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Lecture 1:
Schrödinger Bridges - background & classical concepts

• Entropy & Relative entropy

manifestations & insights
• Schrödinger’s Bridge problem

static & dynamic
Markov chains, diffusion processes

• Fortet-Sinkhorn algorithm

Hilbert metric
• Stochastic control formulation
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Entropy

Claude Shannon1:

My greatest concern was what to call it. I thought of calling it ’information,’ but the word
was overly used, so I decided to call it ’uncertainty.’ When I discussed it with John von
Neumann, he had a better idea. Von Neumann2 told me,

You should call it entropy, for two reasons. In the first place your uncertainty
function has been used in statistical mechanics under that name, so it already
has a name. In the second place, and more important, no one really knows what
entropy really is, so in a debate you will always have the advantage.

1McIrvine, E.C. and Tribus, M. (1971). Energy and Information Scientific American 225(3): 179-190.
2Von Neumann axiomatized entropy in QM before Shannon’s development of Information Theory.
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Entropy in thermal/statistical physics, information theory
Clausius:

dS = d̄Q

T
(�Heat/absolute temperature)

Boltzmann:
S = kB ln(W ) (W = number of microstates)

Shannon:
S = �

P
pk log2(pk)

in stat. mechanics �kB
P

pk log2(pk) in units of energy
in quantum �trace{⇢ log(⇢)}

kB : Boltzmann’s constant [Joule/Kelvin]

If pk = 1
W

, i.e., uniform on {1, 2, . . . ,W } ) S = �
P

W

k=1
1
W

ln( 1
W
) = ln(W )
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Entropy: source coding, error correction coding

Example:

Source with symbols X 2 {A,B ,C}, pA = 1
2 , pB = 1

4 , pC = 1
4

S(X ) = �
�1

2 log2(
1
2) +

1
4 log2(

1
4) +

1
4 log2(

1
4)
�
= 1.5 bits

Idea:

Encode frequent symbols with shorter words
e.g., assign A! 0, B ! 10, C ! 11

ABAACA...! 01000110... ) 1.5 bits/symbol on average.

Entropy quantifies uncertainty ' information content.

S : the number of bits on average needed to store a message for the given source
or, to encode and communicate the symbol that is coming next, etc.
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Differential Entropy

Example:

X continuous r.v., probability density fX (x), x 2 R

Definition: (differential) entropy S(X ) = �
R
pX (x) log(pX (x))dx

the information need to localize within bins of width � is
S(X�) ' ��

R
pX (x) log(pX (x))dx � log(�)

S(X ) 7 0
0  S(X�)!1 as �! 0
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Relative Entropy
Kullback-Leibler divergence

P ,Q probability laws

On X = {1, 2, . . .}

D(PkQ) :=
X

k2X
Pk log(

Pk

Qk

)

=
X

k2X
Pk(log(Pk)� log(Qk))

=
X

k2X
Qk

Pk

Qk

log

✓
Pk

Qk

◆
= EQ {⇤k log (⇤k)}

where 0 log(0) = 0, ⇤k = Pk

Qk
.

If 9k : Qk = 0, Pk 6= 0 (i.e., if Q 6� P) ) D(PkQ) =1.
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Relative Entropy
Kullback-Leibler divergence

P ,Q probability laws on any measurable space X (dQ � dP),

D(PkQ) :=

Z

X
dP log

✓
dP

dQ

◆

= EQ {⇤ log (⇤)} , where ⇤ =
dP

dQ

If dQ 6� dP , then D(PkQ) :=1

D(PkQ) jointly convex, and � 0 always

In contrast to �
R
p log(p)dx 7 0 over continuous spaces
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Relative Entropy
origins

• degradation of coding efficiency:
word-length increase on average when using the wrong code

Average word-length (optimal code) = �
P

k
pk log(pk), i.e., entropy rate

Average word-length using code designed for ⇠ qk , �
P

k
pk log(qk)

Degradation:
�
X

k

pk log(qk)

| {z }
suboptimal

� (�
X

k

pk log(pk))

| {z }
optimal

= D(PkQ)
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Relative Entropy
• quantifying likelihood of rare events:

the probability that an empirical average is far away from its mean

Sanov’s theorem:

