Systems From Classical to Quantum

Partial trace and density matrices

Given a state π on the product space H ⊗ K , pick basis (|ψi⟩)i , (|φj⟩)j , and
write its density matrix (πij,kℓ)ijkℓ:

π =
∑

i,j,k,ℓ

πij,kℓ|ψi⟩ ⊗ |ϕj⟩⟨ψk | ⊗ ⟨ϕℓ|.

Then

TrH [π] =
∑
j,ℓ

(∑
i

πij,iℓ

)
|ϕj⟩⟨ϕℓ|,

TrK [π] =
∑
i,k

∑
j

πij,kj

 |ψi⟩⟨ψℓ|,

Well-defied (do not depend on the basis).
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Quantum Systems From Classical to Quantum

Exercises

On Hilbert spaces H, K , p,q ∈ [0,1], orthonormal (|ψi⟩)i ∈ H, (|φi)i⟩ ∈ K ,

1 Define ρp = (1 − p)|ψ0⟩⟨ψ0|+ p|ψ1⟩⟨ψ1|. Show that ρp ∈ S(H) and
compute S(ρp).

2 Define |ψp⟩ =
√
(1 − p)|ψ0⟩+

√
p|ψ1⟩ and compute S(|ψp⟩⟨ψp|).

3 Consider the (Bell) state

|Φ+⟩ := 1√
2
|ψ0⟩ ⊗ |φ0⟩+

1√
2
|ψ1⟩ ⊗ |φ1⟩

Compute
TrH [|Φ+⟩⟨Φ+|], TrK [|Φ+⟩⟨Φ+|].
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Quantum Systems Systems of many qubits

Qubits systems

A quantum analogue of {0,1}n.
Let

H = (C2)⊗n.

The standard (computational)
basis

{|s⟩}

with s ∈ {0,1}n, e.g. for n = 1

{|0⟩, |1⟩},

for n = 2,

{|00⟩, |01⟩, |10⟩, |11⟩}.

x

y

z

ϕ

θ

1

0

ψ

The Bloch sphere representation
of a (pure) state |ψ⟩ ∈ C2.
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Quantum Systems Systems of many qubits

Quantum states on systems of qubits

On n-qubits σ, ρ ∈ S(C2)⊗n,

States are 2n × 2n complex matrices (Hermitian, positive semi-definite,
with unit trace).

Pure states are rank-one matrices, corresponding to unit norm vectors

σ = |ψ⟩⟨ψ|

but not necessarily ψ ∈ {0,1}n.

Classical probabilities (p(s))s∈{0,1}n correspond to diagonal states:

σ =
∑

s∈{0,1}n

p(s)|s⟩⟨s|.
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Quantum Systems Systems of many qubits

Quantum computing

(Most) quantum computing architectures are based on systems of n qubits
(ideally n ≫ 1) with sequence of unitary operations (gates) acting on a small
subset of them (e.g., up to 3 at the time). Examples:

Singe qubit gates:

X =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
,

Two-qubits gates:

CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Three-qubits gates: Toffoli gate (CCX )

Exercise: Show that the above are unitary operators.
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Quantum Systems Quantum channels

Postulates of Quantum Mechanics

1 A wave function |ψ0⟩ ∈ H in a closed (isolated) quantum system evolves
according to Schr̈odinger’s equation

∂t |ψt⟩ = iA|ψt⟩

for a self-adjoint A. Integration gives

|ψt⟩ = Ut |ψ0⟩, with Ut = eitA unitary.

2 A measurement on a system is described by an orthonormal basis
(|ϕv ⟩)v ⊆ H. If the state is |ψ⟩ ∈ H, the outcome has value v with
probability (Born’s rule)

p(v) = |⟨ϕv |ψ⟩|2.

After the measurement, the system is in state |ϕv ⟩ with probability p(v),
i.e., the state is mixed: ∑

v

p(v)|ϕv ⟩⟨ϕv |.
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Quantum Systems Quantum channels

When applied directly to mixed states ρ =
∑

j pj |ψj⟩⟨ψj |, we obtain the two
transformations:

1 For the unitary evolution of closed systems:

ρ 7→ UtρU†
t ,

2 For the measurement (|ϕv ⟩)v ⊆ H:

ρ 7→
∑

v

|ϕv ⟩ (⟨ϕv |ρ|ϕv ⟩) ⟨ϕv |.

Can one interpolate between these two, describing open quantum systems
which interact with an external environment?

Notice that both transformations are linear and map states into states.
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Quantum Systems Quantum channels

Quantum channels

We need a further property for a linear transformation of a quantum system H,
Φ : ρ 7→ Φ(ρ) which maps states into states to be a quantum channel.

Complete positivity: enlarging H to any system H ⊗ K and acting with Φ⊗ IK
still maps joint states into states.

Quantum channels Φ therefore are defined as maps that are
linear: Φ(λρ+ σ) = λΦ(ρ) + Φ(σ),
completely positive: Φ⊗ IK (ρ) is positive (semidefinite) whenever ρ is so,
trace preserving: Tr[Φ(ρ)] = Tr[ρ] (so that states are mapped into states).

