Scaling NumPy Applications from 1 CPU to Thousands of GPUs

Seshu Yamajala
May 4, 2023
About Us

- Computer Science Research Group at SLAC National Accelerator Lab headed by Prof. Alex Aiken at Stanford
- Group’s primary focus is on HPC
- We collaborate with domain scientists on applications of Legion parallel programming framework
- Legion project is a collaboration between:
Motivation

- Python has become ubiquitous in all areas of science
- NumPy significantly improves the performance of numerical Python applications
- Together Python and NumPy have lowered barrier for entry for developing complex scientific applications
- Out of the box applications are still limited to:
 - 1 CPU
 - Memory available in a single node
 - No GPUs
- Solutions like Dask, PySpark, CuPy + mpi4py exist but:
 - Not easy to use
 - Require modifications to user code
- What if there was a drop-in replacement for NumPy that could fix these problems? Enter cuNumeric!
What is cuNumeric?

- cuNumeric is:
 - Drop-in replacement for NumPy
 - Distributed
 - GPU accelerated
 - Built on top of Legate and Legion

- Conjugate Gradient Solver
 - 1 line change (import cunumeric as np)
 - Scales from 1 CPU to 1024 GPUs and beyond

```python
import cunumeric as np

x = np.zeros_like(b)
r = b - A.dot(x)
p = r
rsold = r.dot(r)
max_iters = b.shape[0]

for i in range(max_iters):
    Ap = A.dot(p)
    alpha = rsold / (p.dot(Ap))
    x = x + alpha * p
    r = r - alpha * Ap
    rsnew = r.dot(r)

    if np.sqrt(rsnew) < tolerance:
        break

beta = rsnew / rsold
p = r + beta * p
rsold = rsnew
```

Weak Scaling Performance

TorchSWE Example

- Solver for shallow water equations
- Originally written using CuPy and MPI
- Ported to cuNumeric by removing MPI code

Current Status of cuNumeric

- Beta released by Nvidia in March at GTC’23
- 60% API coverage of NumPy
 - cuNumeric falls back to single-core NumPy for any operations that aren’t implemented in a distributed or GPU-accelerated manner
- Supports Jupyter notebooks but only single node currently
- Will be deployed on Perlmutter any day now
- What’s coming in 2023:
 - np.linalg and np.fft
 - Distributed IO
 - Higher-order operators
 - Performance improvements
- Currently investigating uses of cuNumeric at LCLS-II
What about sparse matrices?

- Legate sparse implements scipy.sparse API
- Currently at 35% coverage for CSR, CSC, COO, and DIA
- Benchmarks competitive with PETSc

What if this still isn’t enough?

What if cuNumeric and Legate aren’t enough?

- cuNumeric and Legate are built on top of Legion
- Legion is a:
 - Task-based
 - Data-centric
 - Programming model (supports multiple languages)
- Under the hood cuNumeric and Legate are implemented as a series of Legion tasks, but what does that mean?
Tasks: The Big Idea (1/3)

• Big idea: write sequential code, let the system parallelize it

\[
x = f() \\
y = g(x) \\
z = h(x) \\
k(y, z)
\]

Sequential semantics means no way to get the synchronization wrong!
Tasks: The Big Idea (2/3)

- Big idea: write sequential code, let the system distribute it

\[
x = f() \\
y = g(x) \\
z = h(x) \\
k(y, z)
\]

The system determines when messages need to be sent to move data between nodes
Tasks: The Big Idea (3/3)

• Big idea: write sequential code, let the system **accelerate** it

\[
x = f() \\
y = g(x) \\
z = h(x) \\
k(y, z)
\]

The system automatically moves data to/from GPU, no CUDA required
Pygion Basics

- We will describe the Legion programming model using bindings for Python called Pygion
- Concepts apply to C++ and Regent as well

```python
from pygion import task

@task
def hello():
    print("hello")

@task
def main():
    hello()

if __name__ == '__main__':
    main()
```

A task is a function

The bodies of tasks execute sequentially

Tasks call other tasks

Tasks can execute in parallel

Execution begins at main
Data is stored in **regions**

Regions are like multi-dimensional arrays, have:
- set of indices (**isspace**)
- set of fields (**fspace**)

```python
import pygion
from pygion import task, Ispace, Fspace, Region

@task
def main():
    N = 4
    I = Ispace([N, N])
    F = Fspace({'r': pygion.float64, 'g': pygion.float64, 'b': pygion.float64})
    IMG = Region(I, F)

if __name__ == '__main__':
    main()
```
Ways Regions are Not Like Arrays

Regions can:
- Move between machines
- Move to CPU or GPU memory
- Have zero or more copies stored
- Have different layouts
- All of the above can change **dynamically**
Pygion: Privileges

- Regions are passed to tasks **by reference**
- Must specify privileges used to access data
- Privileges include:
 - Read
 - Write
 - Reduce +, *, min, max, ...
- Privileges can specify fields

```python
import pygion
from pygion import task, R, RW, Reduce

@task(privileges=[R])
def f(img):
    ...

@task(privileges=[R('r'), RW('g'), Reduce('+')])
def g(img):
    ...
```
A Simple Timestep Loop in Pygion?

