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Amine Halide Metal 

Perovskites: tunable materials for high-performance, low-cost optoelectronics 

PCE 25.2%

X-ray Scintillation

Laser
Photovoltaic

LED

Applications

Swapping organic “amines” results in diverse structures/properties

Presenter Notes
Presentation Notes
Expand this t



Inorganic  0.1 - 1.500 mmol 

Organic 0.1 - 3.000 mmol

Acid 0.1 - 8.000 mmol
Heat 90-
110 °C

Shake 450-
900 s

>107 conditions (too many to test)
Only some are productive

Amine Halide Metal 

t
++

The Challenge: How do you make a new material?
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Presenter Notes
Presentation Notes
We have spent a fair amount of time developing workflows. 
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Can’t we just compute this?

(from underlying physical theory?)

(from ML?)



Good ML models require comprehensive 
experimental data of success and failure.
Journals do not publish 
”failed” or “marginally 
successful” experiments 
(“dark data”)….

…but incorporating this data improves ML 
model predictions… …and new chemical hypotheses 

can be extracted from this “dark 
data” in the data/model…

Nature 533, 73-76 (2016)
doi:10.1038/nature17439

unreported 
experimental 

details

Presenter Notes
Presentation Notes
Expand this t



Humans get stuck in a rut…and pollute the data.

Nature 573, 251–255 (2019) 
doi:10.1038/s41586-019-1540-5 

…popularity is uncorrelated to 
reaction success rates, cost, and 
technical considerations. 

Datasets without 
anthropogenic bias can be 
~20% smaller, yet give better 
ML models by all metrics.

Some reagents and reaction conditions 
are over-represented in both published 
datasets and unpublished lab 
notebooks…

Presenter Notes
Presentation Notes
Expand this t



A Dream: Autonomous research labs
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Perspective & Review article:  Matter (2021) 10.1016/j.matt.2021.06.036

https://doi.org/10.1016/j.matt.2021.06.036


http://sites.nationalacademies.org/sites/reproducibility-in-science/

Opinion:  Automated experimentation will improve 
reproducibility and replicability.

Complete disclosure of laboratory process.

Cross-lab replicability.

Complete record of success and failure 
(“dark reactions”) for ML models
Nature 533, 73-76 (2016) doi:10.1038/nature17439

Reduce human sampling biases that pollute 
datasets.
Nature 573, 251–255 (2019)  doi:10.1038/s41586-019-1540-5 

Data capture of “unimportant” details 
enables “automated serendipity”
Appl. Phys. Lett. 119, (2021) 041903 doi:10.1063/5.0059767 

http://sites.nationalacademies.org/sites/reproducibility-in-science/
https://doi.org/10.1063/5.0059767


However:  Automation doesn’t solve all problems…

There remains a need to capture human 
operator actions (example: preparing stock 
solutions, etc.)

Legacy non-automated equipment with 
unique capabilities—require data 
import/export.

Over the next decade, expect “islands of 
automation” (rather than completely 
autonomous systems) will probably the 
norm.

Opinion:  It’s easy to get distracted by 
robots/gadgets—they’re cool, but not the 
whole story.Im
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The need for experimental workflow management 

Thinking,
DFT calculations  …

DATA Stuff 
happens 
in the lab

Tell 
someone 
with a lab

Software

Robots 
and 
Humans

Software

Presenter Notes
Presentation Notes
Wasting time on Hacker News 18 Feb 2020“2. Find a problem with a lot of repetitive manual labor and slowly wedge a machine learning model into the process. Design a good feedback loop by first augmenting the workers and use their feedback to keep improving the model until it's good enough to replace them. Doing so requires you to actually build a real product in that domain so you'll need much more diverse team than a paper mill. Most companies doing this shouldn't even call themselves "AI" companies since their customers don't care how the solution works as long as it solves their problem.”



Putting together the pieces of the puzzle…

Automate the Experiments:  Robot-Accelerated 
Perovskite Investigation and Discovery (RAPID)
Zhi Li & M. Ani Najeeb, et al. Chem Mater. 2020 doi:10.1021/acs.chemmater.0c01153
Zhi Li & M. Ani Najeeb, et al. Chem Mater. 2022 doi:10.1021/acs.chemmater.1c03564

Collect complete data records:  Experiment 
Specification Capture and Lab Automation 
Technology Environment (ESCALATE)
I.Pendleton & G. Cattabriga, et al. MRS Communications (2019) - doi:10.1557/mrc.2019.72 
http://github.com/darkreactions/ESCALATE