Exercise: Show that both unitary evolutions of closed systems and
measurements induce quantum channels.
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Quantum Systems Quantum channels

Representations of quantum channels
These are useful ways to write (and think of) a channel Φ:

(Kraus) There exists linear operators (Bk )k such that∑
k

B†
k Bk = I

and representing Φ as
Φ(ρ) =

∑
k

BkρB†
k .

(Stinespring) There exists an auxiliary quantum system K , a state
|0K ⟩ ∈ K and unitary U acting on H ⊗ K such that, for every ρ.

Φ(ρ) = TrK [U (ρ⊗ |0K ⟩⟨0K |)U†].

One can choose K as (a copy of) H.

Exercise: describe the two representations for unitary evolutions of closed
systems and measurements.
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Classical Optimal Transport
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Classical Optimal Transport Monge and Kantorovich

Monge’s Optimal Transport problem

Monge (1781): sur la théorie des déblais et des remblais.

How to transport soil during a construction with minimal expenses?

A discrete formulation: given a
cost c(x , y) of moving unit of soil from position x to position y , e.g.

c(x , y) = |x − y |p,

Source distribution of soil σ = (σ(xi))i

Target distribution (dump) ρ = (ρ(yj))j

Find T : {xi} → {yj} that moves σ into ρ with minimal transport cost∑
i

c(xi ,T (xi))σ(xi).
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Classical Optimal Transport Monge and Kantorovich

A random instance of OT in the plane

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
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Classical Optimal Transport Monge and Kantorovich

Kantovorich and linear programming

Relax a map T with a coupling

π(xi , yj) ≥ 0

such that ∑
j

π(xi , yj) = σ(xi),
∑

i

π(xi , yj) = ρ(yj).

The problem becomes linear optimization with linear constraints:

min
π

∑
i

∑
j

c(xi , yj)π(xi , yj)

that can be solved via simplex algorithm.
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Classical Optimal Transport Wasserstein distance

Wasserstein distance of order 1
If c(x , y) = d(x , y) is a distance, then

W1(σ, ρ) = min
π

∑
i

∑
j

d(xi , yj)π(xi , yj)

defines a distance between (discrete) probability densities.

Called Wasserstein distance of order 1 (aka Kantorovich-Rubinstein distance,
or Earth Mover’s distance).

Exercise: (x , y) 7→ d(x , y)p, with p ∈ (0,1), is a distance. What is

lim
p→0+

Wdp(σ, ρ)?

For p > 1, one defines a distance via

Wp(σ, ρ) =

min
T

∑
i

∑
j

d(xi , yj)
pT (xi , yj)

1/p

.
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Called Wasserstein distance of order 1 (aka Kantorovich-Rubinstein distance,
or Earth Mover’s distance).

Exercise: (x , y) 7→ d(x , y)p, with p ∈ (0,1), is a distance. What is

lim
p→0+

Wdp(σ, ρ)?

For p > 1, one defines a distance via

Wp(σ, ρ) =

min
T

∑
i

∑
j

d(xi , yj)
pT (xi , yj)

1/p

.
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Classical Optimal Transport Wasserstein distance

Duality

Kantorovich provided also the dual formulation for W1:

W1(σ, ρ) = max
f

∑
i

f (xi)σ(xi)−
∑

j

f (yj)ρ(yj) : |f (x)− f (y)| ≤ d(x , y)

 .

Inequality ≥ is trivial, the other follows from minmax theorems.
It gives a definition of W1 without transport plans, using only d-Lipschitz
functions f .
The formula also yields that W1(σ, ρ) = ∥σ − ρ∥W1 is induced by a norm.
For general c(x , y) duality uses conjugate functions (f ,g):

f (x)− g(y) ≤ c(x , y).
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Classical Optimal Transport Wasserstein distance

Benamou-Brenier formula
From a probabilist perspective

min
π

∑
i

∑
j

c(xi , yj)π(xi , yj) = min
X∼σ,Y∼ρ

E [c(X ,Y )]

On Rd and c(x , y) = |x − y |p, we have

|x − y |p ≤
∫ 1

0
|ẋt |pdt

along any (smooth) path (xt)t with x0 = x , x1 = y .
For any stochastic process (Xt)t with X0 ∼ X , X1 ∼ Y :

E [|X − Y |p] ≤ E

[∫ 1

0
|Ẋt |pdt

]
Benamou and Brenier (1999) proved that

W p
p (σ, ρ) = min

(Xt )t :X0∼σ,X1∼ρ
E

[∫ 1

0
|Ẋt |pdt

]
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Classical Optimal Transport Wasserstein distance

Other “distances” between probabilities
1 Total Variation distance

∥ρ− σ∥TV =
1
2

∑
x

|σ(x)− ρ(x)|

2 Hellinger distance

H2(σ, ρ) =
1
2

∑
x

|
√
σ(x)−

√
ρ(x)|2 = 1 −

∑
x

√
σ(x)

√
ρ(x)

3 Kullback-Leibler divergence

DKL(σ||ρ) =
∑

x

σ(x) ln (σ(x)/ρ(x)) .

