

Creating Complex Scientific Workflows that Reach Into the Real World

Joshua Schrier, Fordham University

"We" is a deliberate pronoun choice

Alexander Norquist (Haverford College) -solid state chemist & crystallographer.

Emory Chan (Molecular Foundry, LBL) -inorganic lab automation

Technicians:

- Phillip Nega->A123
- Maggie Zelle \rightarrow U. Delaware
- Rodolfo Keesey '20 \rightarrow Washington U. St. Louis
- Becca McAlpern '23 (exchange student from U. Edinburgh) ٠

Collaborators

- Löic Roch (Atinary) •
- Alex Cristafaro & Ben Gordon & Ben Garcia (MIT/Broad)
- Hamed Eramian (Netrias) ٠
- Scott Novotney (TwoSix)
- Nick Leiby (TwoSix)
- Francis Motta (Florida Atlantic)
- Joe Allen (TACC)

Gemma Moran (Columbia) An army of undergraduate students...•

Even a few high school students...

DARPA SD2 (HR001118C0036)

Other senior collaborators

- Sorelle Friedler (Haverford)
- Tonio Buonassisi (MIT)

Postdocs

- Ian Pendleton \rightarrow Relay Pharma. •
- Venkateswaran Shekar \rightarrow Brookhaven NL
- Mansoor Ani Najeeb Nellikkal→Univ. Southh
- Zhi Li \rightarrow Adv. Semiconductors
- Mina Kim
- Shijing Sun→Toyota Research Institute

Software Engineers

- Gary Cattabriga \rightarrow Healthcare startup
- Joe Panizzo

Master's & Undergrad students

- Michael Tynes '20 \rightarrow LANL/UChicago
- Aaron Dharna '20→NJIT/UBC
- Nicole Smina '20 \rightarrow NYU
- Yuanging Tang
- Jan Estrada '20 \rightarrow Stanford
- Mary Caucci '20→Penn State
- Allysa Sherman \rightarrow Boeing
- Liana Alves \rightarrow UCSD

+...

- Peter Cruz Parilla→UW Madison
- Victor Ghosh (Bronx HS Science) \rightarrow Harvard

2

Perovskites: tunable materials for high-performance, low-cost optoelectronics

The Challenge: How do you make a new material?

>10⁷ conditions (too many to test) Only some are productive

Can't we just compute this?

(from underlying physical theory?)

(from ML?)

Good ML models require comprehensive experimental data of success and *failure*.

Humans get stuck in a rut...and pollute the data.

Some reagents and reaction conditions are over-represented in both published datasets and unpublished lab notebooks...

...popularity is uncorrelated to reaction success rates, cost, and technical considerations.

Amine (mmol)

Datasets without anthropogenic bias can be ~20% smaller, yet give better ML models by all metrics.

1.0

1.2

1.0

1.2

8.0

^{6.0} ≥

, Acid

2.0 0.0

8.0

^{6.0} ≥

4.0 pio VOI

2.0

4.0

4.0

Organic, M 3.0

Max Volume

3.0

Organic, M

1.0

Nature 573, 251–255 (2019) doi:10.1038/s41586-019-1540-5

1.0

A Dream: Autonomous research labs

Perspective & Review article: *Matter* (2021) <u>10.1016/j.matt.2021.06.036</u>

Opinion: Automated experimentation will improve reproducibility and replicability.

Complete disclosure of laboratory process.

Cross-lab replicability.

Complete record of success and failure ("dark reactions") for ML models *Nature* **533**, 73-76 (2016) doi:10.1038/nature17439

Reduce human sampling biases that pollute datasets. Nature 573, 251–255 (2019) doi:10.1038/s41586-019-1540-5

Data capture of "unimportant" details enables "automated serendipity" *Appl. Phys. Lett.* **119**, (2021) 041903 <u>doi:10.1063/5.0059767</u>

However: Automation doesn't solve all problems...