Independent samples Xt (t 2 {1, . . . ,N}), distributed Xt ⇠ Q

Empirical distribution PN (random histogram)
PN(A) =

1
N

P
N

t=1 1Xt2A

Suppose P is a convex set of distributions,
and P? = argminP2P D(PkQ)

P {PN 2 P} ' e�N·D(P?kQ)

P? representative of PN in “neighborhood” P 11 / 62



Relative Entropy

• likelihood estimation:
most likely law consistent with statistics/moments

Example: Assuming, e.g., X 2 {0, . . . , n} is distributed X ⇠ Q (prior)

and given estimated statistics/moments, e.g., x̄ = 1
N

P
N

k=1 Xt

what can we say about the distribution of the N-samples?

The most likely (posterior) is:

P⇤ = arg minP
n

k=0 kPk=x̄

D(PkQ)

i.e., the closest to the prior that is consistent with the data

12 / 62



Relative Entropy

• Reconcile statistical data
origin in statistics, contigency tables

Example:

X ,Y jointly distributed on {0, 1, . . . , n}, with prior Q(x , y),
and given (empirical) marginals pX (x), pY (y),
find a most likely posterior P?(x , y) in agreement with pX , pY .

P? = argmin
P

(
D(PkQ) |

X

x

P(x , y) = pY (y),
X

y

P(x , y) = pX (x)

)
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Form of solution - diagonal scaling3

P? = argminP
n
D(PkQ) |

P
x
P(x , y) = pY (y),

P
y
P(x , y) = pX (x)

o

L(P, a, b) :=
X

x

X

y

P(x , y) log

✓
P(x , y)
Q(x , y)

◆

+
X

x

a(x)(
X

y

P(x , y)� pX (x))

+
X

y

b(y)(
X

x

P(x , y)� pY (y))

@
@P(x ,y)L = 0 ) log

⇣
P(x ,y)
Q(x ,y)

⌘
= �1 + a(x) + b(y)

P?(x , y) = e�1+a(x)Q(x , y)eb(y)

3Sinkhorn-Knopp, Marshall & Olkin, and earlier Schrödinger, Fortet
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Fortet-Sinkhorn’s algorithm

P?(x , y) = e�1+a(x)Q(x , y)eb(y) = Dleft(x)Q(x , y)Dright(y)

Algorithm: Given matrix Q, and vectors pX , pY

Start with P = Q = [Q(x , y)]n
x,y=1

P ! D`P where D` diagonal, D`(x) =
pX (x)P
y
P(x,y) s.t.

P
y
D`(y)P(x , y) = pX (x)

P ! PDr where Dr diagonal, Dr (y) =
pY (y)P
x
P(x,y) s.t.

P
x
P(x , y)Dr (y) = pY (y)

repeat until convergence

If Q(x , y) > 0 for all x , y convergence is guaranteed.

Applies to multi-marginals and higher-dimensional arrays Q(x , y , z , . . .), etc.
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Schrödinger’s bridge problem
for Markov chains

Markov chain Xt 2 {0, . . . , n}
Prior law: X0 ⇠ q0, transition probabilities ⇧0(x0, x1), ⇧1(x1, x2), . . . ,⇧T�1(xT�1, xT ).
Data: empirical marginals X0 ⇠ p0, XT ⇠ pT when q0 6= p0 and/or qT 6= pT
Find the most likely evolution

Path probability/measure:

Prior path probability Q(x0, . . . , xT ) = q0(x0)⇧0(x0, x1) · · ·⇧T�1(xT�1, xT )
Posterior path probability P(x0, . . . , xT ) = p0(x0)⇧̂0(x0, x1) · · · ⇧̂T�1(xT�1, xT )

Find: transition probabilities

P? = argmin

(
D(PkQ) |

X

x1,...,xT

P(x1, . . . , xT ) = p0(x0),

X

x0...,xT�1

P(x0, . . . , xT�1) = pT (xT ).

9
=

;
16 / 62



P? = argmin{D(PkQ) | P 2 P(p0, pT )}

Disintegration: Q with respect to the initial and final positions,

Q(x0, x1, . . . , xT ) = Qx0,xT (x1, . . . , xT�1)| {z }
pinned bridge

q0T (x0, xT )

where Qx0,xT (·) = Q { · |X (0) = x0,X (T ) = xT}; similarly for P

D(PkQ) =
X

x0xT

p0T (x0, xT ) log
p0T (x0, xT )

q0T (x0, xT )
| {z }

�0

+
X

x

Px0,xT (x...) log
Px0,xT (x...)

