Task-Based Programming with Legion

Alex Aiken Stanford/SLAC

What is Legion?

A task-based programming model for heterogeneous, parallel, distributed machines

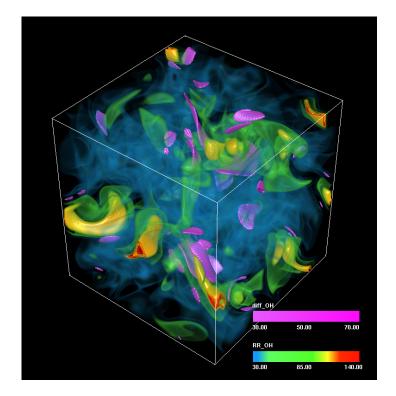
Designed to be

- High performance
- Performance portable
- Productive

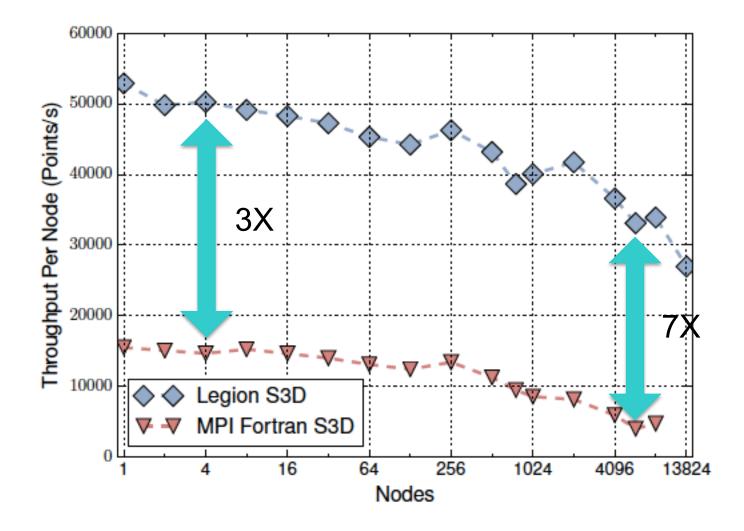
An Example: S3D

Simulates chemical reactions

- DME (30 species)
- Heptane (52 species)
- PRF (116 species)
- Two parts
 - Physics
 - Nearest neighbor communication
 - Data parallel
 - Chemistry
 - Local
 - Complex task parallelism



Weak Scaling: PRF



What Led to the Improvement?

- Sequential semantics
- Asynchronous tasks
- Late binding of performance decisions
 - Where tasks execute
 - Where data is placed
 - How data is partitioned
 - ...

Sequential Semantics

S3D Skeleton

```
task top_level() {
    V = simulation volume
    P[N] = partition V
    G[N] = ghost cells of V
    repeat
        Chem(P[i]) for i = 1..N
        Phys(P[i],G[i]) for i = 1..N
        until done
}
```

```
task Chem(V) { ... }
task Phys(V,G) { ... }
```

- A sequential program
 - With a parallel execution
- Greatly simplifies debugging
 - No race conditions!
- Sequential semantics can be relaxed if desired
 - E.g., for reductions

Some Actual S3D Code ...

```
if compression() then

___demand(___index_launch)

for color in is_rank do

CalcGammaTask(lp_int_rank[color])

end
```

```
end
```

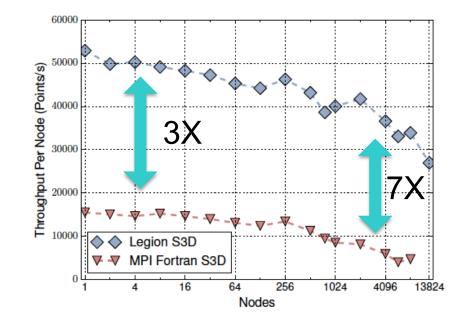
. . .

Code is written in Regent.

Writing to the Legion C++ API has more details but the same structure.

