Task-Based Programming with Legion

Alex Aiken
Stanford/SLAC

What is Legion?

A task-based programming model for heterogeneous,
parallel, distributed machines

Designed to be

* High performance

* Performance portable
* Productive

/A
° II)?S Alamos

AAAAAAAAAAAAAAAAAA

% <A NVIDIA.

O\ Meta @ Natoral

Laboratories

An Example: S3D

@ Simulates chemical reactions
@ DME (30 species)
@ Heptane (52 species)
@ PRF (116 species)

@ Two parts
@ Physics

@ Nearest neighbor
communication

@ Data parallel
@ Chemistry
@ Local
@ Complex task parallelism

Weak Scaling: PRF

Throughput Per Node (Points/s)

'F v-:y--v y ,N‘ v~"~

H A
10000 500 Legion S3D " : 77— N
| ¥ ¥ MPI Fortran S3D |: ’ -
T4 16 64 256 1024 4006 13824

Nodes

What Led to the Improvement?

* Sequential semantics

* Asynchronous tasks

* Late binding of performance decisions
* Where tasks execute
* Where data is placed
* How data is partitioned

Sequential Semantics

S3D Skeleton * A sequential program
* With a parallel execution
task top_level() {

V = simulation volume ° Greaﬂy S|mp||f|es

P[N] = partition V debugging

GIN] = ghost cells of V * No race conditions!

repeat
Chem(PJi]) fori=1..N _ _
Phys(P[i],Gl[i]) for i = 1..N * Sequential semantics can

until done be relaxed if desired

} * E.g., for reductions

task Chem(V){ ... }
task Phys(V,G) { ... }

Some Actual S3D Code ...

if compression() then
__demand(__index_launch)
for color inis_rank do
CalcGammaTask(lp_int_rank[color])
end

__demand(__index_launch) Code is written in Regent.

for color inis_rank do
Sum3Task(lp_int_rank[color].{X=RHS_1_DX, Y=RHS_1_DY, Z=RHS_1_DZ},

Ip__q_rank[color] {RHO_U}, Writing to the Legion C++ API
false) has more details but the
en same structure.

__demand(__index_launch)
for color inis_rank do
Sum3Task(lp_int_rank[color].{X=RHS_2_ DX, Y=RHS_2_DY, Z=RHS_2_DZ},
Ilp_q_rank|color].{RHO V},
false)
end

__demand(__index_launch)
for color inis_rank do
Sum3Task(lp_int_rank[color].{X=RHS_3 DX, Y=RHS_3 DY, Z=RHS_3_DZ},
Ip_q_rank|color].{RHO_ W},
false)
end

The Benefits of Asynchrony

@ Overlap communication and computation

@ Overlap runtime analysis with the application
@ Runtime analysis is distributed SPMD fashion across nodes

@ In general, also get task parallelism

o ; s 5 z
°°°°<><*><><><>®®‘
: PO
0000 D R

Throughput Per Node (Points/s)
&

VVVVVVVVV

10000—§<><> Legion S3D g ’ a ’V‘Vv*
| ¥ ¥ MPI Fortran S3D |} : ; :

1 1 1 1 i : i
1 4 16 64 256 1024 4006 13824
Nodes

Late Binding of Decisions

o After

@ the program is written
@ the machine is selected
@ the input is chosen

@ ltiseasyto
@ Change the partitioning of data
@ Change the assignment of tasks
@ E.g., move a task from GPU to CPU

@ Change the placement of data
@ E.g., from the framebuffer to zero-copy memory

¢ And more ...

Mapping

Task * GPU,CPU; # tasks run on GPUs by default

Task AwaitMPITask, CalcDummyTask, HandoffToMPITask, InitPartitionsTask, InitScaleTask, InitTemperatureTask, fill_cpe,
fill_Ir_int, fill_masses CPU;

Region * * GPU FBMEM,; # for all GPU tasks, arguments use FBMEM as default
Region * * CPU SYSMEM; # for CPU tasks, arguments use SYSMEM as default

Layout * * * SOA F_order; # all regions use struct of array and Fortran order

10

The Secret Sauce

@ The ability to easily change performance-relevant
decisions after the program is running on a machine has
been key

@ We often try a lot of different strategies!