Develop and test machine learning for the Lab!
I. Pendleton et al. J. Phys. Chem C. (2020) doi:10.1021/acs.jpcc.0c01726
Y. Tang et al. J. Chem. Inf. Model. (2021) doi:10.1021/acs.jcim.0c01307
P. W. Nega et al., J. Appl. Phys. (2021) doi:10.1063/5.0059767 
V. Shekar et al. J. Chem. Phys. (2022) doi:10.1063/5.0076636 
V. Shekar et al., ChemRXiv (2022) doi:10.26434/chemrxiv-2022-l1wpf

http://dx.doi.org/10.1557/mrc.2019.72


Automating the Experiments with
“Robot-ready” reactions

Liana Alves ’18 Emily Brown ’19 Zhi Li (LBL/Molecular Foundry)
Alyssa Sherman ’18 Mansoor Ali Najeeb Nellikkal Emory Chan (LBL/Molecular Foundry)
Peter Cruz Parilla ’20
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Inverse Temperature Crystallization 
(ITC/WF1/”RAPID 1”) 
use a retrograde solubility effect to grow large high-quality crystals without strong acids
Saidaminov et al. Nat. Commun. (2015).
Zhi Li & M. Ani Najeeb et al. Chem. Mater. (2020) doi:10.1021/acs.chemmater.0c01153 

Antisolvent Vapor Diffusion 
(WF3/”RAPID 2”) 
use slow vapor transport of an antisolvent to gradually reduce solubility of the 
precursor solution
Z. Li & M. Ani Najeeb et al. ChemRxiv (2021) doi:10.33774/chemrxiv-2021-w2c7b

Robot-Accelerated Perovskite Investigation & Discovery (RAPID)

Chemical diversity:
• Lead halides (single organic cation)
• Ruddlesden-Popper phases (multiple organic cations)
• Copper halides



Standard characterization
• X-ray diffraction
• Optical imaging microplate reader 
• Microplate-based absorption & fluorescence spectroscopy 

High-throughput characterization capabilities

[bdaH2][PbI3]

ITC - 96 parallel reactions, ~ 5 hr time scale  
ASVC - 24 parallel reactions, ~18 hr time scale



- Up to nine samples at 
the same time

- Illumination to 1.5 Sol
- Humidity to 86 % 

relative humidity
- Temperature to 85 ºC 
- Images are collected at 

regular intervals
- Color calibration is 

achieved using RGB 
values from color 
standards

- Computer-vision with 
unsupervised clustering 
to measure degradation 
kineticsR. Keesey ‘20  et al. Digital Discovery 2023 https://doi.org/10.1039/D2DD00089J

Accelerated Sample Aging Chamber

https://doi.org/10.1039/D2DD00089J


t=0 hours

t=160 hours

R. Keesey ‘20  et al. Digital Discovery 2023 https://doi.org/10.1039/D2DD00089J

https://doi.org/10.1039/D2DD00089J
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The need for experimental workflow management 

Thinking,
DFT calculations  …

DATA Stuff 
happens 
in the lab

Tell 
someone 
with a lab

Software

Robots 
and 
Humans

Software

Presenter Notes
Presentation Notes
Wasting time on Hacker News 18 Feb 2020“2. Find a problem with a lot of repetitive manual labor and slowly wedge a machine learning model into the process. Design a good feedback loop by first augmenting the workers and use their feedback to keep improving the model until it's good enough to replace them. Doing so requires you to actually build a real product in that domain so you'll need much more diverse team than a paper mill. Most companies doing this shouldn't even call themselves "AI" companies since their customers don't care how the solution works as long as it solves their problem.”



Challenge: Managing experiment plans and 
comprehensive data capture

19

t
++



Provide an Application 
Programming Interface (API) 
for humans or algorithms to 
specify new experiments

Generate instructions for 
human operators and robots 
to conduct experiments.

Archive experimental data and 
metadata

Add interpretive layer
(cheminformatics, 
stoichiometric calculations, 
etc.) to collected data

Facilitate data reporting and 
export

20

Experiment Specification Capture and Lab 
Automation Technology Environment

I.Pendleton & G. Cattabriga, et al. MRS Communications (2019) - doi:10.1557/mrc.2019.72
https://github.com/darkreactions/ESCALATE/

http://dx.doi.org/10.1557/mrc.2019.72
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How do you describe an experiment?