The Benefits of Asynchrony

- Overlap communication and computation
- Overlap runtime analysis with the application
 - Runtime analysis is distributed SPMD fashion across nodes
- In general, also get task parallelism



Late Binding of Decisions

After

- the program is written
- the machine is selected
- the input is chosen

It is easy to

- Change the partitioning of data
- Change the assignment of tasks
 - E.g., move a task from GPU to CPU
- Change the placement of data
 - E.g., from the framebuffer to zero-copy memory
- And more …

Mapping

Task * GPU,CPU; # tasks run on GPUs by default

Task AwaitMPITask, CalcDummyTask, HandoffToMPITask, InitPartitionsTask, InitScaleTask, InitTemperatureTask, fill_cpe, fill_lr_int, fill_masses CPU;

Region * * GPU FBMEM; # for all GPU tasks, arguments use FBMEM as default

Region * * CPU SYSMEM; # for CPU tasks, arguments use SYSMEM as default

Layout * * * SOA F_order; # all regions use struct of array and Fortran order

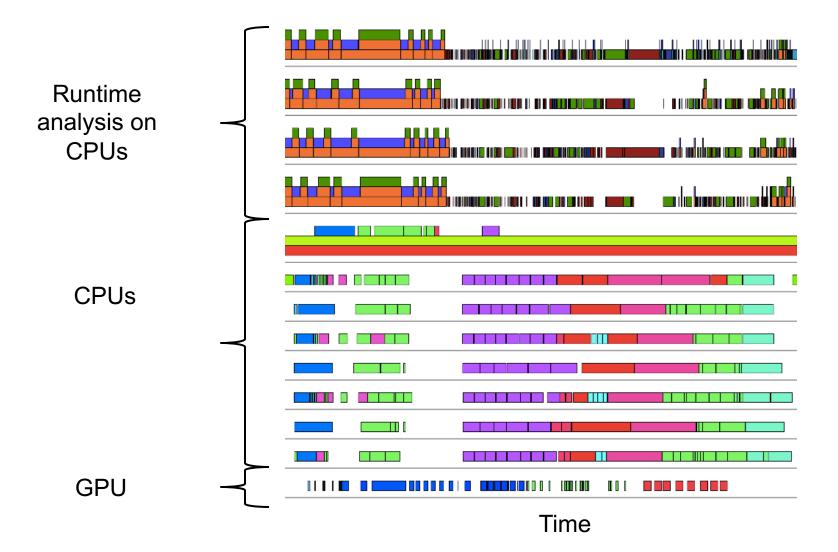
...

The Secret Sauce

- The ability to easily change performance-relevant decisions after the program is running on a machine has been key
 - We often try a lot of different strategies!
- The biggest improvements of Legion over other approaches have not been because Legion's implementation strategy cannot be imitated.
- The improvements were because it was more productive to experiment in Legion to find an implementation strategy that works well.

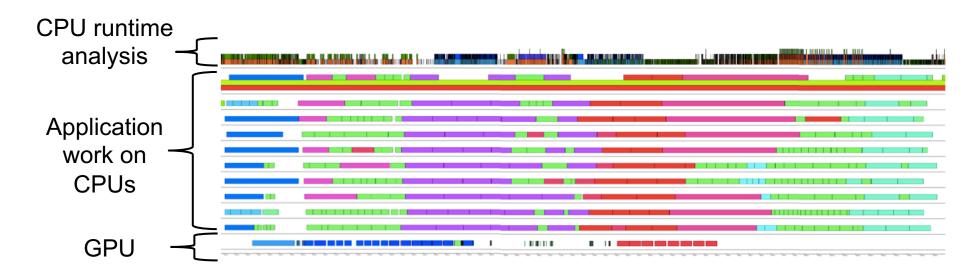
S3D: Heptane 48³

Profile from one node



S3D: Heptane 96³

Profile from one node



Problem: 96³ points per GPU did not fit on the GPU.

Solution: Move some tasks to the CPU to reduce memory pressure.