@ The biggest improvements of Legion over other
approaches have not been because Legion’s
Implementation strategy cannot be imitated.

@ The improvements were because it was more productive
to experiment in Legion to find an implementation
strategy that works well.

11

S3D: Heptane 483

Profile from one node

Runtime
analysis on
CPUs

CPUs

GPU

—

e TR R RN TRTER I W TR AT
Hllllllll.lllll 11" 0 1 (D 1| II‘III- ‘“HI
Hll 100 N O | Y i Jllh- [lll‘u
wllll-ﬂllllllllllll | | mhuhnmnn."“ll
T [— [

.
T B I I |
s T 171 Y Y Y O I I O

— M= O T 1 0 O | I
s T N 1 Y | | —
1 o 0 1 e 11 1 |
] [T0I I Y 1 [I N N N B
T T N e Y

{ ITTIH DN EIINEN N DONNEEIOL (MM 00 DN EEDEE

Time

12

S3D: Heptane 963

Profile from one node

CPU runtime
analysis {-—-.l..m-uu.um l—x.lﬁulmi-.lu_.__uhl---m_.w

I D [—— L aaa— |

S B e e | 1 1

Application — e

Workon — I e | —_—_— [B B e — I T 1 I

CPUs —

VRS T

Problem: 963 points per GPU did not fit on the GPU.

Solution: Move some tasks to the CPU to reduce memory pressure.

Impact on Portability & Productivity

@ Many more ports of @ Many more variations of
Legion-S3D than MPI- Legion-S3D
S3D @ Different boundary
conditions
o Titan @ Different reactions
@ Summit @ Example: Simulation of
@ Piz Daint PRF with 116 chemical
@ Lassen species
@ Cori @ The most complex such

simulation ever done
@ Perlmutter

@ Frontier

Comparison with MPI
@ Legion

@ Sequential semantics

@ Asynchronous by
default

@ Strong data model

@ System understands
the partitioning of data

@ Late binding of
performance decisions

@ Downside: Higher
runtime overhead

W

W

v/

W

MPI

Explicit parallel
programming
Synchronous by default
Bag-of-bits data model

Many performance
decisions baked into
the code

Upside: Minimal
runtime overhead

15

Data in Legion

@ Data partitioning
@ Partitioning primitives

@ Examples

16

Partitioning

@ Partitioning data is a distinctive feature of
distributed computing
@ Or whenever there are multiple, distinct memories

@ How should data be partitioned?

17

Partitioning

Partitioning

Hierarchical Partitioning

Multiple Partitions

21

Legion Example

task distribute charge(rpn, rsn, rgn : region(node),
rw : region(wij

22

Legion Example

task distribute charge(rpn, rsn, rgn : region(node),
rw : region(wire))
where
reads(rw.{in_ptr, out_ptr, current})
reduces +(rpn.charge, rsn.charge, rgn.charge)

{

1
Uses both views of the shared
nodes simultaneously.

23

Observation: Compositionality

Multiple partitions of the same data are needed for
scalable software composition

@ Consider two libraries
@ Written independently
@ Using different partitioning strategies
@ How can they be composed?