WESTERN PHRI ISHING COMPANY IN

There remains a need to **capture human operator actions** (example: preparing stock solutions, etc.)

Legacy non-automated equipment with

unique capabilities—require data import/export.

Over the next decade, expect **"islands of automation"** (rather than completely autonomous systems) will probably the norm.

Opinion: It's easy to get distracted by robots/gadgets—they're cool, but not the whole story.

The need for experimental workflow management

Putting together the pieces of the puzzle...

Automate the Experiments: Robot-Accelerated Perovskite Investigation and Discovery (RAPID)

Zhi Li & M. Ani Najeeb, et al. *Chem Mater.* 2020 doi:10.1021/acs.chemmater.0c01153 Zhi Li & M. Ani Najeeb, et al. *Chem Mater.* 2022 doi:10.1021/acs.chemmater.1c03564

Collect complete data records: Experiment Specification Capture and Lab Automation Technology Environment **(ESCALATE)**

I.Pendleton & G. Cattabriga, et al. *MRS Communications* (2019) - doi:<u>10.1557/mrc.2019.72</u> http://github.com/darkreactions/ESCALATE

Develop and test machine learning for the Lab!

I. Pendleton et al. J. Phys. Chem C. (2020) doi:10.1021/acs.jpcc.0c01726

- Y. Tang et al. J. Chem. Inf. Model. (2021) doi:10.1021/acs.jcim.0c01307
- P. W. Nega et al., J. Appl. Phys. (2021) doi:10.1063/5.0059767
- V. Shekar et al. J. Chem. Phys. (2022) doi:10.1063/5.0076636
- V. Shekar et al., ChemRXiv (2022) doi:10.26434/chemrxiv-2022-l1wpf

Automating the Experiments with "Robot-ready" reactions

Liana Alves '18 Alyssa Sherman '18 Peter Cruz Parilla '20 Emily Brown '19 Mansoor Ali Najeeb Nellikkal Zhi Li (LBL/Molecular Foundry) Emory Chan (LBL/Molecular Foundry)

Robot-Accelerated Perovskite Investigation & Discovery (RAPID)

Inverse Temperature Crystallization (ITC/WF1/"RAPID 1")

use a retrograde solubility effect to grow large high-quality crystals without strong acids Saidaminov *et al. Nat. Commun.* (2015).

Zhi Li & M. Ani Najeeb et al. Chem. Mater. (2020) doi:10.1021/acs.chemmater.0c01153

Antisolvent Vapor Diffusion (WF3/"RAPID 2")

use slow vapor **transport** of an antisolvent to gradually reduce solubility of the precursor solution Z. Li & M. Ani Najeeb et al. *ChemRxiv (2021) doi:10.33774/chemrxiv-2021-w2c7b*

Chemical diversity:

- Lead halides (single organic cation)
- Ruddlesden-Popper phases (multiple organic cations)
- Copper halides

ITC - 96 parallel reactions, \sim 5 hr time scale ASVC - 24 parallel reactions, \sim 18 hr time scale

Standard characterization

- X-ray diffraction
- Optical imaging microplate reader

DARPA High-throughput characterization capabilities

Microplate-based absorption & fluorescence spectroscopy

 $[bdaH_2][PbI_3]$

Accelerated Sample Aging Chamber

- Up to nine samples at the same time
- Illumination to 1.5 Sol
- Humidity to 86 % relative humidity
- Temperature to 85 °C
- Images are collected at regular intervals
- Color calibration is achieved using RGB values from color standards
- Computer-vision with unsupervised clustering to measure degradation kinetics

The need for experimental workflow management

Challenge: Managing experiment plans and comprehensive data capture

Object[Protocol, AbsorbanceSpectroscopy, "id:AEqRl9K5dwAv"][Data][[21]] // PlotAbsorbanceSpectroscop

Experiment Specification Capture and Lab Automation Technology Environment Es Ca

Provide an Application Programming Interface (API) for humans or algorithms to **specify** new experiments

Generate **instructions** for human operators and robots to conduct experiments.

