Schrödinger Bridges: Old and New IPAM workshop

Tryphon T. Georgiou

Department of Mechanical and Aerospace Engineering University of California, Irvine

March 11, 2025

Thanks to:

IPAM & UCLA

Olga Movilla Miangolarra Ralph Sabbagh Asmaa Eldesoukey Yongxin Chen Michele Pavon

Air Force Office of Scientific Research Army Research Office National Science Foundation

Lecture 1: Schrödinger Bridges - background & classical concepts

- Entropy & Relative entropy manifestations & insights
- Schrödinger's Bridge problem static & dynamic Markov chains, diffusion processes

• Fortet-Sinkhorn algorithm Hilbert metric

• Stochastic control formulation

Claude Shannon¹:

My greatest concern was what to call it. I thought of calling it 'information,' but the word was overly used, so I decided to call it 'uncertainty.' When I discussed it with John von Neumann, he had a better idea. Von Neumann² told me,

You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage.

¹McIrvine, E.C. and Tribus, M. (1971). Energy and Information Scientific American 225(3): 179-190. ²Von Neumann axiomatized entropy in QM before Shannon's development of Information Theory.

Entropy in thermal/statistical physics, information theory

Clausius:

$$dS = \frac{dQ}{T}$$
 (Δ Heat/absolute temperature)

Boltzmann:

$$S = k_B \ln(W)$$
 ($W =$ number of microstates)

Shannon:

 $S = -\sum p_k \log_2(p_k)$

in stat. mechanics $-k_B \sum p_k \log_2(p_k)$ in units of energy in quantum $-\text{trace}\{\rho \log(\rho)\}$

 k_B : Boltzmann's constant [Joule/Kelvin] If $p_k = \frac{1}{W}$, i.e., uniform on $\{1, 2, \dots, W\} \Rightarrow$

$$S = -\sum_{k=1}^{W} \frac{1}{W} \ln(\frac{1}{W}) = \ln(W)$$

Entropy: source coding, error correction coding

Example:

Source with symbols $X \in \{A, B, C\}$, $p_A = \frac{1}{2}$, $p_B = \frac{1}{4}$, $p_C = \frac{1}{4}$

$$S(X) = -\left(\frac{1}{2}\log_2(\frac{1}{2}) + \frac{1}{4}\log_2(\frac{1}{4}) + \frac{1}{4}\log_2(\frac{1}{4})\right) = 1.5 \text{ bits}$$

Idea:

Encode frequent symbols with shorter words e.g., assign $A \rightarrow 0, B \rightarrow 10, C \rightarrow 11$ $ABAACA... \rightarrow 01000110... \Rightarrow 1.5 \text{ bits/symbol on average.}$

Entropy quantifies uncertainty \simeq information content.

S: the number of bits on average needed to store a message for the given source or, to encode and communicate the symbol that is coming next, etc.

Differential Entropy

Example:

X continuous r.v., probability density $f_X(x), x \in \mathbb{R}$

Definition: (differential) entropy $S(X) = -\int p_X(x) \log(p_X(x)) dx$

the information need to localize within bins of width Δ is $S(X^{\Delta}) \simeq -\Delta \int p_X(x) \log(p_X(x)) dx - \log(\Delta)$

 $egin{aligned} S(X) &\leq 0 \ 0 \leq S(X^{\Delta})
ightarrow \infty \ {
m as} \ \Delta
ightarrow 0 \end{aligned}$

Kullback-Leibler divergence

P, Q probability laws

On $\mathcal{X} = \{1,2,\ldots\}$

$$egin{aligned} \mathbb{D}(P\|Q) &:= \sum_{k\in\mathcal{X}} P_k \log(rac{P_k}{Q_k}) \ &= \sum_{k\in\mathcal{X}} P_k (\log(P_k) - \log(Q_k)) \ &= \sum_{k\in\mathcal{X}} Q_k rac{P_k}{Q_k} \log\left(rac{P_k}{Q_k}
ight) &= \mathbb{E}_Q \left\{ \Lambda_k \log\left(\Lambda_k
ight)
ight\} \end{aligned}$$

where $0 \log(0) = 0$, $\Lambda_k = \frac{P_k}{Q_k}$. If $\exists k: Q_k = 0$, $P_k \neq 0$ (i.e., if $Q \gg P$) $\Rightarrow \mathbb{D}(P || Q) = \infty$.

Kullback-Leibler divergence

P,Q probability laws on any measurable space $\mathcal{X}~(dQ\gg dP)$,

$$egin{aligned} \mathbb{D}(P\|Q) &:= \int_{\mathcal{X}} dP \log\left(rac{dP}{dQ}
ight) \ &= \mathbb{E}_Q\left\{\Lambda \log\left(\Lambda
ight)
ight\}, ext{ where } \Lambda = rac{dP}{dQ} \end{aligned}$$

If $dQ \gg dP$, then $\mathbb{D}(P || Q) := \infty$

 $\mathbb{D}(P \| Q)$ jointly convex, and ≥ 0 always

In contrast to $-\int p \log(p) dx \leq 0$ over continuous spaces

origins

• degradation of coding efficiency:

word-length increase on average when using the wrong code

Average word-length (optimal code) = $-\sum_{k} p_k \log(p_k)$, i.e., entropy rate