I. Pendleton & G. Cattabriga, et al. MRS Communications (2019) - doi:10.1557/mrc.2019.72 - https://github.com/darkreactions/
22

Experiment descriptions span levels of specificity.
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Templates constrain feasible experiments

I. Pendleton & G. Cattabriga, et al. MRS Communications (2019) - doi:10.1557/mrc.2019.72 - https://github.com/darkreactions/

What experiments are feasible, 
given the stock solution 
concentrations?

What are instrument limitations?

http://dx.doi.org/10.1557/mrc.2019.72
https://github.com/darkreactions/
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Models specify notional experiment plan

I. Pendleton & G. Cattabriga, et al. MRS Communications (2019) - doi:10.1557/mrc.2019.72 - https://github.com/darkreactions/

“Wildcard” parameters can be:
• Sampled within template constraints
• Enumerated to give a complete state set
• Specified explicitly by user or algorithm

General specification of:
• Materials to be used
• Actions to be performed
• Observations to be collected
for the desired experiment

http://dx.doi.org/10.1557/mrc.2019.72
https://github.com/darkreactions/
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I. Pendleton & G. Cattabriga, et al. MRS Communications (2019) - doi:10.1557/mrc.2019.72 - https://github.com/darkreactions/

(V2) Web-based forms to instruct and collect 
observations from human operators…

Google sheets front-end…
…but a JSON data object!

http://dx.doi.org/10.1557/mrc.2019.72
https://github.com/darkreactions/


REST API & GUI  allows creation and retrieval 
of
● Materials 
● Properties
● Action Definitions
● Experiment Specifications
● Results

Querying Available Materials 

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx


Additional material properties can be defined by user

REST API allows creation and retrieval of
● Materials 
● Properties
● Action Definitions
● Experiment Specifications
● Results

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx


Querying material properties

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx


Workflows organize action/material relationships

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx


Default action definitions & parameters

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx
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Creating new action definitions

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx


New experiments are instances of workflows

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx
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Experiment queue and instructions performance in the laboratory
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Collect data as defined in the experiment template

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx


Stored data can be retrieved on demand 

REST API allows creation and retrieval of
● Materials 
● Properties
● Action Definitions
● Experiment Specifications
● Results

Full tutorial: https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx

https://github.com/darkreactions/ESCALATE/blob/master/demonstrations/REST_API_DEMO.ipynb
https://github.com/darkreactions/ESCALATE/blob/master/UI%20User%20Guide.docx


escalation live data dashboard

http://escalation.sd2e.org/
https://github.com/twosixlabs/escalation

http://escalation.sd2e.org/
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Export tabular reports from the unstructured data  

Automate the featurization with two python modules:
(1) chemdescriptor:  interfaces with RDKit, ChemAxon, and 

Mordred to automate featurization of organic molecule 
components https://github.com/darkreactions/chemdescriptor

(2) calculator:  provide safe evaluation of arbitrary numerical 
calculations involving observed features/descriptors

https://github.com/darkreactions/chemdescriptor
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Comprehensive data capture enables new types of 
data-enabled publications enabling reproducibility 
and replicability.

Zhi Li & M. Ani Najeeb et al. Chem. Mater. (2020) doi:10.1021/acs.chemmater.0c01153 

Presenter Notes
Presentation Notes
TODO:  Add ML animated gif for ML from publications 3.0 paper, add mouseover gifhttps://mybinder.org/v2/gh/darkreactions/next_gen_publication/master?filepath=Perovskite_Data_Enabled_Publication_Final.ipynb



Answer: Crystallization success is 2% 
less likely at edges than middle over 
all reactions.

Effect is larger in some 
amines (e.g., guanidinium)

Data set: TACC/0026.perovskitedata.csv
Method: Error bars estimated by bootstrapping; One sided p-values calculated by shuffling
Analysis: https://www.wolframcloud.com/obj/jschrier0/Published/2019.07.09_perovskite_edge_success.nb

What can you do with comprehensive data capture?

https://sd2e.org/workbench/data-depot/data-sd2e-community/versioned-dataframes/perovskite/perovskitedata
https://www.wolframcloud.com/obj/jschrier0/Published/2019.07.09_perovskite_edge_success.nb


Crystallization success by amine

p= 0.004
p= 0.024

p= 0.035

Mean success probabilities

Data set: TACC/0026.perovskitedata.csv
Method: Error bars estimated by bootstrapping; One sided p-values calculated by shuffling
Analysis: https://www.wolframcloud.com/obj/jschrier0/Published/2019.07.09_perovskite_edge_success.nb

https://sd2e.org/workbench/data-depot/data-sd2e-community/versioned-dataframes/perovskite/perovskitedata
https://www.wolframcloud.com/obj/jschrier0/Published/2019.07.09_perovskite_edge_success.nb
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Use machine learning models for batch-to-batch 
quality control

Ksp = [A]a [B]b ln Ksp - a ln [A] + b [B] > 0

Log transform
Becomes a logistic regression



Use extreme (meta)data collection as a substitute for 
experimental control
● Lab humidity is hard to control, but we can measure it.
● Consider these fluctuations as natural experiments.