Archive experimental data and metadata

Add **interpretive layer** (cheminformatics, stoichiometric calculations, etc.) to collected data

Facilitate data reporting and export

40.078 57 138.905

La

127.6

le

How do you describe an experiment?

Experiment descriptions span levels of specificity.

I. Pendleton & G. Cattabriga, et al. MRS Communications (2019) - doi:10.1557/mrc.2019.72 - https://github.com/darkreactions/

Templates constrain feasible experiments

What experiments are feasible, given the stock solution concentrations?

What are instrument limitations?

Models specify notional experiment plan

	NitoV03/ 1-12500	2/ Solarical Amine	Ţ	51
02/02/22	From KE SO. 3	2, 70°C 45 mg,	PH=1~2,-6°C/	hr slew ourj
Reference	NH440319)	H2503157	Amine (2)	(hots)
041251.1	0.1562	1.3826	0. 12 77 19-cmp	2.1536
7	6. 1545	1.3334 xt	al 0,1309	2.1052
pick-	P-1	· green studge	a comper	
041251.2	0.1566	1.3895	0.1335	2.1816
pick/4	011545	1.3834	0.1309	2,1052
Vleak-	¥ 4	· · · Elemental S	e ponder	
011251-3	0.1597	(3775	01560	2.3277
10	01545	1.3834 4	19 0.1307	2,1052
14	0:2	green studi	r lip.	ania, day pages article

General specification of:

- Materials to be used
- Actions to be performed
- *Observations* to be collected for the desired experiment

"Wildcard" parameters can be:

- *Sampled* within template constraints
- *Enumerated* to give a complete state set
- Specified explicitly by user or algorithm

(V2) Web-based forms to instruct and collect observations from human operators...

	Run Data	Run Data Reagent Preparation						
Date Created	2018-09-13	Reagent	Temp (C)	Stir (RPM)				
Time Created _UTC	14_00_50	1	<u>null</u>	<u>null</u>				
Laboratory	LBL	2	<u>75</u>	<u>450</u>				
Operator Name	Zhi Li	3	<u>75</u>	<u>450</u>				
Exp Workflow Ver	1.10							
Generator Workflow Ver	1.20							
Notes	Experiments perfo	Experiments performed based challenge problem recommendations						
Experimental Summary:	No modifications to	otocol						
	Chemical Abbreviation	Nominal (Ideal) Amount	Actual (Empirical) Amount	Measurement Unit				
Reagent 1	Chemical Abbreviation GBL	Nominal (Ideal) Amount 20.6	Actual (Empirical) Amount 30.0	Measurement Unit milliliter				
Reagent 1 Reagent 2	Chemical Abbreviation GBL Final Volume =	Nominal (Ideal) Amount 20.6 27.2	Actual (Empirical) Amount 30.0 37.5	Measurement Unit milliliter milliliter				
Reagent 1 Reagent 2 Chemical 1	Chemical Abbreviation GBL Final Volume = Pbl2	Nominal (Ideal) Amount 20.6 27.2 18.8	Actual (Empirical) Amount 30.0 37.5 18.7	Measurement Unit milliliter milliliter gram				
Reagent 1 Reagent 2 Chemical 1 Chemical 2	Chemical Abbreviation GBL Final Volume = Pbl2 EtNH3I	Nominal (Ideal) Amount 20.6 27.2 18.8 14.1	Actual (Empirical) Amount 30.0 37.5 18.7 14.2	Measurement Unit milliliter milliliter gram gram				
Reagent 1 Reagent 2 Chemical 1 Chemical 2 Chemical 3	Chemical Abbreviation GBL Final Volume = Pbl2 EtNH3I GBL	Nominal (Ideal) Amount 20.6 27.2 18.8 14.1 27.2	Actual (Empirical) Amount 30.0 37.5 18.7 14.2 27.5	Measurement Unit milliliter milliliter gram gram milliliter				
Reagent 1 Reagent 2 Chemical 1 Chemical 2 Chemical 3 Reagent 3	Chemical Abbreviation GBL Final Volume = Pbl2 EtNH3I GBL Final Volume =	Nominal (Ideal) Amount 20.6 27.2 18.8 14.1 27.2 18.7	Actual (Empirical) Amount 30.0 37.5 18.7 14.2 27.5 17.0	Measurement Unit milliliter gram gram milliliter milliliter				

9.2

GBL

Chemical 2

Google sheets front-end... ...but a JSON data object!

