
1

Alex Aiken
Stanford/SLAC

Task-Based Programming with Legion

2

What is Legion?

A task-based programming model for heterogeneous,
parallel, distributed machines

Designed to be
• High performance
• Performance portable
• Productive

3

An Example: S3D
Simulates chemical reactions

DME (30 species)
Heptane (52 species)
PRF (116 species)

Two parts
Physics

Nearest neighbor
communication
Data parallel

Chemistry
Local
Complex task parallelism

5

Planning the science simulation

•  Recent 3D simulation on Jaguar
was used to extrapolate and plan
a target Titan simulation

•  Planned simulation will have more
grid points and/or larger chemistry

•  Will need a month on 12,000
hybrid nodes of Titan

Figure 5: Computational domain and grid to be used for simulations of the CRF HCCI engine.

Figure 6: Reaction and diffusion structures for OH radical during the third stage thermal explosion of a high-pressure
DME fueled autoignition process.Recent 3D DNS of auto-ignition with 30-species

DME chemistry (Bansal et al. 2011)

4

Weak Scaling: PRF

3X

7X

5

What Led to the Improvement?

• Sequential semantics

• Asynchronous tasks

• Late binding of performance decisions
• Where tasks execute
• Where data is placed
• How data is partitioned
• …

6

Sequential Semantics

S3D Skeleton

task top_level() {
V = simulation volume
P[N] = partition V
G[N] = ghost cells of V
repeat

Chem(P[i]) for i = 1..N
Phys(P[i],G[i]) for i = 1..N

until done
}

task Chem(V) { … }
task Phys(V,G) { … }

• A sequential program
• With a parallel execution

• Greatly simplifies
debugging

• No race conditions!

• Sequential semantics can
be relaxed if desired

• E.g., for reductions

7

Some Actual S3D Code …

if compression() then
__demand(__index_launch)
for color in is_rank do
CalcGammaTask(lp_int_rank[color])

end

__demand(__index_launch)
for color in is_rank do
Sum3Task(lp_int_rank[color].{X=RHS_1_DX, Y=RHS_1_DY, Z=RHS_1_DZ},

lp_q_rank[color].{RHO_U},
false)

end

__demand(__index_launch)
for color in is_rank do
Sum3Task(lp_int_rank[color].{X=RHS_2_DX, Y=RHS_2_DY, Z=RHS_2_DZ},

lp_q_rank[color].{RHO_V},
false)

end

__demand(__index_launch)
for color in is_rank do
Sum3Task(lp_int_rank[color].{X=RHS_3_DX, Y=RHS_3_DY, Z=RHS_3_DZ},

lp_q_rank[color].{RHO_W},
false)

end
…

Code is written in Regent.

Writing to the Legion C++ API
has more details but the
same structure.

8

The Benefits of Asynchrony

Overlap communication and computation

Overlap runtime analysis with the application
Runtime analysis is distributed SPMD fashion across nodes

In general, also get task parallelism

3X

7X

9

Late Binding of Decisions

After
the program is written
the machine is selected
the input is chosen

It is easy to
Change the partitioning of data
Change the assignment of tasks

E.g., move a task from GPU to CPU
Change the placement of data

E.g., from the framebuffer to zero-copy memory
And more …

10

Mapping
Task * GPU,CPU; # tasks run on GPUs by default

Task AwaitMPITask, CalcDummyTask, HandoffToMPITask, InitPartitionsTask, InitScaleTask, InitTemperatureTask, fill_cpe,
fill_lr_int, fill_masses CPU;

Region * * GPU FBMEM; # for all GPU tasks, arguments use FBMEM as default
Region * * CPU SYSMEM; # for CPU tasks, arguments use SYSMEM as default

Layout * * * SOA F_order; # all regions use struct of array and Fortran order

…

11

The Secret Sauce

The ability to easily change performance-relevant
decisions after the program is running on a machine has
been key

We often try a lot of different strategies!

The biggest improvements of Legion over other
approaches have not been because Legion’s
implementation strategy cannot be imitated.

The improvements were because it was more productive
to experiment in Legion to find an implementation
strategy that works well.

12

S3D: Heptane 483

Runtime
analysis on

CPUs

CPUs

GPU

Profile from one node

Time

13

S3D: Heptane 963

CPU runtime
analysis

Application
work on
CPUs

GPU

Profile from one node

Problem: 963 points per GPU did not fit on the GPU.

Solution: Move some tasks to the CPU to reduce memory pressure.

14

Impact on Portability & Productivity

Many more ports of
Legion-S3D than MPI-
S3D

Titan
Summit
Piz Daint
Lassen
Cori
Perlmutter
Frontier

Many more variations of
Legion-S3D

Different boundary
conditions
Different reactions

Example: Simulation of
PRF with 116 chemical
species

The most complex such
simulation ever done

15

Comparison with MPI

Legion

Sequential semantics
Asynchronous by
default
Strong data model

System understands
the partitioning of data

Late binding of
performance decisions

Downside: Higher
runtime overhead

MPI

Explicit parallel
programming
Synchronous by default
Bag-of-bits data model
Many performance
decisions baked into
the code

Upside: Minimal
runtime overhead

16

Data in Legion

Data partitioning

Partitioning primitives

Examples

17

Partitioning

Partitioning data is a distinctive feature of
distributed computing

Or whenever there are multiple, distinct memories

How should data be partitioned?