Qx0,xT (x...)
q0T (x0, xT )

| {z }
�0

) 2nd term = 0 when P , Q share pinned bridges
) need to minimize the coupling p0T subject to marginals
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P? = argmin{D(PkQ) | P 2 P(p0, pT )}

For T = 1

⇧̂⇤ = argmin{
X

x0x1

p01(x0, x1) log
p01(x0, x1)

q01(x0, x1)
}

p01(x0, x1) = p(x0)⇧̂(x0, x1), q01(x0, x1) = q(x0)⇧(x0, x1),

D(p0(·)⇧̂(·, ·)kq0(·)⇧(·, ·)) =
X

x0,x1

p(x0)⇧̂(x0, x1)

 
log(

p(x0)

q(x0)
) + log(

⇧̂(x0, x1)

⇧(x0, x1)
)

!

transition probability:
P

x1
⇧̂(x0, x1) = 1
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P? = argmin{D(PkQ) | P 2 P(p0, pT )}

⇧̂⇤ = argmin

(
X

x0,x1

p(x0)⇧̂(x0, x1) log(
⇧̂(x0, x1)

⇧(x0, x1)
) |
X

x0

p0(x0)⇧̂(x0, x1) = p1(x1)

X

x1

⇧̂(x0, x1) = 1

)

)

⇧̂?(x0, x1) = left(x0)⇧(x0, x1)right(x1)

= �0(x0)
�1⇧(x0, x1)�1(x1)
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A brief interlude on the Hilbert metric
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The Hilbert projective metric

Pappus of Alexandria - cross ratio

Convex bounded ⌦ ⇢ Rn

For B,C 2 ⌦ and A,D points of intersect of AB line with boundary of ⌦

dH(A,B) := log

✓
|BA| · |CD|
|BD| · |CA|

◆
.
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The Hilbert projective metric

Convex cone K ⇢ Banach space

• Pointed: K \ (�K) = {0}
• Partial order p � q , p � q 2 K

�̄(p, q) := inf{� | p  �q}
�(p, q) := sup{� | �q  p}

dH(p, q) := log
�̄(p, q)
�(p, q)

Examples:

positive cone in R
positive definite Hermitian matrices

Hilbert 1895
Birkhoff 1957
Bushell 1973
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The Hilbert projective metric

Projective diameter: diam(range(⇧)) := sup {dH(⇧(x),⇧(y)) | x , y 2 K\{0}}
Contraction ratio: k⇧kH = inf {� | dH(⇧(x),⇧(y))  �dH(x , y), x , y 2 K\{0}}

Birkhoff-Bushell theorem

⇧ positive, monotone, homogeneous of degree m, i.e., ⇧ : K ! K , cone in Rn

x  y ) ⇧(x)  ⇧(y)

⇧(↵x) = ↵m⇧(x)

Then k⇧kH  m, and if, in addition, ⇧ is linear:

k⇧kH = tanh(
1
4
diam(⇧))

Corollary: If linear ⇧ : K ! interior(K ), then k⇧kH < 1
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Bridge for one-step Markov Chain
⇧x0,xT =

P
x 6=x0,xT

⇧x0,x1⇧x1,x2 . . .⇧xT�1,xT

Start with a stochastic matrix (row sum = 1):

⇧ = [⇧x0,xT ]
N

x0,xT=1 , with positive entries

& two probability vectors p0, pN with strictly positive entries

Schrödinger system

There exist �(0, x0), �(T , xT ), �̂(0, x0), �̂(T , xT ), x0, xT 2 {1, . . . ,N} such that:

�(0, x0) =
X

xT

⇧x0,xT�(T , xT )

�̂(T , xT ) =
X

x0

⇧x0,xT �̂(0, x0)

�(0, x0)�̂(0, x0) = p0(x0)

�(T , xT )�̂(T , xT ) = pT (xT )
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Bridge for one-step Markov Chain
Circular composition of maps:

�̂(0, x0)
⇧T

�! �̂(T , xT ) =
P

x0
⇧x0,xT �̂(0, x0)

�̂(0, x0) =
p0(x0)
�(0,x0)

" # �(T , xT ) =
pT (xT )

�̂(T ,xT )

P
xN

⇧x0,xN�(T , xT ) = �(0, x0)
⇧ � �(T , xT )

The composition

�̂(0, x0)
⇧T

�! �̂(T , xT )
DT�! �(T , xT )

⇧�! �(0, x0)
D0�!