9.2

milliliter

REST API & GUI allows creation and retrieval of

- Materials
- Properties
- Action Definitions
- Experiment Specifications
- Results

```
<Response [200]>
GET: OK
Found 294 resources, returning list of dicts)
[{'description': 'Gamma-Butyrolactone'},
{'description': 'Dimethyl sulfoxide'},
{'description': 'Formic Acid'},
{'description': 'Lead Diiodide'},
{'description': 'Ethylammonium Iodide'},
{'description': 'Phenethylammonium iodide '},
{'description': 'Acetamidinium iodide'},
{'description': 'n-Butylammonium iodide'},
```


REST API allows creation and retrieval of

- Materials
- Properties
- Action Definitions
- Experiment Specifications
- Results

```
<Response [200]>
GET: OK
Found 15 resources, returning list of dicts)
[{'description': 'particle-size {min, max}'},
{'description': 'mesh {min, max}'},
{'description': 'capacity'},
{'description': 'cross-linkage %'},
{'description': 'moisture % {min, max}'},
```


Search	
Export to csv	
Chemical Name	Identifiers ↑= ↓=
1,3-dimethylpyridinium iodide	Chemical_Name: 1,3-dimethylpyridinium iodide Abbreviation: 13dimethylpyridinium InChI: InChI=1S/C7H10N.HI/c1-7-4-3-5-8(2)6-7;/h3-6H,1-2H3;1H/q+1; InChIKey: BVUPLMFUPRCOEH-UHFFFAOYSA-N SMILES: CC1=C[N+](=CC=C1)C.I Molecular_Formula: C7H11IN+
1,4-Benzene diammonium iodide	Chemical_Name: 1,4-Benzene diammonium iodide Abbreviation: Benzenediaminedihydroiodide InChIKey: RYYSZNVPBLKLRS-UHFFFAOYSA-N SMILES: C1=CC(=CC=C1[NH3+])[NH3+].[I-].[I-] Molecular_Formula: C6H10I2N2 InChI: InChI=1S/C6H8N2.2HI/c7-5-1-2-6(8)4-3-5;;/h1-4H,7-8H2;2*1H
1,4-Benzenediammonium bromide	Chemical_Name: 1,4-Benzenediammonium bromide Abbreviation: BenzenediammoniumBromide InChl: InChI=1S/C6H8N2.2BrH/c7-5-1-2-6(8)4-3-5;;/h1-4H,7-8H2;2*1H InChIKey: KTHOOQOVVOZMIG-UHFFFAOYSA-N SMILES: [NH3+]c1ccc([NH3+])cc1.[Br-].[Br-] Molecular_Formula: C6H10Br2N2
	Search Q ADD MATERIAL Export to csv Chemical Name T L L ADD ADD ADD ADD ADD ADD


```
<Response [200]>
GET: OK
Found one resource, returning dict
```


Selected Lab	H Create new action def			
	Description:			
	cool		IVE C	LEAR ALL ACTIONS
	Parameters:			
	speed			
🌣 Start	temperature			
	volume			
	duration			
Done	Disease Dansat 4	SAVE CANCEL		
	Dispense Reagent 1	- Done	🎝 End	
to temperature	10			
Preheat			1	
Tienear				
		4		
		to dispense	Done	
		Dispense Reagent 3		
		- inpensor nougenite		


```
resp = post_data(
    f'experimenttemplate/{perovskite_demo["uuid"]}/create',
    editable_template
```