Impact on Portability & Productivity

- Many more ports of Legion-S3D than MPI-S3D
- Titan
- Summit
- Piz Daint
- Lassen
- Ori
- Perlmutter
- Frontier

- Many more variations of Legion-S3D
 - Different boundary conditions
 - Different reactions
- Example: Simulation of PRF with 116 chemical species
 - The most complex such simulation ever done

Comparison with MPI

Legion

- Sequential semantics
- Asynchronous by default
- Strong data model
 - System understands the partitioning of data
- Late binding of performance decisions
- Downside: Higher runtime overhead

MPI

- Explicit parallel programming
- Synchronous by default
- Bag-of-bits data model
- Many performance decisions baked into the code
- Upside: Minimal runtime overhead

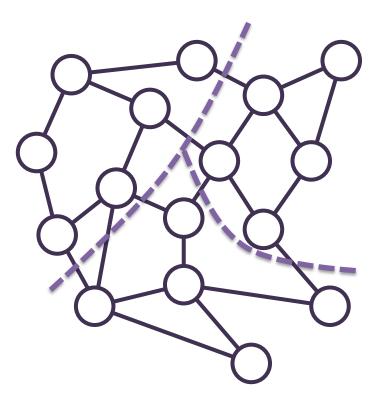
Data in Legion

- Data partitioning
- Partitioning primitives
- Examples

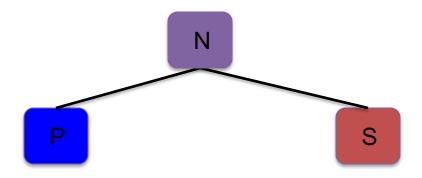
Partitioning

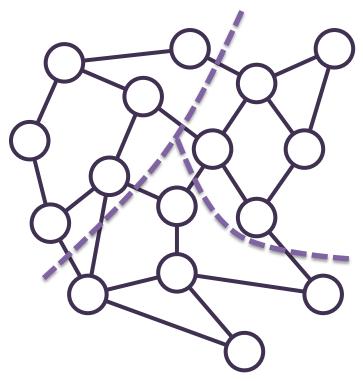
- Partitioning data is a distinctive feature of distributed computing
 - Or whenever there are multiple, distinct memories
- How should data be partitioned?

Partitioning

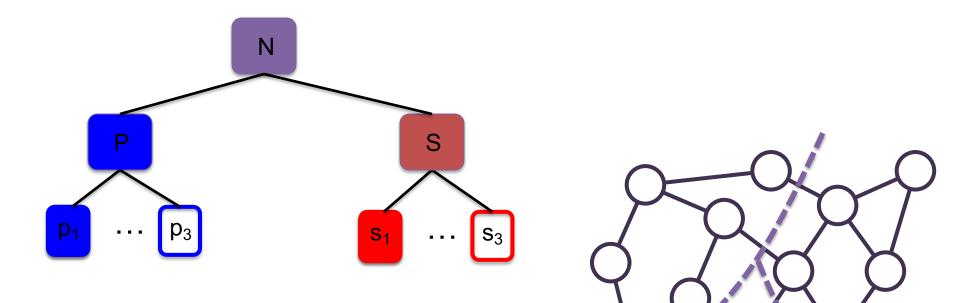


Partitioning

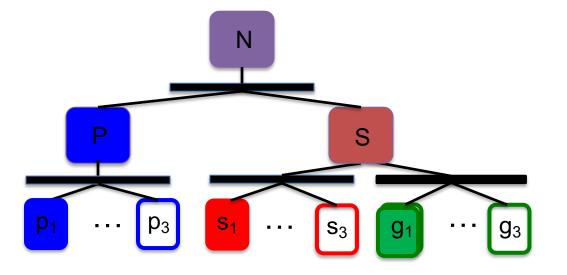


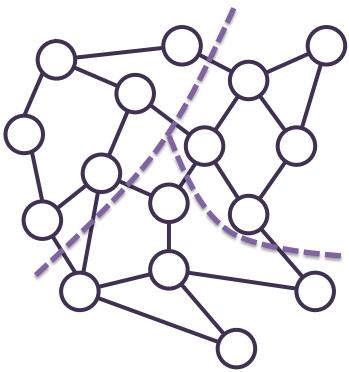


Hierarchical Partitioning



Multiple Partitions





Legion Example

task distribute_charge(rpn, rsn, rgn : region(node),

rw : region(wi

3

where

reads Tasks are the unit of parallel execution. Regions are ndimensional tables (tensors) with typed columns (fields).

Privileges declare how a task will use its region arguments.

Legion Example

where

{

reads(rw.{in_ptr, out_ptr, current})

S₃

 g_1

N

S₁

 p_3

reduces +(rpn.charge, rsn.charge, rgn.charge)

Uses both views of the shared nodes simultaneously.