@ Examples
@ A simulation, a solver, and a visualization library
@ A data analysis pipeline

24

Partitioning Operators

@ Legion has a rich subsystem of partitioning
primitives

@ Each primitive is designed for efficient, scalable
parallel implementation

@ Combinations of primitives express sophisticated
partitioning strategies

25

Partitioning by Field

PartitionByField(nodes, nodes.SorP)

Nodes

1.4
2.5
0.3
6.2
1.4
0.0

o O A WODN -

Independent Partitions

@ Partitioning by field is an independent partition
@ A partitioning that depends on no other partitions
@ Another example: PartitionEqual(R,5)

@ Legion also has dependent partitioning primitives
@ Compute new partitions from existing partitions
@ Allows regions to be co-partitioned easily

27

Partition By Image

@ Treat a pointer field
as a function

@ Construct
compatible partition
of destination
region

@ Some elements of
destination may be

in more than one
subregion

@ Orin no subregion

Region 1

Region 2

28

Partition By Prelmage

@ Again treat a pointer
field as a function

@ Construct a compatible
partition of the source
region

Region 1

Region 2

29

Sparse Matrix Representations

0 1 2

3

C

e

30

Coordinate Trees

’ 1 ’ ’ Region 1
| VAN O (2) (2
d < Region/2
f (o) (1) (s (0)(0) (3
g h a b C d e f g h

Region 3

Images and Preimages

Cnids

sonsesss

32

Sparse Matrix Partitioning Level-by-Level

@ Partition one level first
@ Use images and === o — o= = = 1
preimages to @Q__9 0
compatibly partition the 01010 " 10]O
other levels alo|clalec Pl o]
gg

33

Task-Based Libraries

@ Task graphs naturally compose
@ Combining two or more task graphs is a task graph

@ Late binding of decisions makes interfaces flexible

@ Libraries can be parameterized in ways that are impossible in
other approaches

@ And we can automate the search for the best partitioning
and mapping
@ For a specific machine and workload

34

Task-Based Libraries

Task1(Args) Composed:

Task1(Args)

Task2(Args’)

T I

DISTAL & SpDISTAL

@ DISTAL is a Legion system for dense tensor algebra
@ SpDISTAL is a variant for sparse tensor algebra

A(i,7) = B(i, k) x C(k, j)
A(i,j) = 3" B(i, k) * C(k,j)

@ DISTAL is a DSL for tensor algebra

@ Given an expression e in tensor algebra, generate a task-
based library to compute e

@ Integrated with a compiler to generate tuned kernels

36

Distributed Dense Matrix Multiply

: : : Schedule describes how
Describe an n-dimensional kernel interacts with the

target machine distributed data

N

Target Machine Déta]?15— Schedule
tribution

' .distribute({i, j}, {in, jn}Q{il, jl}, Grid(gx, gy))
. H H AinijM .divide(k, ko,.ki, .gx) ,
) P o L M(gx, gy) B M .reorder({ko, _11, -Jl, ki})
annon S gorlt m H = = CJHJM .rotate(ko, {in, jn}, kos)
ha "- t 1 ¢ v .communicate(A, jn)
! 1 1 .communicate({B, C}, kos)
.distribute({i, j}, {in, jn}, {il, jl}, Grid(gx, gy))
.divide(k, ko, ki, gx)
.reorder({ko, il, jl, ki})
.rotate(ko, {in}, kos)
.communicate(A, jn)
.communicate({B, C}, kos)

PUMMA (1994) T e

THN| .distribute({i, j}, {in, jn}, {il, j13, Grid(gx, gy))
5 5 5 .split(k, ko, ki, chunkSize)
SUMMA (1995)
J AN .communicate(A, jn)
1 .communicate({B, C}, ko)
y . L/ .distribute({i, j, k}, {in, jn, kn},
Johnson'’s Algorithm (1995) AL | memiem i, . i, 5. 9
o .communicate({A, B, C}, kn)
.distribute({i, j, k}, {in, jn, kn},
o L, 31, K1, Grid(y2, |2, o
Solomonik’s Algorithm (2011 yaa il e
g A M(\/;\/;c) _reorder({k1, il, jl, k2})
t;t/ '/ .rotate(k1, {in, jn}, k1s)

.communicate(A, jn)
.communicate({B, C}, kis)