<Response [200]> POST: OK, returning new resource dict

resp

{'new_experiment_created': 'http://localhost:8000/api/experime

Experiment queue and instructions performance in the laboratory

Overview of queued experiment Demo Experiment				
Queued by Nicole Smina Select PENDING - queue Queued on July 28, 2022, 11:43 a m				
Select 1 - Template Workflow 1 queue priority*	Experiment Paramet	ters for Test_Experiment		
Outcome Submission OPEN	> 🎛 Dispense Rea	gent 7 - Acid Volume 2 : Solven	t -> 96 Well Plate well : A1	
Update Parameters OPEN	0.0	mL	NUM	-
	Actual value			
Experiment Tags Tags: NOTHING SELECTED -	0	mL	NUM	•
To create a new tag, click here	> 🖬 Dispense Rea	gent 7 - Acid Volume 1 : Solven	t -> 96 Well Plate well : A1	
Robot File Select robot file generator				
NO ROBOT FILE GENERATOR SELECTED -	179.0	mL	NUM	•
Post processor	Actual value			
Select post processor	0	mL	NUM	-
History	> 🖬 Dispense Rea	gent 3 - Stock B : Solvent -> 96	Well Plate well : A1	
Time stamp Postprocessor used	Value			
Files associated with Demo Experiment	23.0	mi	МНМ	•
Upload New Files:				
Upload file Browse				
ADD FILE				
UPDATE EXPERIMENT RETURN TO EXPERIMENT QUEUE				

pense Reagent 7 - Acid Volume 2 : Solve	nt -> 96 Well Plate well : A1	
mL	NUM +	
lue	Step 4 of 5: Define Outcome Templates	
mL		
nse Reagent 7 - Acid Volume 1 : Solve	nt -> Outcome 1 Description success	Outcome type*

REST API allows creation and retrieval of

- Materials
- Properties
- Action Definitions
- Experiment Specifications
- Results

results

action_source Acid Solvent Stock A Stock B crystal_score

experiment_id	action_dest					
59c19e0e-fafd-4562-a6af-73b24d7778d4	Plate: 96 Well Plate well#: A1	0.0	0.0	0.0	0.0	1
	Plate: 96 Well Plate well#: A10	0.0	0.0	0.0	0.0	1

escalation live data dashboard

http://escalation.sd2e.org/

https://github.com/twosixlabs/escalation

Export tabular reports from the unstructured data

 Automate the featurization with two python modules:
 (1) chemdescriptor: interfaces with RDKit, ChemAxon, and Mordred to automate featurization of organic molecule components <u>https://github.com/darkreactions/chemdescriptor</u>
 (2) calculator: provide safe evaluation of arbitrary numerical calculations involving observed features/descriptors

Comprehensive data capture enables new types of *data-enabled publications* enabling reproducibility and replicability.

Zhi Li & M. Ani Najeeb et al. Chem. Mater. (2020) doi:10.1021/acs.chemmater.0c01153

What can you do with comprehensive data capture?

Answer: Crystallization success is 2% less likely at edges than middle over all reactions.

Effect is larger in some amines (e.g., guanidinium)

Data set: TACC/0026.perovskitedata.csv

Method: Error bars estimated by bootstrapping; One sided p-values calculated by shuffling **Analysis:** <u>https://www.wolframcloud.com/obj/jschrier0/Published/2019.07.09</u> perovskite edge success.nb