No use of geometry of the space, i.e. the distance d(x , y) between positions.

Exercise: Show that TV is Wasserstein distance w.r.t. d(x , y) = 1{x ̸=y}.
Dario Trevisan (UNIPI) NOT2025 Tutorials March 12, 2025 24 / 34



Classical Optimal Transport Wasserstein distance

Other “distances” between probabilities
1 Total Variation distance

∥ρ− σ∥TV =
1
2

∑
x

|σ(x)− ρ(x)|

2 Hellinger distance

H2(σ, ρ) =
1
2

∑
x

|
√
σ(x)−

√
ρ(x)|2 = 1 −

∑
x

√
σ(x)

√
ρ(x)

3 Kullback-Leibler divergence

DKL(σ||ρ) =
∑

x

σ(x) ln (σ(x)/ρ(x)) .

No use of geometry of the space, i.e. the distance d(x , y) between positions.

Exercise: Show that TV is Wasserstein distance w.r.t. d(x , y) = 1{x ̸=y}.
Dario Trevisan (UNIPI) NOT2025 Tutorials March 12, 2025 24 / 34



Classical Optimal Transport Wasserstein distance

Other “distances” between probabilities
1 Total Variation distance

∥ρ− σ∥TV =
1
2

∑
x

|σ(x)− ρ(x)|

2 Hellinger distance

H2(σ, ρ) =
1
2

∑
x

|
√
σ(x)−

√
ρ(x)|2 = 1 −

∑
x

√
σ(x)

√
ρ(x)

3 Kullback-Leibler divergence

DKL(σ||ρ) =
∑

x

σ(x) ln (σ(x)/ρ(x)) .

No use of geometry of the space, i.e. the distance d(x , y) between positions.

Exercise: Show that TV is Wasserstein distance w.r.t. d(x , y) = 1{x ̸=y}.
Dario Trevisan (UNIPI) NOT2025 Tutorials March 12, 2025 24 / 34



An overview of Quantum OT

Plan

1 Quantum Systems

2 Classical Optimal Transport

3 An overview of Quantum OT
The GMPC approach

4 Bibliography

Dario Trevisan (UNIPI) NOT2025 Tutorials March 12, 2025 25 / 34



An overview of Quantum OT

An overview of Quantum OT

Classical distances between probabilities have quantum analogues:
Total variation → Trace distance 1

2∥ρ− σ∥1 = 1
2 Tr[|ρ− σ|]

Hellinger distance → Fidelity F (ρ, σ) = ∥√ρ
√
σ∥2

1.
Kullback-Leibler divergence → Relative entropy S(ρ∥σ).

As their classical counterparts:
+ Quite general, easy to compute or approximate
- Not adapted to specific geometry, i.e., unitarily invariant:

d(ρ, σ) = d(UρU†,UσU†).

What about Quantum Optimal Transport distances?
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An overview of Quantum OT

Quantum OT theories: a timeline

1992 - Connes/Lott:
spectral distance in non-commutative geometry

1997 - Zyczkowski/Slomczynski:
Wasserstein distance of Husimi distributions

2012 - Maas/Carlen:
quantum analogue of Benamou-Brenier formula

2013 - Agredo:
1-Wasserstein extending any distance on basis vectors

2016 - Golse/Mouhot/Paul:
quantum Kantorovich problem (plans)

2019 - De Palma/T.:
quantum optimal transport with channels (couplings)

2020 - De Palma/Marvian/T./Lloyd:
Wasserstein distance on qubits (Hamming)
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An overview of Quantum OT

A classification

Classically equivalent definitions of W1(ρ, σ):

Monge-Kantorovich

min
π

∫
c(x , y)π(x , y)

Dual Kantorovich

max
(f ,g)

∫
fdρ−

∫
gdσ

Benamou-Brenier

min
(Xt )

E
∫ 1

0
|Ẋt |pdt

Zyczkowski/
Slomczynski

Golse/Mouhot/Paul

De Palma/T.

Connes/Lott

Agredo

De Palma/Marvian
/T./Lloyd

Maas/Carlen
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An overview of Quantum OT The GMPC approach

The GMPC approach

Consider a quantum system H and states σ, ρ ∈ S(H).
Following Kantorovich, we need

Couplings:any Π ∈ S(H ⊗ H) with

Tr1 Π = ρ, Tr2 Π = σ

Transportation cost: any observable C on H ⊗ H.
Example: fix R1, . . . ,Rd “quadratures” on H, set

C =
d∑

i=1

(Ri ⊗ I− I⊗ R1)
2.

The GMPC transportation problem is

inf
Π
Tr[CΠ].
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An overview of Quantum OT The GMPC approach

Problems

The GMPC transportation problem is

inf
Π
Tr[CΠ].

1 Show that the inf is attained (assuming H finite dimensional, or C
bounded). Are minimizers unique?

2 Describe the set of couplings if σ (or ρ) is a pure state.
3 (*) On the n-qubit system, assume that ρ, σ and C are diagonal in the

computational basis (hence identified with classical functions and
probabilities).
Is the GMPC transportation cost the same as the classical
transportation?
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