 \mathbf{g}_3

Observation: Compositionality

Multiple partitions of the same data are needed for scalable software composition

Consider two libraries

- Written independently
- Using different partitioning strategies
- How can they be composed?

Examples

- A simulation, a solver, and a visualization library
- A data analysis pipeline

Partitioning Operators

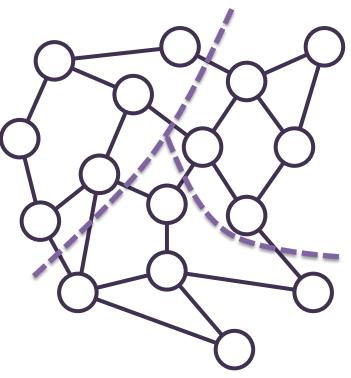
- Legion has a rich subsystem of partitioning primitives
- Each primitive is designed for efficient, scalable parallel implementation
- Combinations of primitives express sophisticated partitioning strategies

Partitioning by Field

PartitionByField(nodes, nodes.SorP)

Nodes

Index	Voltage	SorP
1	1.4	
2	2.5	
3	0.3	
4	6.2	
5	1.4	
6	0.0	



Independent Partitions

Partitioning by field is an independent partition

- A partitioning that depends on no other partitions
- Another example: PartitionEqual(R,5)

Legion also has *dependent partitioning* primitives

- Compute new partitions from existing partitions
- Allows regions to be co-partitioned easily

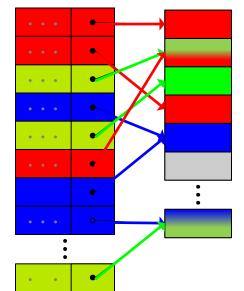
Partition By Image

Treat a pointer field as a function

Region 1

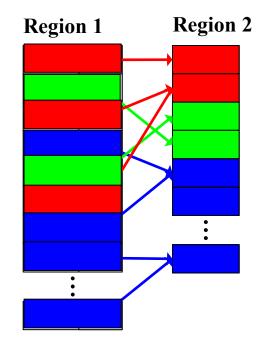
Region 2

- Construct
 compatible partition
 of destination
 region
 - Some elements of destination may be in more than one subregion
 - Or in no subregion

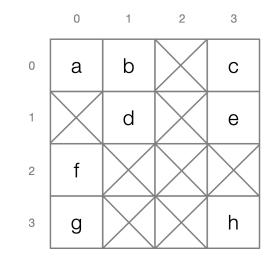


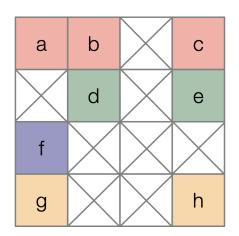
Partition By Prelmage

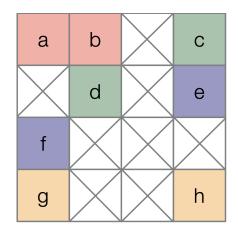
- Again treat a pointer field as a function
- Construct a compatible partition of the source region