// gx, gy, gz, numSteps computed by COSMA scheduler.
.distribute({i, j, k}, {in, jn, kn}

{il, jl1, K1}, Grid(gx, gy, 8z))
.divide(kl, klo, kli, numSteps)
.reorder({klo, il, jl, kli})
.communicate(A, kn)
.communicate({B, C}, klo)

induced by
schedule

COSMA (2019)

Data partitioning
and distribution

37

Comparison with MM Libraries

COSMA e DISTAL (Cannon's Algorithm) 4 CTF = ScaLAPACK = Peak Utilization COSMA e DISTAL (Cannon's Algorithm) = Peak Utilization

30000

GFLOP/s

800

600

400

200

GFLOP/s

Nodes (CPU Cores) Nodes (GP!

0.95x COSMA 1.25x ScaLAPACK 0.85x COSMA

GB/s per node

GB/s per node

eneralizes to All of Tensor Algebra
(CPUs)

@® DISTAL A CTF

250
200
150
100
45x
50 \
0 A A A A A A A
N N O 90 N o0 O 2 »O)
AL A N & ® N U2 &\ ¥
[® AQ o Q ok ¢ P S s [\

A(’ij) = B(’i,j, k) C(k)

Nodes (CPU Cores)

@ DISTAL A CTF

3°° .\'/._—‘\,_,_.\.\.

200

o
]

0

Q) O\ O\ O\
AET @ e ek

a= B(i,j1 k) : C(iaja k)

))
Ao @ 43 (\FL

Nodes (CPU Cores)

)

&
&

%D«

2"

N
o\ AV

)

Q
X

® DISTAL A CTF

800
600
3
c
g 400 2.5
d
o
g 200
o
0
W) W) W) N W W) O\ N O
A, @ o L - L -
[) AO ,g),\ o \ P S qfo% O
A(i’j, l) = B(i,j, k) . C(k;,l) Nodes (CPU Cores)
@ DISTAL A CTF
800
600
3
2
g 400
2 1.8x
g 200
o
0
W) O\ O\ N Q) O\ O\ N Q)
AET @ ae @ @ W o @
N TN gt R
A(i,1) = B(i,7,k) - C(4,1) - D(k,1) Nodes (CPU Cores)

Generalizes to All of Tensor Algebra
(GPUs)

GB/s

GB/s

@ DISTAL-GPU DISTAL-CPU

1500

1000

500
3.9x

2} N}
6’\7' Qv
S o5 W

Q) Q AQ) e M) o\
AL A A PRE 16 %’L(\’L & % o

A(i,j) = B(iaja k?) . C(k) Nodes (GPUs)

® DISTAL-GPU DISTAL-CPU

1000
750
500

2.9x
250
0

2 Q) Q) D 5 B o\ VAl [N
AN N N & © U Vi s\ s
b ® AD '57'\ o U P G '),56 W\

a = B(i,j,k) - C(i,j, k) Nodes(GPUs)

GFLOP/s

GFLOP/s

@ DISTAL-GPU DISTAL-CPU

. ./.\./.\.-————‘\'\./.

20000

43x

10000

N Q) Q) D (N} B 3 2 5
AN ¢ N & & AV 5 & o
2 A [Ao AN NG R qf:“:’(\

A(i,4,1) = B(i,j, k) - C(k,1) Nodes (GPUSs)

@® DISTAL-GPU DISTAL-CPU

25000
20000
15000

10000

5000
t 19x

0 —¢
A \A\ 'L\%\ N \\6\ ? (5’2'\ A® \6&\ ’\'L%\

5‘6\
N
%

A} 5
& ‘3’\(2’ AQY
AV et IR

A(i, 1) = B(i, 4, k) - C(j,1) - D(k,1) Nodes (GPUS)