44

Analyze 8000+ historical experiments, find cases where similar reactions were 
performed under both high and low humidity conditions.

Look for discrepancies between the reaction outcomes at high and low humidity

Use a statistical model to prioritize the most interesting experiments to explore.
P Nega et al. Appl. Phys. Lett. 119,  (2021) 041903 doi:10.1063/5.0059767  



45

Limited Sloppiness + Data Analysis 
= ”Automated serendipity”

Use the robot to 
do >1200+ deliberate 
paired experiments 
(with and without 
added water)

Acquire statistically 
significant confirmation of 
the effect 

Find discrepant batches 
and prioritize by the 
sample size needed to 
confirm the observed 
effect

P Nega et al. Appl. Phys. Lett. 119,  (2021) 041903 doi:10.1063/5.0059767  

Presenter Notes
Presentation Notes
Butane 1,4-diammonium lead iodide
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Organoammonium Npairs Ndry+ Nwet+ N++ N+- N-+ N- - McNemar p

Dimethylammonium 192 77 81 71 10 26 85 0.0080

4-Methoxyphenylammonium 144 2 11 0 11 2 131 0.015

Acetamidinium 144 60 33 38 5 22 79 0.0010

iso-Propylammonium 144 3 10 3 7 0 134 0.0083

Water can promote or inhibit crystal formation in ITC

Similar trends observed in thin-film growth

P Nega et al. Appl. Phys. Lett. 119,  (2021) 041903 doi:10.1063/5.0059767  

Use SolTrain to grow 
thin-films…quantify 
grain length 
distribution by SEM



Demonstrating ML in the laboratory
Build interpolative surrogate models from limited initial reaction 
data. Chem. Mater. (2020) doi:10.1021/acs.chemmater.0c01153

Benchmark extrapolative models to predict reaction outcomes for 
novel reagents using physicochemical features J. Phys. Chem C. (2020) 
doi:10.1021/acs.jpcc.0c01726

Model-fusion methods to combine ML predictions and identify 
anomalies J. Chem. Inf. Model. (2021) doi:10.1021/acs.jcim.0c01307

Active learning experiment selection for phase boundary mapping 
& control Chem. Mater. (2022) doi:10.1021/acs.chemmater.1c03564

Benchmark meta-learning and active-meta learning experiment 
planning in the lab  J. Chem. Phys. (2022) doi:10.1063/5.0076636

Combine computer vision with simulation to infer virtual  
experiments from time-series observations Chem Mater. (2022) 
doi:10.1021/acs.chemmater.2c00247

“Bakeoff  competition” of experiment selection algorithms in the 
lab ChemRXiv (2022) doi:10.26434/chemrxiv-2022-l1wpf

Identifying crystal growth additives with iterative machine learning 
+ feature selection. Cryst Growth & Design (2022) doi:10.1021/acs.cgd.2c00522

47* Complete data and code published for every study

https://doi.org/10.1021/acs.jpcc.0c01726
http://dx.doi.org/10.1021/acs.jcim.0c01307
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The Perovskite Challenge Competition

(compute infrastructure)

(automated 
experimentation)

Invite external teams to submit algorithms to (remotely) play this game

Evaluate 11 Bayesian/active/meta-learning algorithms in a standard process

V. Shekar et al. ChemRxiv (2022) doi:10.26434/chemrxiv-2022-l1wpf-v2

(experiment plans/ML)

®

Lausanne  



Repeated competition: 4 different organic reagents x two trials each
• Everyone starts with the same 10 randomly selected experiments

• Request 10 additional experiments

• Make 10 predictions of best outcome

Best performance (most reliable across amines & cold-starts, highest success) by 
Gaussian Process-type methods & Bayesian Additive Regression Trees.

