
LLNL-PRES-848710
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Flux: A Next-Generation Resource Manager for
HPC and Beyond

James CorbettNMEWS3 at IPAM

2
LLNL-PRES-848710

§ Flux is a HPC resource manager like
Slurm, LSF, or PBS Pro

§ Used for requesting resource
allocations and scheduling/launching
jobs

§ Currently used by many individual
users and workflow systems at LLNL,
LBNL, and ORNL

Flux is a resource manager and job scheduler developed at
LLNL

3
LLNL-PRES-848710

Flux is in the early stages of deployment at LLNL

§ Flux is currently deployed on a
number of LLNL clusters
—Tioga, Hetchy, Corona, Fluke,

Elmerfudd, and, just this week,
RZVernal and Tenaya

—Generally smaller testbed
clusters, to gather user feedback
(although three are in the top 200
on the Top500 list)

§ Lots of ongoing work to prepare
users for Flux on more and more
LLNL clusters (El Cap in particular)

4
LLNL-PRES-848710

Why another resource manager?

New pillar

Co-scheduling

Job throughput

Job communication/coordination

Portability

Extremely heterogenous resources

5
LLNL-PRES-848710

Pre-exascale scientific workflows strain the capabilities of
traditional HPC resource managers and schedulers

Co-scheduling:

CG, analysis bound to cores
nearest PCIe buses

Job comms/coordination:

36,000 concurrent tasks;
176,000 cores, 16,000 GPUs

Portability:

adapt tasks to different
schedulers/managers

MuMMI: SC’19 best paper, SC’21 paper

MPI-based simulation with in-situ analysis plus ML

6
LLNL-PRES-848710

Next-generation, cross-cluster scientific workflows are
demanding portability and cloud integration.

Complex workflows integrating
cloud technologies at LLNL and
beyond
— Scalable message broker couples MPI-

based tasks, analysis, workflow runs
anywhere (AHA MoleS)

— HPC simulation with AI/ML surrogates,
orchestrated databases (AMS)

— Many other examples: ATOM, AMPL,
GMD, etc.

2020 lab survey found that 73% of
LLNL workflows interested in cloud
integration

Docking n

…

Docking n

Docking 1

…

Docking n

…

Docking n

Docking 1

…

Docking n

…

Docking n

Docking 1

C
onveyorLC

(Flux Job 1)

…

…

Docking Flux Instance
(CPU Cluster)

Kubernetes

RabbitMQ

Vast
Filesystem

Docking
Adapter

Fusion Flux Instance
(GPU Cluster)

Docking n

…

Docking n

…
……

Docking n

…

Fusion Worker
(Flux Job 1)

Fu
sio

n
Ad

ap
te

r

Docked Ligand Data
Fusion Scoring Data

GMD Structural Core

M
aestro M

ae
st

ro

RabbitMQ Messages

MPI-based simulation with analysis, ML, and containerized components

AHA MoleS: eScience’22 best paper

7
LLNL-PRES-848710

Flux offers a suite of features and behavior to allow it to
adapt to future needs

§ Relatively easy for a Slurm user to
learn

§ Sophisticated, configurable
scheduling abilities

§ Scalable performance

§ Consistent behavior across centers

§ Easy to build (few dependencies)
— Conda, spack packages
— Docker containers for experimentation

§ Interfaces designed with workflow
tools in mind

§ The ability to nest Flux instances
inside other Flux instances, or
allocations from other resource
managers

§ Kubernetes integrations

§ Well documented (???)

8
LLNL-PRES-848710

Flux’s interface is often intentionally similar to Slurm’s

§ Submitting a batch script
— flux batch script.sh

— sbatch script.sh

§ Getting an interactive allocation
— flux alloc –N 4 –q debug –t 90

— salloc –N 4 –p debug –t 90

§ Launching an MPI job
— flux run -N2 –n16 –c2 –g2

— srun –N2 –n16 –c2 –gpus-per-task=2

§ But there are plenty of differences

9
LLNL-PRES-848710

Command-Line Interface Cross-Reference

10
LLNL-PRES-848710

A rich set of well-defined APIs enables easy job coordination
and communication.
§ Complete Python and C libraries

§ Jobs in ensemble-based simulations often require close
coordination and communication with the scheduler as well as
among them.
— Traditional CLI-based approach can be slow and cumbersome.
— Ad hoc approaches (e.g., many empty files) can lead to many side

effects.