Average word-length using code designed for $\sim q_k, -\sum_k p_k \log(q_k)$

Degradation:

• quantifying likelihood of rare events: the probability that an empirical average is far away from its mean

Sanov's theorem: Independent samples X_t $(t \in \{1, ..., N\})$, distributed $X_t \sim Q$

Empirical distribution
$$P_N$$
 (random histogram)
 $P_N(A) = \frac{1}{N} \sum_{t=1}^N \mathbb{1}_{X_t \in A}$

 $\begin{aligned} & \text{Suppose } \mathcal{P} \text{ is a convex set of distributions,} \\ & \text{and } P^{\star} = \arg\min_{P \in \mathcal{P}} \mathbb{D}(P \| Q) \end{aligned}$

$$\mathbb{P}\left\{P_{N}\in\mathcal{P}\right\}\simeq e^{-N\cdot\mathbb{D}(P^{\star}\|Q)}$$

• likelihood estimation:

most likely law consistent with statistics/moments

Example: Assuming, e.g., $X \in \{0, ..., n\}$ is distributed $X \sim Q$ (prior) and given estimated statistics/moments, e.g., $\bar{x} = \frac{1}{N} \sum_{k=1}^{N} X_t$ what can we say about the distribution of the *N*-samples?

The most likely (posterior) is:

$$P^* = \arg\min_{\sum_{k=0}^n k P_k = \bar{x}} \mathbb{D}(P \| Q)$$

i.e., the closest to the prior that is consistent with the data

• Reconcile statistical data

origin in statistics, contigency tables

Example:

X, Y jointly distributed on $\{0, 1, ..., n\}$, with prior Q(x, y), and given (empirical) marginals $p_X(x), p_Y(y)$, find a most likely posterior $P^*(x, y)$ in agreement with p_X, p_Y .

$$P^{\star} = \arg\min_{P} \left\{ \mathbb{D}(P \| Q) \mid \sum_{x} P(x, y) = p_{Y}(y), \sum_{y} P(x, y) = p_{X}(x) \right\}$$

Form of solution - diagonal scaling³ $P^* = \arg \min_P \left\{ \mathbb{D}(P || \mathbf{Q}) \mid \sum_x P(x, y) = p_Y(y), \sum_y P(x, y) = p_X(x) \right\}$

$$\mathcal{L}(P, a, b) := \sum_{x} \sum_{y} P(x, y) \log \left(\frac{P(x, y)}{Q(x, y)} \right)$$
$$+ \sum_{x} a(x) (\sum_{y} P(x, y) - p_X(x))$$
$$+ \sum_{y} b(y) (\sum_{x} P(x, y) - p_Y(y))$$

$$\frac{\partial}{\partial P(x,y)}\mathcal{L} = 0 \Rightarrow \log\left(\frac{P(x,y)}{Q(x,y)}\right) = -1 + a(x) + b(y)$$

$$P^{\star}(x,y) = e^{-1+a(x)}Q(x,y)e^{b(y)}$$

³Sinkhorn-Knopp, Marshall & Olkin, and earlier Schrödinger, Fortet

Fortet-Sinkhorn's algorithm

$$P^{*}(x,y) = e^{-1+a(x)}Q(x,y)e^{b(y)} = D_{\text{left}}(x)Q(x,y)D_{\text{right}}(y)$$

Algorithm: Given matrix Q, and vectors p_X , p_Y Start with $P = Q = [Q(x, y)]_{x,y=1}^n$ $P \to D_\ell P$ where D_ℓ diagonal, $D_\ell(x) = \frac{p_X(x)}{\sum_y P(x,y)}$ s.t. $\sum_y D_\ell(y)P(x, y) = p_X(x)$ $P \to PD_r$ where D_r diagonal, $D_r(y) = \frac{p_Y(y)}{\sum_x P(x,y)}$ s.t. $\sum_x P(x, y)D_r(y) = p_Y(y)$ repeat until convergence

If Q(x, y) > 0 for all x, y convergence is guaranteed.

Applies to multi-marginals and higher-dimensional arrays Q(x, y, z, ...), etc.

Schrödinger's bridge problem

for Markov chains

Markov chain $X_t \in \{0, \ldots, n\}$

Prior law: $X_0 \sim q_0$, transition probabilities $\Pi_0(x_0, x_1)$, $\Pi_1(x_1, x_2)$, ..., $\Pi_{T-1}(x_{T-1}, x_T)$. Data: empirical marginals $X_0 \sim p_0$, $X_T \sim p_T$ when $q_0 \neq p_0$ and/or $q_T \neq p_T$ Find the most likely evolution

Path probability/measure:

Prior path probability $Q(x_0, \ldots, x_T) = q_0(x_0)\Pi_0(x_0, x_1)\cdots\Pi_{T-1}(x_{T-1}, x_T)$ Posterior path probability $P(x_0, \ldots, x_T) = p_0(x_0)\hat{\Pi}_0(x_0, x_1)\cdots\hat{\Pi}_{T-1}(x_{T-1}, x_T)$