Crystallization success by amine

		Mean success probabilities						
		N _{expt}	edge: 4	interior: 4	edge: 3+	interior: 3+		
	Phenethylammonium iodide	96	Θ	0	0.0556	0.0333		
	n-Butylammonium iodide	112	0.0652	0.0909	0.326	0.273		
	Ethylammonium Iodide	1461	0.183	0.190	0.272	0.295		
p= 0.004	Methylammonium iodide	112	0.478	0.742	0.761	0.833		
p= 0.024	Guanidinium iodide	384	0.174	0.267	0.285	0.358		
	Acetamidinium iodide	336	0.230	0.257	0.452	0.429		
	Formamidinium Iodide	216	0.422	0.460	0.578	0.802		
	Imidazolium Iodide	192	0.347	0.342	0.514	0.617		
	Benzylammonium Iodide	132	Θ	Θ	0.0175	0.0133		
	neo-Pentylammonium iodide	24	0.0833	0.417	0.167	0.500		
	i–Propylammonium iodide	24	0.250	0.0833	0.333	0.0833		
	iso-Butylammonium iodide	240	0.633	0.553	0.633	0.553		
	Dimethylammonium iodide	96	0.194	0.317	0.861	0.850		
	n-Dodecylammonium iodide	96	Θ	Θ	0.0278	Θ		
p= 0.035	Pyrrolidinium Iodide	192	0.153	0.275	0.167	0.292		
	Ethane-1,2-diammonium iodide	40	0.813	0.667	0.813	0.667		

Data set: TACC/<u>0026.perovskitedata.csv</u>

Method: Error bars estimated by bootstrapping; One sided p-values calculated by shuffling **Analysis:** <u>https://www.wolframcloud.com/obj/jschrier0/Published/2019.07.09</u> <u>perovskite_edge_success.nb</u>

Use machine learning models for batch-to-batch quality control

amine	MCC	precision	recall	empiricalCrystallizationRate	highQualityCrystallizationRate	nExpts	solvent	parameters
N,N-Dimethylethane- 1,2-diammonium iodide	1.0	1.0	1.0	0.0208333	0.0208333	96	{Dimethylformamide}	{-281.967, 89.1619, 133
4-Fluoro-Benzylammonium iodide	0.941816	0.956522	0.956522	0.252747	0.197802	91	{Dimethylformamide}	{-8.9111, 6.19455, 2.28
Cyclohexylammonium iodide	0.938867	0.952381	0.952381	0.221053	0.105263	95	{Dimethyl sulfoxide}	{-41.6045, 18.7744, 0.72
t-Butylammonium Iodide	0.934211	0.947368	0.947368	0.2	0.2	95	{Gamma-Butyrolactone}	{-60.5375, 35.232, 19.4
i-Propylammonium iodide	0.925451	0.954545	0.913043	0.11165	0.0631068	206	{Gamma-Butyrolactone}	{-218.29, 117.815, 81.9
4-Methoxy-Phenylammonium iodide	0.92168	0.94	0.959184	0.352518	0.0863309	139	{Gamma-Butyrolactone}	{-46.7178, 23.457, 22.8
N-propylammonium Iodide	0.880414	0.888889	0.888889	0.0708661	0.0	127	{Gamma-Butyrolactone}	{-16.9666, 8.03303, 10.0
4-Trifluoromethyl-Benzylammonium iodide	0.861254	0.75	1.0	0.0319149	0.0	94	{Gamma-Butyrolactone}	{-1590.88, 579.759, 498
iso-Butylammonium iodide	0.833309	0.908537	0.949045	0.560714	0.560714	280	{Gamma-Butyrolactone}	{-10.1541, 4.32014, 0.93
Propane-1,3-diammonium iodide	0.832774	0.911765	0.885714	0.4	0.342857	175	{Dimethylformamide}	{-23.7089, 12.8737, 4.62
N,N-dimethylpropane- 1,3-diammonium iodide	0.831411	0.918367	0.918367	0.515789	0.168421	95	{Dimethylformamide}	{-4.85746, 4.98338, 0.28
Phenylammonium Iodide	0.810443	0.9	0.84375	0.333333	0.302083	96	{Gamma-Butyrolactone}	{-4.12565, 2.27743, 1.69
	13300 131		1001000 10000	C20 202.02	626 BMC 202	1.285		

Use extreme (meta)data collection as a substitute for experimental control

- Lab humidity is hard to control, but we can measure it.
- Consider these fluctuations as natural experiments.