⇣
�̂(0, x0)

⌘

next

is contractive in the Hilbert metric

D0 : �(0, x0) 7! �̂(0, x0) =
p0(x0)
�(0, x0)

and DT : �̂(T , xT ) 7! �(T , xT ) =
pT (xN)

�̂(T , xT )
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Bridge for one-step Markov Chain

• the ranges of ⇧T ,⇧ are strictly in the interior of the cone,

k⇧kH , k⇧TkH < 1.

• D0 and DT inversion/element-wise scaling are isometries in the Hilbert metric

... a bit more, since Hilbert is a projective metric

The Schrödinger system has a solution (unique up to scaling)
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inversion/element-wise scaling = isometries

dH([xi ], [yi ]) = log

✓
(max

i

(xi/yi ))
1

mini (xi/yi )

◆

= log

✓
1

mini ((xi )�1/(yi )�1)
max

i

((xi )
�1/(yi )

�1)

◆

= dH([(xi )
�1], [(yi )

�1])

dH([pixi ], [piyi ]) = log
maxi ((pixi )/(piyi ))
mini ((pixi )/(piyi ))

= log
maxi (xi/yi )
mini (xi/yi )

= dH([xi ], [yi ]).
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P? = argmin{D(PkQ) | P 2 P(p0, pT )}

⇧̂⇤ = argmin

(
X

x0,x1

p(x0)⇧̂(x0, xT ) log(
⇧̂(x0, xT )

⇧(x0, xT )
) |
X

x0

p0(x0)⇧̂(x0, xT ) = pT (xT )

X

x1

⇧̂(x0, xT ) = 1

)

)

⇧̂?(x0, xT ) = left(x0)⇧(x0, xT )right(xT )
= �0(x0)

�1⇧(x0, xT )�T (xT )
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Schrödinger’s bridge
for Markov chains

Markov chain Xt 2 {0, . . . , n}
Prior law: X0 ⇠ q0, transition probabilities ⇧0(x0, x1), ⇧1(x1, x2), . . . ,⇧T�1(xT�1, xT ).
Data: empirical marginals X0 ⇠ p0, XT ⇠ pT when q0 6= p0 and/or qT 6= pT
Find the most likely evolution

Prior path probability Q(x0, . . . , xT ) = q0(x0)⇧0(x0, x1) · · ·⇧T�1(xT�1, xT )
Posterior path probability P?(x0, . . . , xT ) = p0(x0)⇧̂0(x0, x1) · · · ⇧̂T�1(xT�1, xT )

P?(x0, . . . , xT ) = p0(x0)

⇧̂0(x0,x1)z }| {�
�(0, x0)

�1⇧0(x0, x1)�(1, x1)
� �

�(1, x1)
�1⇧1(x1, x2)�(2, x2)

�
· · ·

· · ·
�
�(T � 1, xT�1)

�1⇧T�1(xT�1, xT )�(T , xT )
�
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Schrödinger Bridges in earnest

“On the reversal of the laws of nature”

Erwin Schrödinger, 1931
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Schrödinger’s bridge problem

– Consider a cloud of N independent Brownian particles (N large)
– empirical distributions ⇢0(x) and ⇢1(y) at t = 0 and t = 1
– ⇢0 and ⇢1 not compatible with transition mechanism

⇢1(y) 6=
Z 1

0
⇡(t0, x , t1, y)⇢0(x)dx ,

where

⇡(t0, y , t1, x) =
1p

(2⇡)n(t1 � t0)
e
� 1

2
kx�yk2
t1�t0 , s < t

) Particles have been transported in an unlikely way

Schrödinger (1931)

Of the many possible (unlikely) ways, which one is the most likely?
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Bridge
Probability law on paths linking two end-point marginals
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Bridge
Probability law on paths linking two end-point marginals

Schrödinger’s problem:
• Interpolate in a way that reconciles

the two marginals with the prior law
• The new law being the most likely
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marginal distribution at t = 0
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marginal and prior law (flow of one-time densities)
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initial marginal, prior law, and end-point marginal
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Schrödinger bridge
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Föllmer (1988):