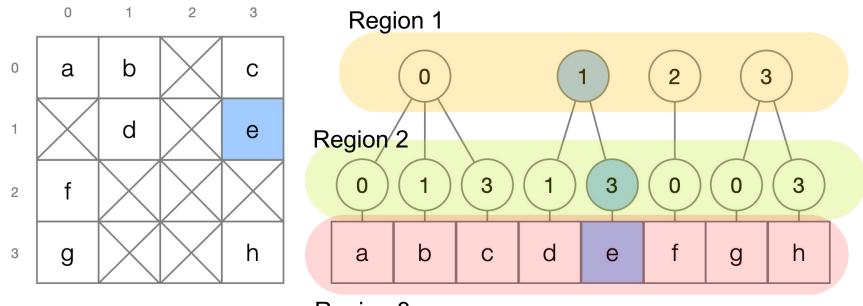
Sparse Matrix Representations





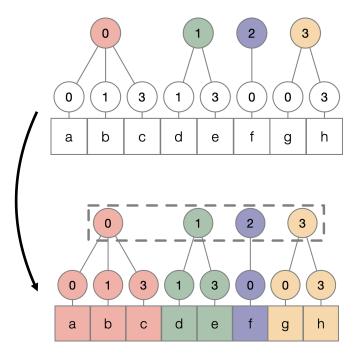


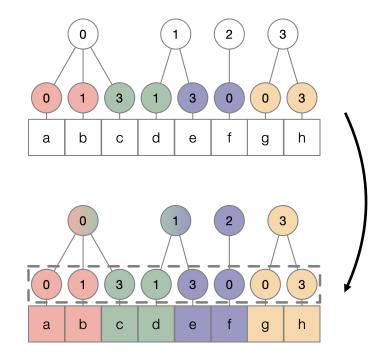
Coordinate Trees



Region 3

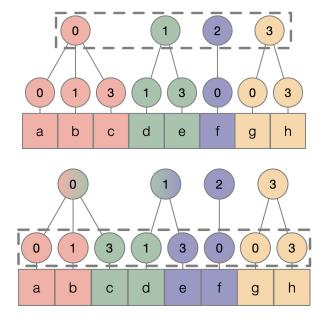
Images and Preimages





Sparse Matrix Partitioning Level-by-Level

- Partition one level first
- Use images and preimages to compatibly partition the other levels



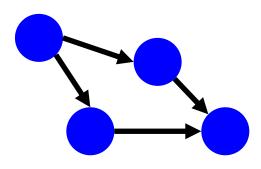
Task-Based Libraries

- Task graphs naturally compose
 - Combining two or more task graphs is a task graph

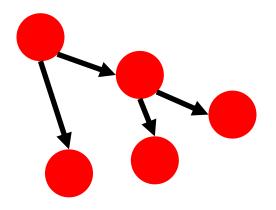
- Late binding of decisions makes interfaces flexible
 - Libraries can be parameterized in ways that are impossible in other approaches
- And we can automate the search for the best partitioning and mapping
 - For a specific machine and workload

Task-Based Libraries

Task1(Args)



Task2(Args')



Composed: Task1(Args) Task2(Args')

DISTAL & SpDISTAL

- DISTAL is a Legion system for dense tensor algebra
- SpDISTAL is a variant for sparse tensor algebra

$$A(i,j) = B(i,k) * C(k,j)$$
$$A(i,j) = \sum_{k} B(i,k) * C(k,j)$$

- DISTAL is a DSL for tensor algebra
 - Given an expression e in tensor algebra, generate a taskbased library to compute e
 - Integrated with a compiler to generate tuned kernels

Distributed Dense Matrix Multiply

target machine

Describe an n-dimensional

Schedule describes how kernel interacts with the distributed data

Com. Pattern	Target Machine	Data Dis- tribution	Schedule
	M(gx, gy)	$A_{ij}\mapsto_{ij} \mathcal{M} \\ B_{ij}\mapsto_{ij} \mathcal{M} \\ C_{ij}\mapsto_{ij} \mathcal{M}$.distribute({i, j}, {in, jn} {il, jl}, Grid(gx, gy)) .divide(k, ko, ki, gx) .reorder({ko, il, jl, ki}) .rotate(ko, {in, jn}, kos) .communicate(A, jn) .communicate({B, C}, kos)
┿ <mark>┙╺┿╵┿┙╺┿╸</mark>	$\mathcal{M}(gx,gy)$	$\begin{array}{ccc} A_{ij} \mapsto & \mathcal{M} \\ B_{ij} \mapsto & \mathcal{M} \\ C_{ij} \mapsto & \mathcal{M} \end{array}$.distribute({i, j}, {in, jn}, {il, j]}, Grid(gx, gy)) .divide(k, ko, ki, gx) .reorder({ko, il, j1, ki}) .rotate(ko, {in}, kos) .communicate(A, jn) .communicate({B, C}, kos)
	$\mathcal{M}(gx,gy)$	$\begin{array}{ccc} A_{ij} \mapsto & \mathcal{M} \\ B_{ij} \mapsto & \mathcal{M} \\ C_{ij} \mapsto & \mathcal{M} \end{array}$.distribute({i, j}, {in, jn}, {il, jl}, Grid(gx, gy)) .split(k, ko, ki, chunkSize) .reorder({ko, il, jl, ki}) .communicate(A, jn) .communicate({B, C}, ko)
	$\mathcal{M}(\sqrt[3]{p},\sqrt[3]{p},\sqrt[3]{p})$	$A_{ij}\mapsto_{i} \mathcal{M} \\ B_{ik}\mapsto_{i} \mathcal{M} \\ C_{kj}\mapsto_{0} \mathcal{M} $.distribute({i, j, k}, {in, jn, kn}, {il, jl, kl}, Grid(∛p, ∛p, ∛p)) .communicate({A, B, C}, kn)
	$\mathcal{M}(\sqrt{\frac{p}{c}},\sqrt{\frac{p}{c}},c)$	$\begin{array}{c}A_{ij}\mapsto_{i}\mathcal{M}\\B_{ij}\mapsto_{i}\mathcal{M}\\C_{ij}\mapsto_{i}\mathcal{M}\end{array}$.distribute({i, j, k}, {in, jn, kn}, {i1, j1, k1}, Grid($\sqrt{\frac{p}{c}}, \sqrt{\frac{p}{c}}, c$)) .divide(k1, k1, k2, $\sqrt{\frac{p}{c^3}}$) .reorder({k1, i1, j1, k2}) .rotate(k1, {in, jn}, k1s) .communicate(A, jn) .communicate({B, C}, k1s)
	induced by schedule	induce l by schee ile	<pre>// gx, gy, gz, numSteps computed by COSMA scheduler. .distribute({i, j, k}, {in, jn, kn}</pre>