§ Flux provides well-known communication primitives.
— Pub/sub, request-response, and send-recv patterns

§ High-level services
— Key-value store (KVS) API
— Job API (submit, wait, state change notification, etc)

§ Flux’s APIs are consistent across different platforms

11
LLNL-PRES-848710

Flux handles jobs differently from other resource managers

§ Unlike many resource managers, when you launch a
job, you get exactly the resources you ask for, and no
more
— Ask for four tasks and five cores per task, and your application

will have four tasks, each bound to five cores
— Unlike Slurm, which will (sometimes, depending on

configuration/plugins) give you whole nodes

§ All jobs are given exclusive sets of resources by
default

12
LLNL-PRES-848710

Flux’s fully-hierarchical approach enables scalable
performance

§ Flux can run inside of the
allocations of other resource
managers

§ But it can also run inside of
Flux allocations

§ Full workflow-enablement
support
— Via hierarchical resource subdivision
— Sub-resource manager per

subdivision with service specialization
— E.g., at LLNL: MuMMI, AHA MoleS,

UQP

13
LLNL-PRES-848710

Flux pioneers directed graph-based scheduling to manage complex
combinations of extremely heterogenous resources

§ Traditional resource data models are
largely ineffective for resource
heterogeneity
—designed when systems were simpler
—node-centric models

§ Edges express relationships, flows

§ Complex scheduling without
changing scheduler code

§ Rich, well-defined C, C++, Go (in
progress) APIs

Containment subsystem

Network connectivity subsystem

14
LLNL-PRES-848710

Flux uses graph filtering and pruned searching to manage
the graph complexity and optimize our graph search
§ The total graph can be quite complex

— Two techniques to manage the graph complexity
and scalability

1. Filtering reduces graph complexity
— The graph model needs to support schedulers

with different complexity
— Provide a mechanism by which to filter the graph

based on what subsystems to use

2. Pruned search increases scalability
— Fast RB tree-based planner is used to implement

a pruning filter per each vertex.
— Pruning filter keeps track of summary information

(e.g., aggregates) about subtree resources.
— Scheduler-driven pruning filter update

Filtering

Containment+Network Containment

Pruning

Prune filter
tracks available
aggregate node
count at the
subtree

15
LLNL-PRES-848710

Flux’s graph-oriented canonical jobspec allows for a highly
expressive resource request specification

§ Graph-oriented resource requirements
— Express the resource requirements of a program to the

scheduler
— Express program attributes such as arguments, runtime, and

task layout to the execution service

§ clusterà rack[2]àslot[3]ànode[1]àsocket[2]àcore[18]

§ slot is the only non-physical resource type
— Represent a schedulable place where program processes

will be spawned and contained

§ Tasks section references slot and defines command

16
LLNL-PRES-848710

The Rabbits of El Cap: a need for sophisticated scheduling

§ El Capitan will have multi-tiered storage
centered around nodes called “rabbits”
— There will be one rabbit per chassis (N

compute nodes)

§ Each rabbit node has a collection of 18
SSDs with direct PCIe connections to
the compute nodes on the chassis

§ The storage can be dynamically
configured to offer either node-local
storage or storage common to all
compute nodes in a job
— Node-local storage is connected by PCIe,

global storage is over the network

17
LLNL-PRES-848710

The rabbits are a scheduling nightmare

§ The scheduler for El Capitan needs to
be aware of rabbits as both a per-rack
and global resource
— An individual rabbit can be both at once to

one or more jobs

§ Rabbits can be allocated independently
of jobs

§ There are further constraints about the
number and types of storage that can
be combined on a single rabbit