Find: transition probabilities

$$P^{\star} = \arg \min \left\{ \mathbb{D}(P \| Q) \mid \sum_{x_1, \dots, x_T} P(x_1, \dots, x_T) = p_0(x_0), \\ \sum_{x_0, \dots, x_{T-1}} P(x_0, \dots, x_{T-1}) = p_T(x_T). \right\}$$

Disintegration: Q with respect to the initial and final positions,

$$Q(x_0, x_1, \dots, x_T) = \underbrace{Q_{x_0, x_T}(x_1, \dots, x_{T-1})}_{ ext{pinned bridge}} q_{0T}(x_0, x_T)$$

where $Q_{x_0,x_T}(\cdot) = Q \{ \cdot | X(0) = x_0, X(T) = x_T \}$; similarly for P

$$\mathbb{D}(P \| Q) = \underbrace{\sum_{x_0 \times \tau} p_0 \tau(x_0, x_T) \log \frac{p_0 \tau(x_0, x_T)}{q_0 \tau(x_0, x_T)}}_{\geq 0} + \underbrace{\sum_{x} P_{x_0, x_T}(x_{\dots}) \log \frac{P_{x_0, x_T}(x_{\dots})}{Q_{x_0, x_T}(x_{\dots})} q_0 \tau(x_0, x_T)}_{\geq 0}$$

 \Rightarrow 2nd term = 0 when *P*, *Q* share pinned bridges \Rightarrow need to minimize the coupling p_{0T} subject to marginals For T = 1

$$\hat{\Pi}^* = \operatorname{argmin}\{\sum_{x_0 x_1} p_{01}(x_0, x_1) \log \frac{p_{01}(x_0, x_1)}{q_{01}(x_0, x_1)}\}$$

 $p_{01}(x_0, x_1) = p(x_0)\hat{\Pi}(x_0, x_1), \ q_{01}(x_0, x_1) = q(x_0)\Pi(x_0, x_1),$

$$\mathbb{D}(p_0(\cdot)\hat{\Pi}(\cdot,\cdot)\|q_0(\cdot)\Pi(\cdot,\cdot)) = \sum_{x_0,x_1} p(x_0)\hat{\Pi}(x_0,x_1) \left(\log(\frac{p(x_0)}{q(x_0)}) + \log(\frac{\hat{\Pi}(x_0,x_1)}{\Pi(x_0,x_1)})\right)$$

transition probability: $\sum_{x_1} \hat{\Pi}(x_0, x_1) = 1$

 $P^{\star} = \operatorname{argmin} \{ \mathbb{D}(P || Q) \mid P \in \mathcal{P}(p_0, p_T) \}$

$$\begin{split} \hat{\Pi}^* &= \arg\min\left\{\sum_{x_0, x_1} p(x_0) \hat{\Pi}(x_0, x_1) \log(\frac{\hat{\Pi}(x_0, x_1)}{\Pi(x_0, x_1)}) \mid \sum_{x_0} p_0(x_0) \hat{\Pi}(x_0, x_1) = p_1(x_1) \right. \\ &\left. \sum_{x_1} \hat{\Pi}(x_0, x_1) = 1 \right\} \end{split}$$

-	_
=	$ \rightarrow $
	_

$$\begin{split} \hat{\Pi}^{\star}(x_0, x_1) &= \operatorname{left}(x_0) \Pi(x_0, x_1) \operatorname{right}(x_1) \\ &= \phi_0(x_0)^{-1} \Pi(x_0, x_1) \phi_1(x_1) \end{split}$$

A brief interlude on the Hilbert metric

The Hilbert projective metric

Pappus of Alexandria - cross ratio

Convex bounded $\Omega \subset \mathbb{R}^n$

For $B, C \in \Omega$ and A, D points of intersect of AB line with boundary of Ω

$$d_H(A,B) := \log\left(rac{|BA| \cdot |CD|}{|BD| \cdot |CA|}
ight).$$

Convex cone $K \subset$ Banach space

- Pointed: $K \cap (-K) = \{0\}$
- Partial order $p \geq q \Leftrightarrow p q \in K$

 $egin{array}{lll} ar{\lambda}(p,q) &:= &\inf\{\lambda \mid p \leq \lambda q\} \ & \underline{\lambda}(p,q) &:= &\sup\{\lambda \mid \lambda q \leq p\} \end{array}$

$$d_{H}(p,q) := \log rac{ar{\lambda}(p,q)}{\underline{\lambda}(p,q)}$$

Examples:

positive cone in $\ensuremath{\mathbb{R}}$ positive definite Hermitian matrices

Hilbert 1895 Birkhoff 1957 Bushell 1973

The Hilbert projective metric

Projective diameter: diam(range(Π)) := sup { $d_H(\Pi(x), \Pi(y)) \mid x, y \in K \setminus \{0\}$ } Contraction ratio: $\|\Pi\|_H = \inf \{\lambda \mid d_H(\Pi(x), \Pi(y)) \le \lambda d_H(x, y), x, y \in K \setminus \{0\}\}$