Data partitioning and distribution

Cannon's Algorithm (1969)

PUMMA (1994)

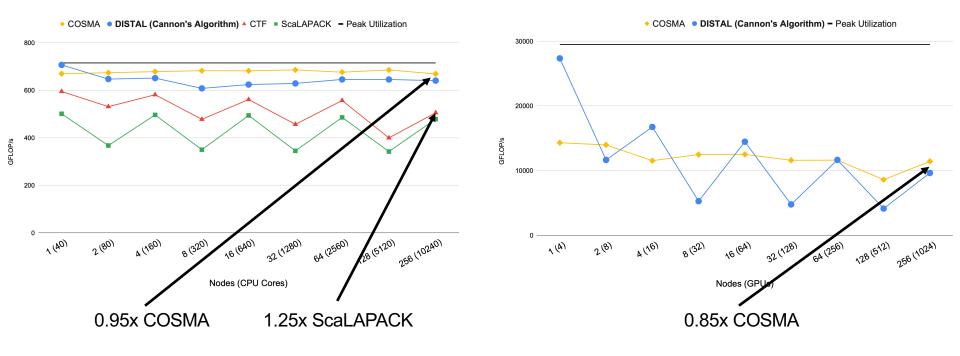
SUMMA (1995)

Johnson's Algorithm (1995)

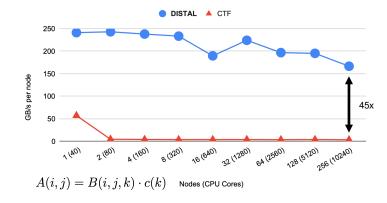
Solomonik's Algorithm (2011)

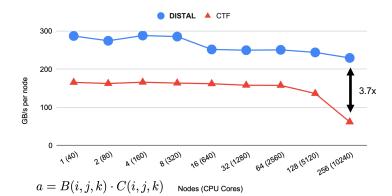
COSMA (2019)

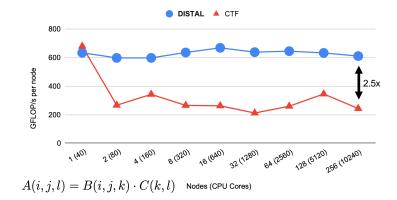
Comparison with MM Libraries

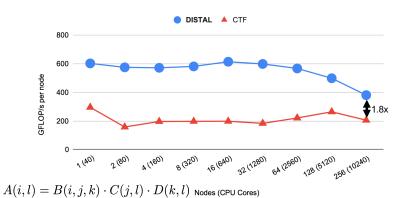


Generalizes to All of Tensor Algebra (CPUs)