§ Scheduling rabbits was deemed too
difficult for traditional schedulers

18
LLNL-PRES-848710

Fluxion’s graph approach can solve the rabbit scheduling problem

§ In principle, Fluxion can schedule rack-
local and global storage with no code
change. But (full disclosure)…

§ Fluxion is wasteful when it needs to
schedule the same resource type
multiple times
— This affects all jobs that request multiple

rabbit allocations
— This is a known issue and is planned to be

fixed before El Cap is ready

§ Actual deployments currently make use
of workarounds

selects
SSDs

anywhere selects SSDs in
same rack

19
LLNL-PRES-848710

Flux + Rabbits Deployment Status

§ LLNL currently has four clusters with
rabbits
— Tioga, RZVernal, Tenaya, and Hetchy
— 8 rabbits total

§ Creating node-local and global
storage works consistently, as does
data movement to and from the
rabbits
— There are still some kinks to work out,

especially in error handling

§ Rabbits will be exposed to users
soon (mid-May?)

20
LLNL-PRES-848710

The Fluence plugin brings HPC-grade scheduling and
improved performance to Kubernetes.
K8s Scheduling Framework plugin based
on Fluxion scheduler.

Architectural change from monolithic to
gRPC-based
§ Improves maintainability, separation of

concerns

More placement control and functionality
§ Gang scheduling
§ GPU support
§ Topology awareness of Availability Zones

(AZs)

image: https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/

Easier deployment
§ Automation through Helm
§ Export of Golang modules for easier

distribution

21
LLNL-PRES-848710

Fluence accelerates simulated workflows

§ Fluence-scheduler apps up to 3.5x
faster than Kube-scheduler

§ Higher variability with kube-
scheduler especially at the largest
scale

§ Kube-scheduler unable to pack on
single node first
—Kube-scheduler spreads pods even

when limiting placement options
with affinity

LAMMPS <pods, ranks>
10, 140 (Small)
18, 145 (Medium)
20, 224 (Large)

QMCPack <pods, ranks>
10, 140 (Small)
18, 250 (Medium)
20, 250 (Large)

22
LLNL-PRES-848710

Conclusions
Improved the MPI Operator, allowing it to scale to thousands of MPI ranks. HPC
benchmarks that use MPI can scale two orders of magnitude higher than before in
Kubernetes.

Fluence pod placement outperforms Kube-scheduler within a single Availability Zone on
EKS as well as across AZs in IBM Cloud

Fluence produces deterministic placement

Kube-scheduler random tie breaking causes delayed execution for apps that exhibit
dependencies between pods (MPI applications, or deployments with minimum replicas

Kube-scheduler cannot be made to reproduce Fluence placement even with affinity and
pod placement restrictions. Startup packing policy is available, user needs cluster admin
privileges

23
LLNL-PRES-848710

§ Open-source project in active
development at flux-framework
GitHub org
— Multiple projects: core, sched (Fluxion),

security, accounting, k8s etc.
— Over 15 contributors including some principal

engineers behind Slurm

§ Easily-accessible documentation and issue
tracking

Flux is a very transparent and accessible project

24
LLNL-PRES-848710

§ Flux framework documentation: flux-framework.readthedocs.io/en/latest/

§ Documentation written by non-developers: https://hpc-tutorials.llnl.gov/flux/

§ Resource manager cross-reference: https://hpc.llnl.gov/banks-jobs/running-
jobs/batch-system-cross-reference-guides

§ For reporting issues, asking questions, or contributing:
— The flux-core repository: github.com/flux-framework/flux-core
— The flux-sched repository: github.com/flux-framework/flux-sched
— Various other repos under the flux-framework GitHub org (accounting, coral2, etc)

Links and References

flux-framework.readthedocs.io/en/latest
https://hpc-tutorials.llnl.gov/flux/
https://hpc.llnl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides
https://hpc.llnl.gov/banks-jobs/running-jobs/batch-system-cross-reference-guides
http://github.com/flux-framework/flux-core
http://github.com/flux-framework/flux-sched

Thank you!
Questions?