Analyze 8000+ historical experiments, find cases where similar reactions were performed under both *high* and *low* humidity conditions.

Look for discrepancies between the reaction outcomes at high and low humidity Use a statistical model to prioritize the most interesting experiments to explore. P Nega et al. *Appl. Phys. Lett.* **119**, (2021) 041903 doi:10.1063/5.0059767

Limited Sloppiness + Data Analysis = "Automated serendipity"

Find discrepant batches and prioritize by the sample size needed to confirm the observed effect Use the robot to do >1200+ deliberate paired experiments (with and without added water)

Acquire statistically significant confirmation of the effect

Water can promote or inhibit crystal formation in ITC

Organoammonium	N _{pairs}	N _{dry+}	N _{wet+}	N ₊₊	N ₊₋	N_+	N	McNemar p
Dimethylammonium	192	77	81	71	10	<u>26</u>	85	0.0080
4-Methoxyphenylammonium	144	2	11	0	<u>11</u>	2	131	0.015
Acetamidinium	144	60	33	38	5	<u>22</u>	79	0.0010
iso-Propylammonium	144	3	10	3	<u>7</u>	0	134	0.0083

Similar trends observed in thin-film growth

Use SolTrain to grow thin-films...quantify grain length distribution by SEM

P Nega et al. Appl. Phys. Lett. 119, (2021) 041903 doi:10.1063/5.0059767

Demonstrating ML in the laboratory

Build interpolative surrogate models from limited initial reaction data. *Chem. Mater. (2020)* doi:10.1021/acs.chemmater.0c01153

Benchmark extrapolative models to predict reaction outcomes for novel reagents using physicochemical features J. Phys. Chem C. (2020) doi:10.1021/acs.jpcc.0c01726

Model-fusion methods to combine ML predictions and identify anomalies J. Chem. Inf. Model. (2021) doi:10.1021/acs.jcim.0c01307

Active learning experiment selection for phase boundary mapping & control *Chem. Mater.* (2022) doi:10.1021/acs.chemmater.1c03564

Benchmark meta-learning and active-meta learning experiment planning in the lab *J. Chem. Phys. (2022)* doi:10.1063/5.0076636

Combine computer vision with simulation to infer virtual experiments from time-series observations *Chem Mater.* (2022) doi:10.1021/acs.chemmater.2c00247

"Bakeoff competition" of experiment selection algorithms in the lab ChemRXiv (2022) doi:10.26434/chemrxiv-2022-l1wpf

Identifying crystal growth additives with iterative machine learning + feature selection. Cryst Growth & Design (2022) doi:10.1021/acs.cgd.2c00522

* Complete data and code published for every study

The Perovskite Challenge Competition

Invite external teams to submit algorithms to (remotely) play this game

Evaluate **11 Bayesian/active/meta-learning algorithms** in a standard process

The Perovskite Challenge Competition

Repeated competition: 4 different organic reagents x two trials each

- Everyone starts with the same 10 randomly selected experiments
- Request 10 additional experiments
- Make 10 predictions of best outcome

Best performance (most reliable across amines & cold-starts, highest success) by Gaussian Process-type methods & Bayesian Additive Regression Trees.

Side information about chemical properties & historical data is useful

Many active algorithms get trapped in local minima depending on the cold-start

All algorithms tend to "clump" in regions of initial success—propose some solutions to force recommendations away in a model agonstic way

V. Shekar et al. ChemRxiv (2022) doi:10.26434/chemrxiv-2022-l1wpf-v2

Development timeline

Software

Experiments:

v 1 (2018)—start observing experimental teams, built a preprototype to collect data as we go along ITC(2017*-2019) automate the synthesis experiments

V 2 (2019-2020)—build a prototype to show functionality, test data model

v3 (2021-2022)—full-fledged SQL database backend, GUI & REST API

ASCV (2019-2020) automate another synthesis approach

Characterization complexity (2020-2022): more modalities and data types

Conclusion

- We've developed open-source software for dealing with hybrid automated+manual experimentation
- We've demonstrated distributed experimentation across different labs, with instructions coming from remote specifiers
- We've used this capability to benchmark ML methods in the lab, on a real physical problem (discovering new perovskites)
- P.S. We've discovered and characterized lots of new materials...