Birkhoff-Bushell theorem

 Π positive, monotone, homogeneous of degree *m*, i.e., $\Pi : K \to K$, cone in \mathbb{R}^n $x \le y \Rightarrow \Pi(x) \le \Pi(y)$ $\Pi(\alpha x) = \alpha^m \Pi(x)$

Then $\|\Pi\|_H \leq m$, and if, in addition, Π is linear:

$$\|\Pi\|_{H} = \operatorname{tanh}(rac{1}{4}\mathrm{diam}(\Pi))$$

Corollary: If linear Π : $K \rightarrow \operatorname{interior}(K)$, then $\|\Pi\|_H < 1$

Bridge for one-step Markov Chain

 $\Pi_{x_{0},x_{\mathcal{T}}} = \sum_{x \neq x_{0},x_{\mathcal{T}}} \Pi_{x_{0},x_{1}} \Pi_{x_{1},x_{2}} \dots \Pi_{x_{\mathcal{T}-1},x_{\mathcal{T}}}$

Start with a stochastic matrix (row sum = 1):

$$\mathsf{T} = [\mathsf{\Pi}_{\mathsf{x}_0,\mathsf{x}_\mathcal{T}}]_{\mathsf{x}_0,\mathsf{x}_\mathcal{T}=1}^{\mathcal{N}}\,,\,\, \mathsf{with}\,\,\mathsf{positive}\,\,\mathsf{entries}$$

& two probability vectors $p_0,\,p_{\textit{N}}$ with strictly positive entries

Schrödinger system

There exist $\phi(0, x_0), \phi(T, x_T), \hat{\phi}(0, x_0), \hat{\phi}(T, x_T), x_0, x_T \in \{1, \dots, N\}$ such that:

$$\begin{aligned} \phi(0, x_0) &= \sum_{x_T} \Pi_{x_0, x_T} \phi(T, x_T) \\ \hat{\phi}(T, x_T) &= \sum_{x_0} \Pi_{x_0, x_T} \hat{\phi}(0, x_0) \\ \phi(0, x_0) \hat{\phi}(0, x_0) &= p_0(x_0) \\ \phi(T, x_T) \hat{\phi}(T, x_T) &= p_T(x_T) \end{aligned}$$

Bridge for one-step Markov Chain

Circular composition of maps:

The composition

$$\hat{\phi}(\mathbf{0}, \mathbf{x}_{\mathbf{0}}) \xrightarrow{\boldsymbol{\Pi}^{T}} \hat{\phi}(\boldsymbol{T}, \mathbf{x}_{T}) \xrightarrow{\mathcal{D}_{T}} \phi(\boldsymbol{T}, \mathbf{x}_{T}) \xrightarrow{\boldsymbol{\Pi}} \phi(\mathbf{0}, \mathbf{x}_{\mathbf{0}}) \xrightarrow{\mathcal{D}_{\mathbf{0}}} \left(\hat{\phi}(\mathbf{0}, \mathbf{x}_{\mathbf{0}})\right)_{\text{next}}$$

is contractive in the Hilbert metric

$$\mathcal{D}_0 : \phi(0, x_0) \mapsto \hat{\phi}(0, x_0) = \frac{\mathsf{p}_0(x_0)}{\phi(0, x_0)} \text{ and } \mathcal{D}_T : \hat{\phi}(\mathcal{T}, x_T) \mapsto \phi(\mathcal{T}, x_T) = \frac{\mathsf{p}_\mathcal{T}(x_N)}{\hat{\phi}(\mathcal{T}, x_T)}$$

• the ranges of Π^T , Π are strictly in the interior of the cone,

 $\|\Pi\|_{H}, \|\Pi^{T}\|_{H} < 1.$

- \mathcal{D}_0 and \mathcal{D}_T inversion/element-wise scaling are isometries in the Hilbert metric
- ... a bit more, since Hilbert is a projective metric

The Schrödinger system has a solution (unique up to scaling)

inversion/element-wise scaling = isometries

$$d_{H}([x_{i}], [y_{i}]) = \log\left(\left(\max_{i}(x_{i}/y_{i})\right)\frac{1}{\min_{i}(x_{i}/y_{i})}\right)$$

= $\log\left(\frac{1}{\min_{i}((x_{i})^{-1}/(y_{i})^{-1})}\max_{i}((x_{i})^{-1}/(y_{i})^{-1})\right)$
= $d_{H}([(x_{i})^{-1}], [(y_{i})^{-1}])$

$$d_{H}([p_{i}x_{i}], [p_{i}y_{i}]) = \log \frac{\max_{i}((p_{i}x_{i})/(p_{i}y_{i}))}{\min_{i}((p_{i}x_{i})/(p_{i}y_{i}))}$$

= $\log \frac{\max_{i}(x_{i}/y_{i})}{\min_{i}(x_{i}/y_{i})} = d_{H}([x_{i}], [y_{i}]).$