40

Speedup over SpDISTAL 1 Node

161

2—5 i
2—6,

And Sparse Tensor Algebra

—— Ideal

—— CTF
—e— SpDISTAL
—

Trilinos / -
PETSc v

Speedup over SpDISTAL 1 Node

SpDISTAL

Speedup over SpDISTAL 1 Node

— lIdeal
e CTF
-®- SpDISTAL
e T —)
—o- Tilinos | i

2—7 1
T 2—9
16 SpMM
161 — Ideal
g +—c¢
-®- SpDISTAL e
4 PETSc T

Trilinos

2 4 8 16

1 2 4 8 16
Nodes

SpAdd3

41

FlexFlow: Deep Neural Networks

@ FlexFlow is a Legion library for DNN training and
inference

@ |dea #1: Exploit Legion’s expressive data partitioning to
partition tensors in DNN'’s in ways that Pytorch and
TensorFlow do not consider

@ E.g., tensor = [image, height, width, channel]
@ Standard approaches partition the image dimension

@ FlexFlow can partition/parallelize data/computations in
many more dimensions

42

FlexFlow: Deep Neural Networks

@ |dea #2: Automate the partitioning process
@ Instead of searching for a good partitioning by hand

@ Use the fact that program structure remains the same —
only the partitioning of data changes

@ And do this for every layer of the network
@ Allow different layers to have different partitioning strategies

43

44 FIeXFIOW Pa

=3

R

Results: Bert-Large

Unity is the latest version of FlexFlow ...

Overall Throughput

(samples/second)

1200 1

900 1

600 -

300

—A— DeepSpeed
—4=— Megatron
TASO+FlexFlow A
—@— Unity
6(1) 12(2) 24(4) 48(8) 96(16) 192(32)

Number of GPUs (Number of nodes)

45

w b -~ DN

DLRM

1200K
—A— Expert-Designed
5 5 TASO+FlexFlow
_%g 900K1 _@— Unity
38
Sw
£ » 600K
o
=c
g
gg 300K
o
0
6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)
900K

600K

300K

Overall Throughput
(samples/second)

—A— Data Parallelism
TASO+FlexFlow
—@- Unity

— -

061y 12(2) 244) 48(8) 96(16) 19232)
Number of GPUs (Number of nodes)

CANDLE-Uno

—A— Expert-Designed
TASO+FlexFlow
—@— Unity

400K

w
o
o
~

Overall Throughput
(samples/second)
= N
o o
o o
~ ~

6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

MLP

—A— Data Parallelism
TASO+FlexFlow
1 —@— Unity

200K

ju
v
o
~

Overall Throughput
(samples/second)
u o
o o
7‘< ~

0 6(1) 12(2) 24(4) 48(8) 96(16) 192(32)
Number of GPUs (Number of nodes)

8K

ResNeXt-50

(o)}
~

Overall Throughput
(samples/second)
N B
~ ~

—A— Data Parallelism
TASO+FlexFlow
—@— Unity

16K

=
N
~

Overall Throughput
(samples/second)
B [ee]
~ ~

0
6(1) 12(2) 24(4) 48(8) 96(16) 192(32)

0 v
6(1) 12(2) 24(4) 48(8) 96(16) 192(32)

Number of GPUs (Number of nodes)

Inception-v3

—A— Data Parallelism
TASO+FlexFlow
—@— Unity

Number of GPUs (Number of nodes)

46

w b -~ O DN

Selected Other Legion Libraries

@ CuNumeric (NVIDIA)

@ A open source, drop-in replacement for NumPy
@ See Seshu Yamajala’s talk at 11:30 on Thursday

@ LegionSolvers (in progress)
@ Sparse iterative distributed solvers

@ Distributed Sparse SciPy (in progress)

47

Summary

* Task-based programming systems provide a sequential
programming model with implicit parallelism

@ Late binding of performance decisions has proven key to
achieving the best performance

@ Makes it possible to easily explore a large space of
configurations

@ Strong data model enables data partitioning that is
understood by the system

48

Questions?

49