Questions? jschrier@fordham.edu

Current project: Copper Halides Perovskitoids

We've modified the RAPID2 antisolvent vapor diffusion approach to be able to grow copper halide compounds using the iodide salts

During Spring 2023, undergraduate Becca McAlper'23 has run a campaign spanning **31** organoammonium components, and structural characterization of **11 new** compounds*

* When I made this slide a month ago...

Conversation starters: Sustainability

It was an unusual opportunity to develop this software:

- Software engineer
- Plus a chemistry postdoc
- Plus some really excellent students

As an academic scientist, it's unlikely I'll do more than maintenance...

- Staffing turnover was a challenge—industry is calling...
- We can hire people without the skills (but then when they learn...)
- I'm a scientist, not a software engineer (level of interest)
- Typical NSF grants don't fund software engineers
- A part-time postdoc might keep it alive, but...there are other science/career goals

Conversation starters: Automation

Automation is great!

- Experiment plans and results are "born digital"
- Easier to capture results, easier to show value

Automation is over-rated!

- Prediction: We are entering a transitional decade, with increasing "islands of automation"
- Lots of valuable legacy equipment will remain in use...need a way to use it
- Early-stage experimentation is still "fiddly" and may not be suited to automation or cloud labs unless all unit operations are well supported. Sample transfer is a limiting step
- Make sure that data-enabled tools help in a non-automated world.

Conversation starters: Adoption

We must demonstrate value for rank-and-file experimental chemists:

- Carrot: Case studies showing increase rate of scientific discovery/productivity
- Stick: Requirements by funders/journals/user facilities

Let's not be afraid of 80% solutions:

- Technology activation barrier is a major challenge.
- What can a single user adopt that creates value? (as opposed to requiring an entire community of adopters)
- Lightweight overlays on top of existing tools (e.g., spreadsheets) might be enough
- Making onerous tasks easier might be a way to attract users

Conversation starters: Education

It is easier to teach a chemist SQL than to teach a programmer chemistry...

- We already teach lab notebook skills...
- Opinion: The best way to do this is to incorporate these skills into *existing* pedagogical lab experiences (throughout undergrad curriculum)
- Software Carpentry-type models
- Even small things can boost general awareness
- Maybe we just need lab scientists to care about this, so they can have intelligent conversations with software engineers and user facility scientists

Next Scientific focus areas

• Rare earth element separation (joint with Los Alamos NL)

 Can we combine molecular simulations + automated experiments to develop new separations for f-elements (used in radioisotope medicine, critical energy materials)?

• Liposomes (joint with Central Conn. State Univ.)

- Can we uncover physicochemical principles for the formation of small lipid structures related to the origins of life?
- Can we develop new liposome formulations as a biotechnology platform (drug delivery, synthetic biology, etc.?)
- POSTDOCTORAL RESEARCHER POSITIONS AVAILABLE—Let's chat!

Other things I like

- ESAMP / Materials Knowledge Graph (John Gregoire & Toyota Research Institute)—create a rich record of materials/action graphs, provenance, properties
- Cheminfo / Kadi4mat smart data processing components for building ELNs with data analysis workflows
- XDL (Lee Cronin)—for chemical experiment description and reduction to practice
- Pylron model of code-based workflow specification
- Aquarium (Jeff Klavins)—specifiying ways to tell human workers to do things in the lab and getting results back
- Cloud lab model (e.g., Strateos, Emerald Cloud Lab, Carnegie Mellon, increasingly National Lab User Facilities...)—as an abstraction language (with their own workflow management behind the scenes)