 $P^{\star} = \operatorname{argmin} \{ \mathbb{D}(P || Q) \mid P \in \mathcal{P}(p_0, p_T) \}$

$$\hat{\Pi}^* = \operatorname{argmin} \left\{ \sum_{x_0, x_1} p(x_0) \hat{\Pi}(x_0, x_T) \log(\frac{\hat{\Pi}(x_0, x_T)}{\Pi(x_0, x_T)}) \mid \sum_{x_0} p_0(x_0) \hat{\Pi}(x_0, x_T) = p_T(x_T) \right. \\ \left. \sum_{x_1} \hat{\Pi}(x_0, x_T) = 1 \right\}$$

$$\Rightarrow$$

$$\hat{\Pi}^{\star}(x_0, x_{\mathcal{T}}) = \operatorname{left}(x_0) \Pi(x_0, x_{\mathcal{T}}) \operatorname{right}(x_{\mathcal{T}})$$
$$= \phi_0(x_0)^{-1} \Pi(x_0, x_{\mathcal{T}}) \phi_{\mathcal{T}}(x_{\mathcal{T}})$$

Schrödinger's bridge

for Markov chains

Markov chain $X_t \in \{0, \ldots, n\}$

Prior law: $X_0 \sim q_0$, transition probabilities $\Pi_0(x_0, x_1)$, $\Pi_1(x_1, x_2)$, ..., $\Pi_{T-1}(x_{T-1}, x_T)$. Data: empirical marginals $X_0 \sim p_0$, $X_T \sim p_T$ when $q_0 \neq p_0$ and/or $q_T \neq p_T$ Find the most likely evolution

Prior path probability $Q(x_0, \dots, x_T) = q_0(x_0)\Pi_0(x_0, x_1)\cdots\Pi_{T-1}(x_{T-1}, x_T)$ Posterior path probability $P^*(x_0, \dots, x_T) = p_0(x_0)\hat{\Pi}_0(x_0, x_1)\cdots\hat{\Pi}_{T-1}(x_{T-1}, x_T)$

$$P^{*}(x_{0},...,x_{T}) = p_{0}(x_{0}) \underbrace{\left(\phi(0,x_{0})^{-1} \Pi_{0}(x_{0},x_{1})\phi(1,x_{1})\right)}^{\hat{\Pi}_{0}(x_{0},x_{1})} \left(\phi(1,x_{1})^{-1} \Pi_{1}(x_{1},x_{2})\phi(2,x_{2})\right) \cdots \cdots \left(\phi(T-1,x_{T-1})^{-1} \Pi_{T-1}(x_{T-1},x_{T})\phi(T,x_{T})\right)$$

"On the reversal of the laws of nature"

Erwin Schrödinger, 1931

- Consider a cloud of N independent Brownian particles (N large)
- empirical distributions $ho_0(x)$ and $ho_1(y)$ at t=0 and t=1
- $\rho_{\rm 0}$ and $\rho_{\rm 1}$ not compatible with transition mechanism

$$\rho_1(y) \neq \int_0^1 \pi(t_0, x, t_1, y) \rho_0(x) dx,$$

where

$$\pi(t_0, y, t_1, x) = rac{1}{\sqrt{(2\pi)^n(t_1 - t_0)}} e^{-rac{1}{2}rac{||x - y||^2}{t_1 - t_0}}, \quad s < t$$

 \Rightarrow Particles have been transported in an unlikely way

Schrödinger (1931)

Of the many possible (unlikely) ways, which one is the most likely?

Bridge

Probability law on paths linking two end-point marginals

Bridge

Probability law on paths linking two end-point marginals

Schrödinger's problem:

- Interpolate in a way that reconciles the two marginals with the prior law
- The new law being the most likely

marginal distribution at t = 0

marginal and prior law (flow of one-time densities)

initial marginal, prior law, and end-point marginal

Schrödinger bridge

Föllmer (1988):

Schrödinger's problem concerns large deviation of the empirical measure on paths via Sanov's theorem

$$\mathsf{Prob}(\text{empirical } \mathbb{P}|_{t=0} = \rho_0, \ \mathbb{P}_{t=1} = \rho_1) \simeq e^{-N \int \log\left(\frac{d\mathbb{P}}{d\mathbb{W}}\right) d\mathbb{P}}$$

sampled from the Wiener $\mathbb W$: ''prior''

Schrödinger 'sproblem

$$\mathbb{P}^{\star} = \operatorname{argmin}\left\{ \int \log\left(\frac{d\mathbb{P}}{d\mathbb{W}}\right) d\mathbb{P} \mid \mathbb{P}|_{t=0} = \rho_0, \ \mathbb{P}_{t=1} = \rho_1 \right\}$$

An brief interlude on Optimal Mass Transport

Le mémoire sur les déblais et les remblais Gaspard Monge 1781

Wasserstein metric

where

$$W_2(\mu,\nu)^2 := \inf_T \int \|x - \underbrace{T(x)}_{y}\|^2 d\mu(x)$$
$$T \# \mu = \nu \qquad \qquad \mu(dx) = \rho_0 dx, \nu(dx) = \rho_1 dx$$

$$W_2(\mu, \nu)^2 = \inf_{\pi \in \Pi(\rho_0, \rho_1)} \iint \|x - y\|^2 d\pi(x, y)$$

 $\Pi(\mu,\nu)$: "couplings"

$$\int_{y} \pi(dx, dy) = \rho_0(x) dx = d\mu(x)$$
$$\int_{x} \pi(dx, dy) = \rho_1(y) dy = d\nu(y)$$

$$W_2(\mu, \nu)^2 = \inf_{\pi \in \Pi(\rho_0, \rho_1)} \iint \|x - y\|^2 d\pi(x, y)$$