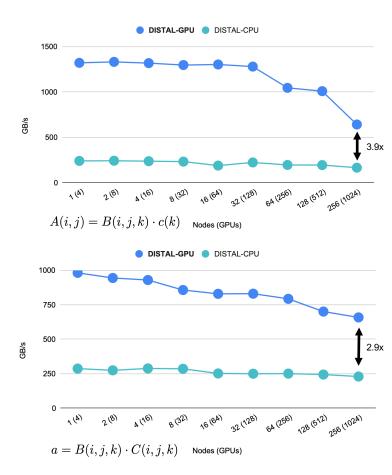


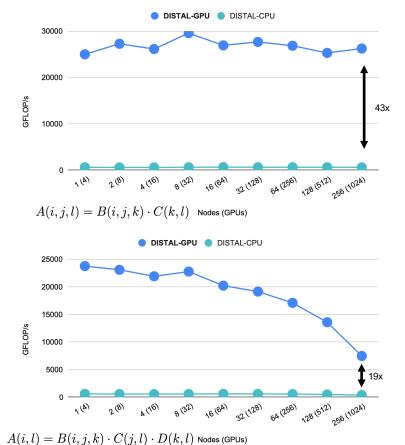




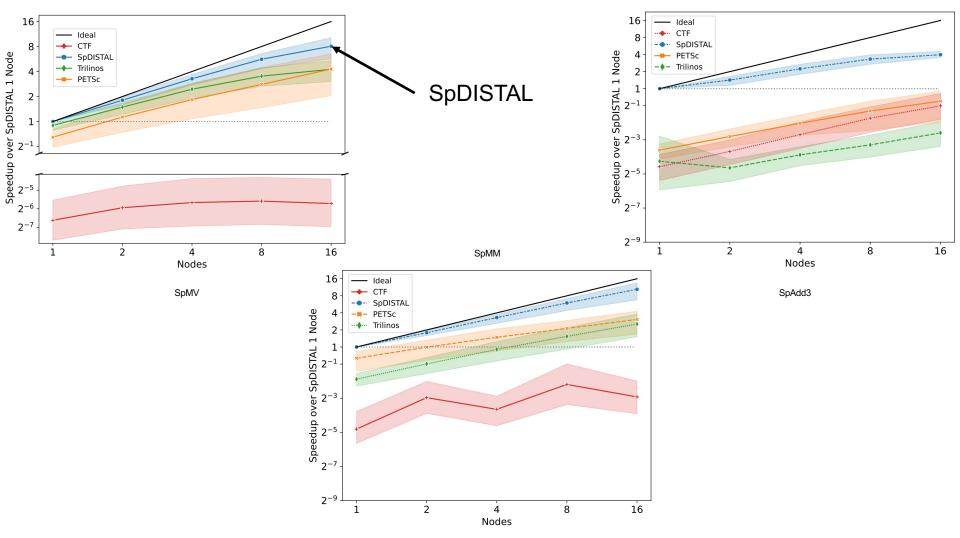
39

Generalizes to All of Tensor Algebra (GPUs)