Side information about chemical properties & historical data is useful
Many active algorithms get trapped in local minima depending on the cold-start
All algorithms tend to “clump” in regions of initial success—propose some solutions 
to force recommendations away in a model agonstic way

49
V. Shekar et al. ChemRxiv (2022) doi:10.26434/chemrxiv-2022-l1wpf-v2

The Perovskite Challenge Competition



Development timeline
Software

v 1 (2018)—start observing 
experimental teams, built a pre-
prototype to collect data as we go 
along

V 2 (2019-2020)—build a prototype 
to show functionality, test data 
model

v3 (2021-2022)—full-fledged SQL 
database backend, GUI & REST API

Experiments:

ITC(2017*-2019) automate the 
synthesis experiments

ASCV (2019-2020) automate 
another synthesis approach

Characterization complexity (2020-
2022): more modalities and data 
types

50



Conclusion

• We’ve developed open-source software for dealing 
with hybrid automated+manual experimentation

• We’ve demonstrated distributed experimentation 
across different labs, with instructions coming from 
remote specifiers

• We’ve used this capability to benchmark ML 
methods in the lab, on a real physical problem 
(discovering new perovskites)

• P.S. We’ve discovered and characterized lots of new 
materials…

51



Questions? jschrier@fordham.edu



Current project: Copper Halides Perovskitoids

We’ve modified the RAPID2 
antisolvent vapor diffusion 
approach to be able to grow 
copper halide compounds 
using the iodide salts

During Spring 2023, 
undergraduate Becca 
McAlper’23  has run a 
campaign spanning 31 
organoammonium
components, and structural 
characterization of 11 new 
compounds*

53* When I made this slide a month ago…



Conversation starters: Sustainability

54

It was an unusual opportunity to develop this software:
• Software engineer
• Plus a chemistry postdoc
• Plus some really excellent students

As an academic scientist, it’s unlikely I’ll do more than 
maintenance…

• Staffing turnover was a challenge—industry is calling…
• We can hire people without the skills (but then when they learn...)
• I’m a scientist, not a software engineer (level of interest)
• Typical NSF grants don’t fund software engineers
• A part-time postdoc might keep it alive, but…there are other 

science/career goals



Conversation starters: Automation

55

Automation is great!
• Experiment plans and results are “born digital”
• Easier to capture results, easier to show value 

Automation is over-rated!
• Prediction: We are entering a transitional decade, with increasing “islands of 

automation”
• Lots of valuable legacy equipment will remain in use…need a way to use it
• Early-stage experimentation is still “fiddly” and may not be suited to 

automation or cloud labs unless all unit operations  are well supported.  
Sample transfer is a limiting step

• Make sure that data-enabled tools help in a non-automated world.



Conversation starters: Adoption

56

We must demonstrate value for rank-and-file 
experimental chemists:

• Carrot: Case studies showing increase rate of scientific 
discovery/productivity

• Stick: Requirements by funders/journals/user facilities

Let’s not be afraid of 80% solutions:
• Technology activation barrier is a major challenge.
• What can a single user adopt that creates value? (as opposed 

to requiring an entire community of adopters)
• Lightweight overlays on top of existing tools (e.g., 

spreadsheets) might be enough
• Making onerous tasks easier might be a way to attract users



Conversation starters: Education

57

It is easier to teach a chemist SQL than to teach a 
programmer chemistry…

• We already teach lab notebook skills…
• Opinion:  The best way to do this is to incorporate 

these skills into existing pedagogical lab experiences 
(throughout undergrad curriculum)

• Software Carpentry-type models
• Even small things can boost general awareness
• Maybe we just need lab scientists to care about this, so 

they can have intelligent conversations with software 
engineers and user facility scientists



Next Scientific focus areas
• Rare earth element separation (joint with Los Alamos NL)

• Can we combine molecular simulations + automated 
experiments to develop new separations for f-elements (used in 
radioisotope medicine, critical energy materials)?

• Liposomes (joint with Central Conn. State Univ.)
• Can we uncover physicochemical principles for the formation of 

small lipid structures related to the origins of life?
• Can we develop new liposome formulations as a biotechnology 

platform (drug delivery, synthetic biology, etc.?)
• POSTDOCTORAL RESEARCHER POSITIONS AVAILABLE—Let’s 

chat!

58



Other things I like

• ESAMP / Materials Knowledge Graph (John Gregoire & 
Toyota Research Institute)—create a rich record of 
materials/action graphs, provenance, properties

• Cheminfo / Kadi4mat —smart data processing components 
for building ELNs with data analysis workflows

• XDL (Lee Cronin)—for chemical experiment description and 
reduction to practice

• PyIron — model of code-based workflow specification
• Aquarium (Jeff Klavins)—specifiying ways to tell human 

workers to do things in the lab and getting results back
• Cloud lab model (e.g., Strateos, Emerald Cloud Lab, Carnegie 

Mellon, increasingly National Lab User Facilities…)—as an 
abstraction language (with their own workflow 
management behind the scenes)
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