 $\Pi(\mu,\nu)$: "couplings"

$$\int_{y} \pi(dx, dy) = \rho_0(x) dx = d\mu(x)$$
$$\int_{x} \pi(dx, dy) = \rho_1(y) dy = d\nu(y)$$

$$||x - y||^2 = \inf\{\int_0^1 ||\dot{x}(t)||^2 dt | x(0) = x, x(1) = y\}$$

$$W_{2}(\rho_{0},\rho_{1})^{2} := \inf_{(\rho,\nu)} t_{f} \int_{t_{0}}^{t_{f}} \int_{\mathbb{R}^{n}} \rho \|v\|^{2} dx dt$$
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (v\rho) = 0$$
$$\rho(x,t_{0}) = \rho_{0}(x), \quad \rho(y,t_{f}) = \rho_{1}(y)$$

$$W_2(
ho_0,
ho_1)^2 = \inf \underbrace{\int_{\text{time}}}_{\text{action integral}}$$
 average kinetic energy

subject to boundary conditions

Riemannian geometry of OMT

 $\begin{array}{ll} \text{ensemble states} & \{\rho \geq \mathsf{0} : \int \rho = \mathsf{1} \} \\ \text{tangent space at } \rho \text{ are perturbations} & \{\delta : \int \delta = \mathsf{0} \} \end{array}$

Key insight: $\delta \equiv \frac{\partial \rho}{\partial t} \longleftrightarrow v = \nabla \phi$ (irrotational) via solving

 $\delta = -\nabla \cdot (\rho \nabla \phi)$

Riemannian geometry of OMT

 $\begin{array}{ll} \text{ensemble states} & \{\rho \geq \mathsf{0} : \int \rho = \mathsf{1} \} \\ \text{tangent space at } \rho \text{ are perturbations} & \{\delta : \int \delta = \mathsf{0} \} \end{array}$

Key insight

ht:
$$\delta \equiv \frac{\partial \rho}{\partial t} \longleftrightarrow v = \nabla \phi$$
 (irrotational) via solving
 $\delta = -\nabla \cdot (\rho \nabla \phi)$

Riemannian structure

$$\langle \delta_1, \delta_2
angle_{
ho} := \int
ho \langle \mathbf{v}_1, \mathbf{v}_2
angle dx$$

geodesic distance

$$W_2(\rho_0,\rho_1) = \inf_{\rho} \int_0^1 \sqrt{\left\langle \frac{\partial \rho}{\partial t}, \frac{\partial \rho}{\partial t} \right\rangle_{\rho(t)}} dt$$

Schrödinger Bridges vs. OMT Bridges

Bridges vs. Transport

bird's eye view: stochastic bridges vs. Monge-Kantorovich transport (min distance²)

probability laws on paths linking marginals

Brownian diffusion - prior law

probability laws on paths linking marginals

Brownian diffusion - prior law

Brownian bridge - conditioned at both end-points (pinned bridge)

probability laws on paths linking marginals

Brownian bridge - conditioned at both end-points (pinned bridge)

"most-likely" path (most prob. mass in neighborhood)

probability laws on paths linking marginals

Brownian bridge - conditioned at both end-points (pinned bridge)

Schrödinger bridge - soft conditioning on one end

probability laws on paths linking marginals

Schrödinger bridge - soft conditioning on one end

Schrödinger bridge - soft conditioning on both ends

Stochastic bridges vs. optimal transport (deterministic)

Brownian bridge - Conditioned at end-points (Dirac marginals)

Optimal transport - Conditioned at end-points (Dirac marginals)

Stochastic bridges vs. optimal transport (deterministic)

Schrödinger bridge - soft conditioning at one end-point

Optimal transport - soft conditioned at one end-point

Stochastic bridges vs. optimal transport (deterministic)

Schrödinger bridge - soft conditioning at two ends

Optimal transport - soft conditioned at two ends

Some theory on Schrödinger bridges⁴⁵

⁴Léonard, C., 2013. A survey of the schrödinger problem and some of its connections with optimal transport. arXiv preprint arXiv:1308.0215

⁵Chen, Yongxin, Tryphon T. Georgiou, and Michele Pavon. "On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint." Journal of Optimization Theory and Applications 169 (2016): 671-691