Note: this is not idiomatic Pygion

```python
import pygion
from pygion import task, R, RW

@task(privileges=[RW, R])
def do_physics(grid, ghost):
    ...

@task(privileges=[R, RW])
def update_ghost(grid, ghost):
    ...

def main():
    ...

    for t = 0, T:
        do_physics(grid0, ghost1)
        do_physics(grid1, ghost0)
        update_ghost(grid0, ghost0)
        update_ghost(grid1, ghost1)
```
A Key Difference Between the Task-Based Systems

- How do you represent large grids?
 - Can’t fit on a single node
- Other task-based systems (Dask):
 - Create a region for each subgrid
 - And also for each ghost/halo
- Pygion, Legion:
 - Create **one** region
 - And **partition** it
Pygion: Partitioning

- Partitions divide regions into subregions
- Conceptually, a coloring on the region
- Important: subregions are views, not copies
 - As if there is only one copy of the region in memory
A Simple Timestep Loop in Pygion (with Partitioning)

```
for t = 0, T do
  for c = 0, 1 do
    do_physics(grid[c], ghost[c])
  end

for c = 0, 1 do
  update_ghost(grid[c])
end
```

These partition the same region

Launch a task per color

No more ghost region argument?

Because it refers to the same data, ghost is now updated automatically
A Simple Timestep Loop in Pygion (with Partitioning)

```
for t = 0, T do
  for c = 0, 1 do
    do_physics(grid[c], ghost[c])
  end

  for c = 0, 1 do
    update_ghost(grid[c])
  end
end
```

Privileges are updated to include fields

```
@task(privileges([RW('x'), R('y')]))
def do_physics(grid, ghost):
  ...

@task(privileges([R('x'), RW('y')]))
def update_ghost(grid):
  ...
```

Important: use different fields, otherwise tasks cannot run in parallel!
Timestep Loop: Execution

for $t = 0, T$ do
for $c = 0, 1$ do
 do_physics(grid[c], ghost[c])
 -- $W(x) R(y)$, $R(y)$
end

for $c = 0, 1$ do
 update_ghost(grid[c])
 -- $W(y)$, $R(x)$
end
end
More on Partitioning

Equal partitioning

\[
\text{partition(}\text{equal}, r, \\
\text{isspace(int2d, } \{2,1\})\text{)}
\]

Partition by field (e.g., METIS)

\[
\text{run_metis}(r) \quad -- \ W(\text{color}) \\
\text{partition}(r.\text{color}, \\
\text{isspace(int1d, } 2))
\]
Partition by field (METIS)

\[s = \text{partition}(\text{cell.color}) \]

Preimage (partition of edges)

\[t = \text{preimage}(\text{edge}, s, \text{edge.cell}) \]

Image (partition of cells)

\[u = \text{image}(\text{cell}, t, \text{edge.cell}) \]

Subtract (partition of cells)

\[v = u - s \]
Pygion Examples: Stencil

Fig. 1. Stencil weak scaling, 9×10^8 points/node.

Weak scaling Stencil on Piz Daint – main task ported to Pygion, leaf tasks in Regent

Source: Slaughter, Elliott. “Pygion: Flexible, Scalable Task-Based Parallelism with Python”, PAW-ATM 2019
Pygion Examples: Circuit

Fig. 2. Circuit weak scaling, 2×10^5 wires/node.

Weak scaling Circuit on Piz Daint – circuit simulation on unstructured graph – main task in Pygion, leaf tasks in Regent

Source: Slaughter, Elliott. “Pygion: Flexible, Scalable Task-Based Parallelism with Python”, PAW-ATM 2019
Pygion Examples: Pennant

Fig. 3. Pennant weak scaling, 7.4×10^6 zones/node.

Weak scaling Pennant on Piz Daint – Lagrangian hydrodynamics simulation on 2D unstructured mesh – main task in Pygion, leaf tasks in Regent

Source: Slaughter, Elliott. “Pygion: Flexible, Scalable Task-Based Parallelism with Python”, PAW-ATM 2019
Pygion GPU support

- Previous three weak-scaling examples used GPUs with Python
- Regent is a compiler built on top of Lua and Terra
- First class support for Legion programming model
- Regent can generate code for AMD and Nvidia GPUs with Intel support coming soon
- Regent tasks can be called from Pygion
- Underlying Legion runtime is the same regardless of language user space application is written in
 - Pygion and Regent have similar scaling properties
Weak scaling S3D on Frontier - Direct Numerical Simulation of Turbulent Combustion
S3D In-situ Visualization

- Legion runtime allows for efficient use of resources
- Viz tasks on CPU perfectly overlapped with simulation tasks on GPU
How does visualization have no impact on simulation?

- Tasks can register different variants CPU, GPU
- Mapper API allows users to select:
 - Which processor a task executes on, CPU or GPU
 - Make copies of data (known as instances in Legion terms)
 - Select which memories instances live in sys mem, framebuffer, zero-copy, …
 - Select what layout instances have
 - And more!
- Mapper allows for portability between machines
Summary

• Legion is a task-based data-centric parallel programming model
• Legion ecosystem provides different options for writing portable and scalable HPC applications:
 • cuNumeric – drop-in, distributed, GPU-accelerated replacement for NumPy
 • Pygion – Python Bindings for Legion
 • Regent – Language with first class support for Legion and GPU code generation
 • C++ - Can always drop back to this if needed