And Sparse Tensor Algebra

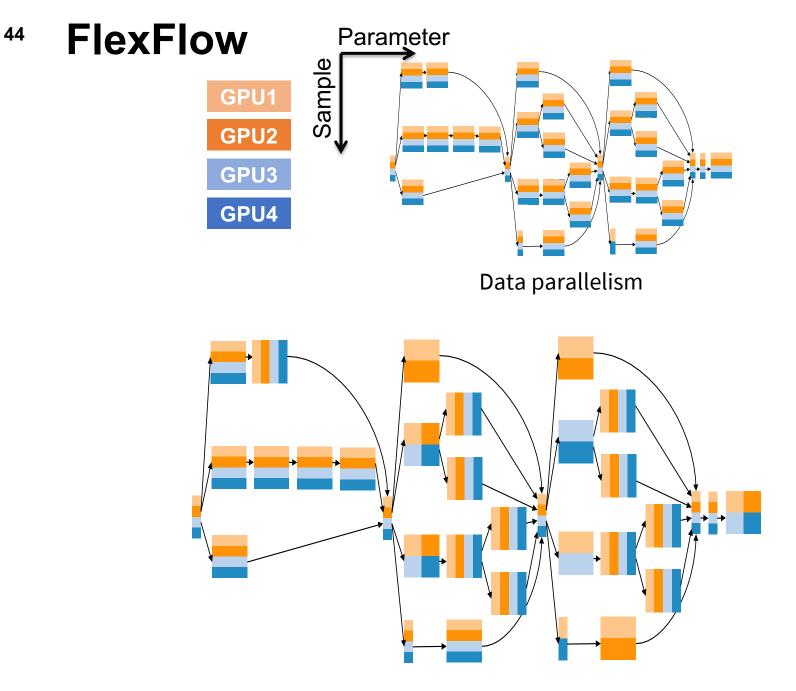


FlexFlow: Deep Neural Networks

- FlexFlow is a Legion library for DNN training and inference
- Idea #1: Exploit Legion's expressive data partitioning to partition tensors in DNN's in ways that Pytorch and TensorFlow do not consider
 - E.g., tensor = [image, height, width, channel]
 - Standard approaches partition the image dimension
- FlexFlow can partition/parallelize data/computations in many more dimensions

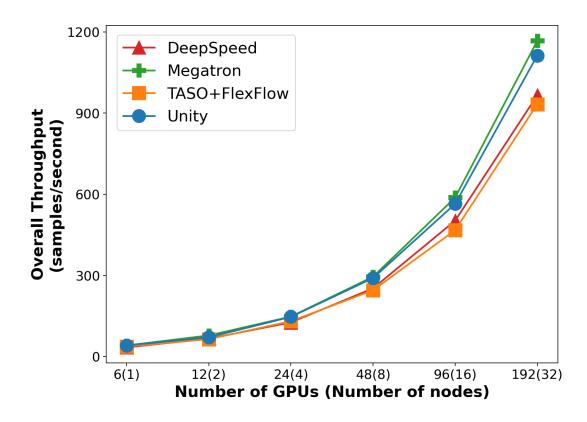
FlexFlow: Deep Neural Networks

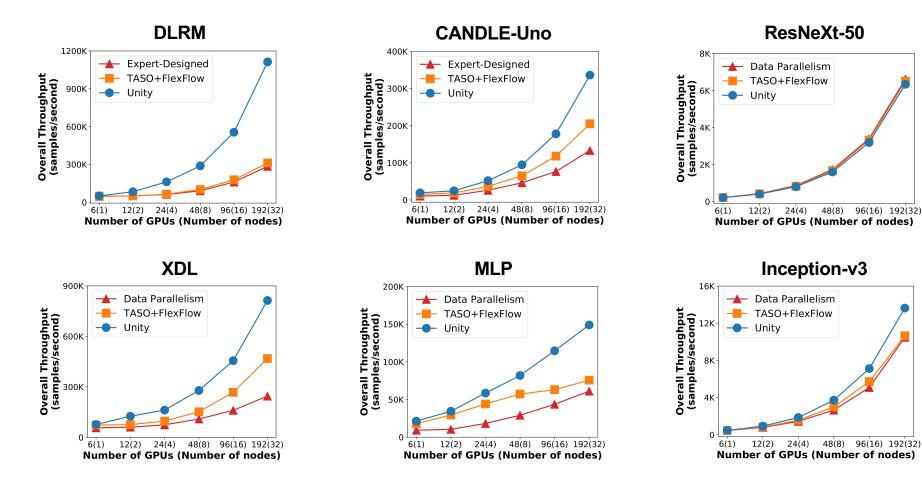
- Idea #2: Automate the partitioning process
 - Instead of searching for a good partitioning by hand
- Use the fact that program structure remains the same only the partitioning of data changes
- And do this for every layer of the network
 - Allow different layers to have different partitioning strategies



Results: Bert-Large

Unity is the latest version of FlexFlow





Selected Other Legion Libraries

- CuNumeric (NVIDIA)
 - A open source, drop-in replacement for NumPy
 - See Seshu Yamajala's talk at 11:30 on Thursday
- LegionSolvers (in progress)
 - Sparse iterative distributed solvers
- Distributed Sparse SciPy (in progress)

Summary

- Task-based programming systems provide a sequential programming model with implicit parallelism
- Late binding of performance decisions has proven key to achieving the best performance
 - Makes it possible to easily explore a large space of configurations
- Strong data model enables data partitioning that is understood by the system

Questions?