Schrödinger bridges - first approach

$$\mathbb{P}^{\star} = \operatorname{argmin} \left\{ \int_{\text{paths}} \log\left(\frac{d\mathbb{P}}{d\mathbb{W}}\right) d\mathbb{P} \mid \mathbb{P}|_{t=0} = \rho_0, \ \mathbb{P}_{t=1} = \rho_1 \right\}$$

i) Disintegration of measures

$$\mathbb{P}(\text{path}) = \underbrace{\mathbb{P}(\text{path} \mid x(0) = x, x(t_f) = y)}_{\text{conditioned} = \text{pined bridge}} \cdot \mathbb{P}_{0, t_f}(x, y)$$

$$\Rightarrow$$

$$\int \log\left(\frac{d\mathbb{P}}{d\mathbb{W}}\right) d\mathbb{P} = \int \log\left(\frac{d\mathbb{P}_{0,t_f}(x,y)}{d\mathbb{W}_{0,t_f}(x,y)}\right) d\mathbb{P}_{0,t_f}(x,y) + \underbrace{\int \log\left(\frac{d\mathbb{P}(\text{path} \mid x(0), x(t_f))}{d\mathbb{W}(\text{path} \mid x(0), x(t_f))}\right) d\mathbb{P}(\text{path} \mid x(0), x(t_f))}_{= 0 \text{ for } \mathbb{P}(\text{path} \mid x(0), x(t_f)) = \mathbb{W}(\text{path} \mid x(0), x(t_f))}$$

Structure of the law

via disintegration of measure

Schrödinger bridge

 $\mathbb{P}^*_{0,t_f}(x,y)$: optimal end-point coupling

Optimal coupling of two end points

$$\min_{\mathbb{P}_{0,t_f}(x,y)} \int \log\left(\frac{d\mathbb{P}_{0,t_f}(x,y)}{d\mathbb{W}_{0,t_f}(x,y)}\right) d\mathbb{P}_{0,t_f}(x,y)$$

 $\mathbb{P}_{0,t_f}(x,y) : \text{``couplings''}$ $\int_{y} \mathbb{P}_{0,t_f}(x,y) = \rho_0(x)dx = d\mu(x)$ $\int_{x} \mathbb{P}_{0,t_f}(x,y) = \rho_1(y)dy = d\nu(y)$ $\mathbb{P}_{0,t_f}^*(x,y) = \mathbb{W}_{0,t_f}(x,y)a(x)b(y)$

where $a(x) = e^{\lambda^{\text{left}}(x)}, b(y) = e^{\lambda^{\text{right}}(y)}$ with λ 's Lagrange multipliers

Schrödinger (1931/32)

the density factors into

$$ho(x,t)=arphi(x,t)\hat{arphi}(x,t)$$

where φ and $\hat{\varphi}$ solve (Schrödinger's system):

$$arphi(x,t) = \int p(t,x,1,y) arphi(y,1) dy, \quad arphi(x,0) \hat{arphi}(x,0) =
ho_0(x)$$

 $\hat{arphi}(x,t) = \int p(0,y,t,x) \hat{arphi}(y,0) dy, \quad arphi(x,1) \hat{arphi}(x,1) =
ho_1(x).$

Schrödinger system

 $egin{aligned} &-rac{\partial arphi}{\partial t}(t,x) = rac{1}{2}\Delta arphi(t,x) \ &rac{\partial \hat{arphi}}{\partial t}(t,x) = rac{1}{2}\Delta \hat{arphi}(t,x) \end{aligned}$

$$arphi(0,x)\hat{arphi}(0,x)=
ho_0(x)\ arphi(1,x)\hat{arphi}(1,x)=
ho_1(x)$$

1.5

0.5

Time t

Position *x*

1 -10

9.0.5

Schrödinger system

Sinkhorn algorithm redux⁶

 \Rightarrow strictly contractive with respect to d_H .

Hilbert metric

$$d_{H}(p,q):=\lograc{ar\lambda(p,q)}{\underline{\lambda}(p,q)}$$

 $rac{\partial arphi}{\partial t}(t,x) = -rac{1}{2}\Delta arphi(t,x) \ rac{\partial \hat{arphi}}{\partial t}(t,x) = rac{1}{2}\Delta \hat{arphi}(t,x)$

 $\varphi(0,x)\hat{\varphi}(0,x) = \rho_0(x)$

 $\varphi(1,x)\hat{\varphi}(1,x) = \rho_1(x)$

 $egin{array}{rll} ar\lambda(m{p},m{q}) &:= &\inf\{\lambda\mid m{p}\leq\lambdam{q}\}\ \underline{\lambda}(m{p},m{q}) &:= &\sup\{\lambda\mid\lambdam{q}\leqm{p}\} \end{array}$

⁶Chen, Yongxin, Tryphon Georgiou, and Michele Pavon. "Entropic and displacement interpolation: a computational approach using the Hilbert metric." SIAM Journal on Applied Mathematics 76.6 (2016): 2375-2396.

 $\begin{array}{l} \textbf{Schrödinger bridges - second approach} \\ \mathbb{P}^{\star} = \operatorname{argmin} \left\{ \int_{\mathrm{paths}} \log\left(\frac{d\mathbb{P}}{d\mathbb{W}}\right) d\mathbb{P} \mid \mathbb{P}|_{t=0} = \rho_0, \ \mathbb{P}_{t=1} = \rho_1 \right\} \end{array}$

ii) Girsanov-Cameron-Martin theorem

The law ${\mathbb P}$ of

$$dX_t = v(t, X_t)dt + dB_t$$

and the law of B_t , \mathbb{W} , are such that

$$\int_{ ext{paths}} \log\left(rac{d\mathbb{P}}{d\mathbb{W}}
ight) d\mathbb{P} = rac{1}{2}\int \|m{v}(t,X_t)\|^2 d\mathbb{P}$$