18

Partitioning

19

Partitioning

SP

N

20

Hierarchical Partitioning

N

s1 s3…

SP

p1 p3…

21

g1 g3…

Multiple Partitions

N

s1 s3…

SP

p1 p3…

22

Legion Example

task distribute_charge(rpn, rsn, rgn : region(node),
rw : region(wire))

where
reads(rw.{in_ptr, out_ptr, current})
reduces +(rpn.charge, rsn.charge, rgn.charge)

{

…

}

Tasks are the unit of
parallel execution.

Regions are n-
dimensional tables
(tensors) with typed

columns (fields).

Privileges declare how a task
will use its region arguments.

23

Legion Example

task distribute_charge(rpn, rsn, rgn : region(node),
rw : region(wire))

where
reads(rw.{in_ptr, out_ptr, current})
reduces +(rpn.charge, rsn.charge, rgn.charge)

{

…

}

Uses both views of the shared
nodes simultaneously.

g1 g3…

N

s1 s3…

SP

p1 p3…

24

Observation: Compositionality

Multiple partitions of the same data are needed for
scalable software composition

Consider two libraries
Written independently
Using different partitioning strategies
How can they be composed?

Examples
A simulation, a solver, and a visualization library
A data analysis pipeline

25

Partitioning Operators

Legion has a rich subsystem of partitioning
primitives

Each primitive is designed for efficient, scalable
parallel implementation

Combinations of primitives express sophisticated
partitioning strategies

26

Index Voltage SorP
1 1.4 shared
2 2.5 private
3 0.3 shared
4 6.2 shared
5 1.4 private
6 0.0 shared
… … …

Index Voltage SorP
1 1.4
2 2.5
3 0.3
4 6.2
5 1.4
6 0.0
… …

Partitioning by Field

Nodes

PartitionByField(nodes, nodes.SorP)

27

Independent Partitions

Partitioning by field is an independent partition
A partitioning that depends on no other partitions
Another example: PartitionEqual(R,5)

Legion also has dependent partitioning primitives
Compute new partitions from existing partitions
Allows regions to be co-partitioned easily

28

Partition By Image

Treat a pointer field
as a function

Construct
compatible partition
of destination
region

Some elements of
destination may be
in more than one
subregion
Or in no subregion

Region 1 Region 2

29

Partition By PreImage

Again treat a pointer
field as a function

Construct a compatible
partition of the source
region

Region 1 Region 2

30

Sparse Matrix Representations
3
0

31

Coordinate Trees

Region 1

Region 2

Region 3

32

Images and Preimages

33

Sparse Matrix Partitioning Level-by-Level

Partition one level first

Use images and
preimages to
compatibly partition the
other levels

34

Task-Based Libraries

Task graphs naturally compose
Combining two or more task graphs is a task graph

Late binding of decisions makes interfaces flexible
Libraries can be parameterized in ways that are impossible in
other approaches

And we can automate the search for the best partitioning
and mapping

For a specific machine and workload

35

Task-Based Libraries

Task1(Args)

Task2(Args’)

Composed:
Task1(Args)
Task2(Args’)

36

DISTAL & SpDISTAL

DISTAL is a Legion system for dense tensor algebra
SpDISTAL is a variant for sparse tensor algebra

DISTAL is a DSL for tensor algebra
Given an expression e in tensor algebra, generate a task-
based library to compute e
Integrated with a compiler to generate tuned kernels

37

Distributed Dense Matrix Multiply

Cannon’s Algorithm (1969)

PUMMA (1994)

SUMMA (1995)

Johnson’s Algorithm (1995)

Solomonik’s Algorithm (2011)

COSMA (2019)

Describe an n-dimensional
target machine

Data partitioning
and distribution

Schedule describes how
kernel interacts with the
distributed data

38

Comparison with MM Libraries

0.95x COSMA 1.25x ScaLAPACK 0.85x COSMA

39

Generalizes to All of Tensor Algebra
(CPUs)

45x

3.7x

2.5x

1.8x

40

Generalizes to All of Tensor Algebra
(GPUs)

3.9x

2.9x

43x

19x

41

SpMV

SpMM

SpAdd3

And Sparse Tensor Algebra

SpDISTAL

42

FlexFlow is a Legion library for DNN training and
inference

Idea #1: Exploit Legion’s expressive data partitioning to
partition tensors in DNN’s in ways that Pytorch and
TensorFlow do not consider

E.g., tensor = [image, height, width, channel]
Standard approaches partition the image dimension

FlexFlow can partition/parallelize data/computations in
many more dimensions

FlexFlow: Deep Neural Networks

43

FlexFlow: Deep Neural Networks

Idea #2: Automate the partitioning process
Instead of searching for a good partitioning by hand

Use the fact that program structure remains the same –
only the partitioning of data changes

And do this for every layer of the network
Allow different layers to have different partitioning strategies

44

44

Data parallelism

Parameter

Sa
m

pl
e

GPU1

GPU2

GPU3

GPU4

FlexFlow

45

2
5
/
4
3

Results: Bert-Large
Unity is the latest version of FlexFlow …

46

ResNeXt-50

Inception-v3

CANDLE-Uno

MLP

DLRM

XDL

2
6
/
4
3

47

Selected Other Legion Libraries

CuNumeric (NVIDIA)
A open source, drop-in replacement for NumPy
See Seshu Yamajala’s talk at 11:30 on Thursday

LegionSolvers (in progress)
Sparse iterative distributed solvers

Distributed Sparse SciPy (in progress)

48

Summary

• Task-based programming systems provide a sequential
programming model with implicit parallelism

Late binding of performance decisions has proven key to
achieving the best performance

Makes it possible to easily explore a large space of
configurations

Strong data model enables data partitioning that is
understood by the system

49

Questions?