Schrödinger’s problem concerns large deviation of the empirical measure on paths
via Sanov’s theorem

Prob(empirical P|t=0 = ⇢0, Pt=1 = ⇢1) ' e�N
R
log( dP

dW)dP

sampled from the Wiener W : “prior”

Schrödinger ’sproblem

P? = argmin
⇢Z

log

✓
dP
dW

◆
dP | P|t=0 = ⇢0, Pt=1 = ⇢1

�
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An brief interlude on Optimal Mass Transport
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Optimal Mass Transport
Le mémoire sur les déblais et les remblais
Gaspard Monge 1781

Wasserstein metric

W2(µ, ⌫)
2 := inf

T

Z
kx � T (x)| {z }

y

k2dµ(x)

where T#µ = ⌫ µ(dx) = ⇢0dx , ⌫(dx) = ⇢1dx

. ⇢1(x) =
1

| det(T )|⇢0(T�1(x)) 36 / 62



Optimal Mass Transport

W2(µ, ⌫)
2 = inf

⇡2⇧(⇢0,⇢1)

ZZ
kx � yk2 d⇡(x , y)

⇧(µ, ⌫) : “couplings"
R
y
⇡(dx , dy) = ⇢0(x)dx = dµ(x)R

x
⇡(dx , dy) = ⇢1(y)dy = d⌫(y)
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Optimal Mass Transport

W2(µ, ⌫)
2 = inf

⇡2⇧(⇢0,⇢1)

ZZ
kx � yk2 d⇡(x , y)

⇧(µ, ⌫) : “couplings"
R
y
⇡(dx , dy) = ⇢0(x)dx = dµ(x)R

x
⇡(dx , dy) = ⇢1(y)dy = d⌫(y)
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Optimal Mass Transport

kx � yk2 = inf{
R 1
0 kẋ(t)k

2dt | x(0) = x , x(1) = y}

W2(⇢0, ⇢1)
2 := inf

(⇢,v)
tf

Z
tf

t0

Z

Rn

⇢kvk2dxdt

@⇢

@t
+r · (v⇢) = 0

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y)

W2(⇢0, ⇢1)
2 = inf

Z

time
average kinetic energy

| {z }
action integral

subject to boundary conditions
39 / 62



Riemannian geometry of OMT
ensemble states {⇢ � 0 :

R
⇢ = 1}

tangent space at ⇢ are perturbations {� :
R
� = 0}

Key insight: � ⌘ @⇢
@t  ! v = r� (irrotational) via solving

� = �r · (⇢r�)
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Riemannian geometry of OMT
ensemble states {⇢ � 0 :

R
⇢ = 1}

tangent space at ⇢ are perturbations {� :
R
� = 0}

Key insight: � ⌘ @⇢
@t  ! v = r� (irrotational) via solving

� = �r · (⇢r�)

Riemannian structure

h�1, �2i⇢ :=

Z
⇢hv1, v2idx

geodesic distance

W2(⇢0, ⇢1) = inf
⇢

Z 1

0

s⌧
@⇢

@t
,
@⇢

@t

�

⇢(t)

dt
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Schrödinger Bridges vs. OMT Bridges
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Bridges vs. Transport
bird’s eye view: stochastic bridges vs. Monge-Kantorovich transport (min distance2)

enginee
x8 x8

-suremen · y

· y

spen arex8

green
x8 I

· y ..Enerpaper

· ywereof ... ..! Ix8
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Stochastic bridges
probability laws on paths linking marginals

Brownian diffusion - prior law
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Stochastic bridges
probability laws on paths linking marginals

Brownian diffusion - prior law

Brownian bridge - conditioned at both end-points (pinned bridge)
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Stochastic bridges
probability laws on paths linking marginals

Brownian bridge - conditioned at both end-points (pinned bridge)

“most-likely” path (most prob. mass in neighborhood)
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Stochastic bridges
probability laws on paths linking marginals

Brownian bridge - conditioned at both end-points (pinned bridge)

Schrödinger bridge - soft conditioning on one end
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Stochastic bridges
probability laws on paths linking marginals