 \Rightarrow minimum kinetic energy paths matching marginals

Schrödinger bridges - second approach $\mathbb{P}^* = \operatorname{argmin} \left\{ \int_{\text{paths}} \log \left(\frac{d\mathbb{P}}{d\mathbb{W}} \right) d\mathbb{P} \mid \mathbb{P}|_{t=0} = \rho_0, \ \mathbb{P}_{t=1} = \rho_1 \right\}$

Stochastic control formulation

$$\begin{split} \inf_{(\rho,\mathbf{v})} \int_{\mathbb{R}^n} \int_{t_0}^{t_f} \|\mathbf{v}(x,t)\|^2 \rho(x,t) dt dx, \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\mathbf{v}\rho) &= \frac{1}{2} \Delta \rho \\ \rho(x,t_0) &= \rho_0(x), \quad \rho(y,t_f) = \rho_1(y) \end{split}$$

Shift the probability on paths of $dX_t = dB_t$, from ρ_0 to ρ_1 , so that it is "concentrated" on paths that correspond to minimum effort of a controlled diffusion $dX_t = vdt + dB_t$.

Fisher-information regularization - time-symmetric/fluid dynamic

$$\begin{split} \inf_{(\rho,u)} \int_{\mathbb{R}^n} \int_{t_0}^{t_f} \left(\|u(x,t)\|^2 + \frac{1}{4} \|\nabla \log \rho(x,t)\|^2 \right) \rho(x,t) dt dx, \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (u\rho) &= 0 \\ \rho(x,t_0) &= \rho_0(x), \quad \rho(y,t_f) = \rho_1(y). \end{split}$$

 $u = v - \frac{1}{2}\nabla \log \rho$

Chen, Georgiou, Pavon, 2016, On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint. J. of Opt. Theory and Appl., 169:671-91

Li, Yin, Osher, 2018. Computations of optimal transport distance with Fisher information regularization. J. of Scientific Comp., 75:1581-95

JKO (Jordan-Kinderlehrer-Otto)

gradient flow of entropy

$$\partial_t \rho = -\nabla^{W_2} S(\rho) = \Delta \rho$$

OMT quantifies dissipation in over-damped systems

OMT as 0-noise limit to SBP & numerics

 $\rho_t + \nabla \cdot \rho \mathbf{v} = \epsilon \Delta \rho$

$$\begin{split} \inf_{(\rho,v)} \int_{\mathbb{R}^n} \int_{t_0}^{t_f} \|v(x,t)\|^2 \rho(x,t) dt dx, \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (v\rho) &= \frac{\epsilon}{2} \Delta \rho \\ \rho(x,t_0) &= \rho_0(x), \quad \rho(y,t_f) = \rho_1(y) \end{split}$$

or

$$\begin{split} \inf_{(\rho,v)} &\int_{\mathbb{R}^n} \int_{t_0}^{t_f} \left[\|v(x,t)\|^2 + \|\frac{\epsilon}{2} \nabla \log \rho(x,t)\|^2 \right] \rho(x,t) dt dx, \\ &\frac{\partial \rho}{\partial t} + \nabla \cdot (v\rho) = 0, \\ &\rho(x,t_0) = \rho_0(x), \quad \rho(y,t_f) = \rho_1(y). \end{split}$$

Control applications: active cooling

- thermodynamic systems, controlling collective response
- magnetization distribution in NMR spectroscopy,...
- Nyquist-Johnson noise driven oscillator

$$Ldi_{L}(t) = v_{C}(t)dt$$

$$RCdv_{C}(t) = -v_{C}(t)dt - Ri_{L}(t)dt + u(t)dt + dw(t)$$

Chen-Georgiou-Pavon, J. Math. Phys. 2015.

controlling uncertainty, ensemble control

Inertial particles with stochastic excitation steered between marginals

$$dx(t) = v(t)dt$$

$$dv(t) = -u(t)dt + dw(t)$$

trajectories in phase space transparent tube: " 3σ region"

Over prior dynamics

Schrödinger bridge with $\epsilon = 9$

Schrödinger bridge with $\epsilon = 0.01$

Schrödinger bridge with $\epsilon=4$

Optimal transport with prior

Smooth Bridges/Splines - minimize acceleration

– Mass transports along x in C^2 with $\int \|\dot{\mathsf{x}}\|_2 dt < \infty$

Distributional-Spline-Problem:

Find

$$\inf_{\mathbf{x}_{t_i} \not\models P = \rho_i} \mathbb{E}_{\mathbb{Q}} \{ \int_0^1 \| \ddot{\mathbf{x}}(t) \|^2 dt \}$$

with \mathbb{Q} a **probability measure** on path space.

when $\rho_i \sim \mathcal{N}(m_i, \sigma_i) \Rightarrow$ Semidefinite program

The Schrödinger bridge problem and OMT have analogous formulations

- minimize cost of transporting between end-point marginals
- minimize cost of traversing paths from beginning to end

 SBP is solved by an iterative method that is contractive in the Hilbert metric

OMT provides a Riemannian geometry where $W_2(\cdot, \cdot)$ is a geodesic distance the gradient flow that maximizes entropy is the heat equation (JKO)