Schrödinger bridge - soft conditioning on one end

Schrödinger bridge - soft conditioning on both ends
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Stochastic bridges vs. optimal transport (deterministic)
Brownian bridge - Conditioned at end-points (Dirac marginals)

Optimal transport - Conditioned at end-points (Dirac marginals)
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Stochastic bridges vs. optimal transport (deterministic)

Schrödinger bridge - soft conditioning at one end-point

Optimal transport - soft conditioned at one end-point
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Stochastic bridges vs. optimal transport (deterministic)
Schrödinger bridge - soft conditioning at two ends

Optimal transport - soft conditioned at two ends
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Some theory on Schrödinger bridges45

4Léonard, C., 2013. A survey of the schrödinger problem and some of its connections with optimal
transport. arXiv preprint arXiv:1308.0215

5Chen, Yongxin, Tryphon T. Georgiou, and Michele Pavon. "On the relation between optimal transport
and Schrödinger bridges: A stochastic control viewpoint." Journal of Optimization Theory and
Applications 169 (2016): 671-691
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Schrödinger bridges - first approach

P? = argmin
nR

paths log
�
dP
dW
�
dP | P|t=0 = ⇢0, Pt=1 = ⇢1

o

i) Disintegration of measures

P(path) = P(path |x(0) = x , x(tf ) = y)| {z }
conditioned = pined bridge

· P0,tf (x , y)

)

Z
log

✓
dP
dW

◆
dP =

Z
log

✓
dP0,tf (x , y)

dW0,tf (x , y)

◆
dP0,tf (x , y)

+

Z
log

✓
dP(path |x(0), x(tf ))
dW(path |x(0), x(tf ))

◆
dP(path |x(0), x(tf ))

| {z }
= 0 for P(path |x(0),x(tf )) = W(path |x(0),x(tf ))
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Structure of the law
via disintegration of measure

P⇤(path)

Schrödinger bridge

= P⇤
0,tf (x , y) ⇥

P(path|x , y)

Pinned bridges

P⇤
0,tf (x , y) : optimal end-point coupling
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Optimal coupling of two end points

min
P0,t

f
(x ,y)

Z
log

✓
dP0,tf (x , y)

dW0,tf (x , y)

◆
dP0,tf (x , y)

P0,tf (x , y) : “couplings"
R
y
P0,tf (x , y) = ⇢0(x)dx = dµ(x)R

x
P0,tf (x , y) = ⇢1(y)dy = d⌫(y)

P⇤
0,tf (x , y) = W0,tf (x , y)a(x)b(y)

where a(x) = e�
left(x), b(y) = e�

right(y) with �’s Lagrange multipliers
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Schrödinger system

Schrödinger (1931/32)

the density factors into
⇢(x , t) = '(x , t)'̂(x , t)

where ' and '̂ solve (Schrödinger’s system):

'(x , t) =

Z
p(t, x , 1, y)'(y , 1)dy , '(x , 0)'̂(x , 0) = ⇢0(x)

'̂(x , t) =

Z
p(0, y , t, x)'̂(y , 0)dy , '(x , 1)'̂(x , 1) = ⇢1(x).

50 / 62



Schrödinger system

�@'
@t (t, x) =

1
2�'(t, x)

@'̂
@t (t, x) =

1
2�'̂(t, x)

'(0, x)'̂(0, x) = ⇢0(x)
'(1, x)'̂(1, x) = ⇢1(x)

= ⇥
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Schrödinger system
Sinkhorn algorithm redux6

'̂
�/2�����! '̂

�⇢0
·
�x???

???y
�⇢1

·
�

'
��/2 ������ '

@'
@t (t, x) = �

1
2�'(t, x)

@'̂
@t (t, x) =

1
2�'̂(t, x)

'(0, x)'̂(0, x) = ⇢0(x)

'(1, x)'̂(1, x) = ⇢1(x)
) strictly contractive with respect to dH .

Hilbert metric

dH(p, q) := log
�̄(p, q)
�(p, q)

�̄(p, q) := inf{� | p  �q}
�(p, q) := sup{� | �q  p}

6Chen, Yongxin, Tryphon Georgiou, and Michele Pavon. "Entropic and displacement interpolation: a computational approach using the
Hilbert metric." SIAM Journal on Applied Mathematics 76.6 (2016): 2375-2396.
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Schrödinger bridges - second approach
P? = argmin

nR
paths log

�
dP
dW
�
dP | P|t=0 = ⇢0, Pt=1 = ⇢1

o

ii) Girsanov-Cameron-Martin theorem

The law P of
dXt = v(t,Xt)dt + dBt

and the law of Bt , W, are such that
Z

paths
log

✓
dP
dW

◆
dP =

1
2

Z
kv(t,Xt)k2dP

) minimum kinetic energy paths matching marginals
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Schrödinger bridges - second approach
P? = argmin

nR
paths log

�
dP
dW
�
dP | P|t=0 = ⇢0, Pt=1 = ⇢1

o

Stochastic control formulation

inf
(⇢,v)

Z

Rn

Z
tf

t0

kv(x , t)k2⇢(x , t)dtdx ,

@⇢

@t
+r · (v⇢) = 1

2
�⇢

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y).

Shift the probability on paths of dXt = dBt , from ⇢0 to ⇢1,
so that it is “concentrated” on paths that correspond to
minimum effort of a controlled diffusion dXt = vdt + dBt .
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Schrödinger bridges - second approach

Fisher-information regularization - time-symmetric/fluid dynamic

inf
(⇢,u)

Z

Rn

Z
tf

t0

✓
ku(x , t)k2 + 1

4
kr log ⇢(x , t)k2

◆
⇢(x , t)dtdx ,

@⇢

@t
+r · (u⇢) = 0

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y).

u = v � 1
2r log ⇢

Chen, Georgiou, Pavon, 2016, On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint.
J. of Opt. Theory and Appl., 169:671-91

Li, Yin, Osher, 2018. Computations of optimal transport distance with Fisher information regularization. J. of Scientific Comp., 75:1581-95
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A look ahead - Geometry & Physics

JKO (Jordan-Kinderlehrer-Otto)

gradient flow of entropy
@t⇢ = �rW2S(⇢) = �⇢

OMT quantifies dissipation in over-damped systems
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OMT as 0-noise limit to SBP & numerics
⇢t +r · ⇢v = ✏�⇢

⇢t + r · ⇢v = ✏�⇢, varying ✏

inf
(⇢,v)

Z

Rn

Z
tf

t0

kv(x , t)k2⇢(x , t)dtdx ,

@⇢
@t

+r · (v⇢) = ✏
2
�⇢

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y).

or

inf
(⇢,v)

Z

Rn

Z
tf

t0

h
kv(x , t)k2 + k ✏

2
r log ⇢(x , t)k2

i
⇢(x , t)dtdx ,

@⇢
@t

+r · (v⇢) = 0,

⇢(x , t0) = ⇢0(x), ⇢(y , tf ) = ⇢1(y).

57 / 62



Control applications: active cooling

– thermodynamic systems, controlling collective response
– magnetization distribution in NMR spectroscopy,..

– Nyquist-Johnson noise driven oscillator

LdiL(t) = vC (t)dt

RCdvC (t) = �vC (t)dt � RiL(t)dt + u(t)dt + dw(t)

Chen-Georgiou-Pavon, J. Math. Phys. 2015.
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controlling uncertainty, ensemble control

Inertial particles with stochastic excitation steered between marginals

dx(t) = v(t)dt

dv(t) = �u(t)dt + dw(t)

trajectories in phase space
transparent tube: “3� region”
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Over prior dynamics

Schrödinger bridge with ✏ = 9

Schrödinger bridge with ✏ = 4

Schrödinger bridge with ✏ = 0.01

Optimal transport with prior 60 / 62



Smooth Bridges/Splines - minimize acceleration

– Mass transports along x in C 2 with
R
kẋk2dt <1

Distributional-Spline-Problem:

Find

inf
xti ]P=⇢i

EQ{
Z 1

0
kẍ(t)k2dt}

with Q a probability measure on path space.

when ⇢i ⇠ N (mi ,�i ) ) Semidefinite program
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Recap

The Schrödinger bridge problem and OMT have analogous formulations

- minimize cost of transporting between end-point marginals
- minimize cost of traversing paths from beginning to end

SBP is solved by an iterative method that is contractive
in the Hilbert metric

OMT provides a Riemannian geometry where
W2(·, ·) is a geodesic distance
the gradient flow that maximizes entropy is the heat equation (JKO)
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