
Scaling NumPy Applications

from 1 CPU to Thousands of

GPUs

Seshu Yamajala

May 4, 2023

2

About Us

• Computer Science Research Group at SLAC National

Accelerator Lab headed by Prof. Alex Aiken at Stanford

• Group’s primary focus is on HPC

• We collaborate with domain scientists on applications of

Legion parallel programming framework

• Legion project is a collaboration between:

3

Motivation

• Python has become ubiquitous in all areas of science

• NumPy significantly improves the performance of numerical Python

applications

• Together Python and NumPy have lowered barrier for entry for

developing complex scientific applications

• Out of the box applications are still limited to:

- 1 CPU

- Memory available in a single node

- No GPUs

• Solutions like Dask, PySpark, CuPy + mpi4py exist but:

- Not easy to use

- Require modifications to user code

• What if there was a drop-in replacement for NumPy that could fix

these problems? Enter cuNumeric!

4

What is cuNumeric?

• cuNumeric is:

- Drop-in replacement for NumPy

- Distributed

- GPU accelerated

- Built on top of Legate and Legion

• Conjugate Gradient Solver

- 1 line change (import cunumeric as

np)

- Scales from 1 CPU to 1024 GPUs

and beyond

Source: Lee, Wonchan. “cuNumeric and Legate: How to Create a Distributed, GPU-Accelerated Library”,

23 March 2023, Nvidia GTC

5

Weak Scaling Performance

Source: Lee, Wonchan. “cuNumeric and Legate: How to Create a Distributed, GPU-Accelerated Library”,

23 March 2023, Nvidia GTC

6

TorchSWE Example

• Solver for shallow water equations

• Originally written using CuPy and MPI

• Ported to cuNumeric by removing MPI code

Source: Lee, Wonchan. “cuNumeric and Legate: How to Create a Distributed, GPU-Accelerated Library”,

23 March 2023, Nvidia GTC

7

Current Status of cuNumeric

• Beta released by Nvidia in March at GTC’23

• 60% API coverage of NumPy

• cuNumeric falls back to single-core NumPy for any

operations that aren’t implemented in a distributed or GPU-

accelerated manner

• Supports Jupyter notebooks but only single node currently

• Will be deployed on Perlmutter any day now

• Whats coming in 2023:

• np.linalg and np.fft

• Distributed IO

• Higher-order operators

• Performance improvements

• Currently investigating uses of cuNumeric at LCLS-II

8

What about sparse matrices?

Source: Lee, Wonchan. “cuNumeric and Legate: How to Create a Distributed, GPU-Accelerated Library”,

23 March 2023, Nvidia GTC

• Legate sparse implements scipy.sparse API

• Currently at 35% coverage for CSR, CSC, COO, and DIA

• Benchmarks competitive with PETSc

• What if this still isn’t enough?

9

What if cuNumeric and Legate aren’t enough?

• cuNumeric and Legate are built on top of Legion

• Legion is a:

• Task-based

• Data-centric

• Programming model (supports multiple languages)

• Under the hood cuNumeric and Legate are implemented

as a series of Legion tasks, but what does that mean?

C++

Realm

Legion

Legate

cuNumeric

Pygion Regent C++

10

Tasks: The Big Idea (1/3)

• Big idea: write sequential code, let the system parallelize it

x = f()

y = g(x)

z = h(x)

k(y, z)

f

hg

k
Sequential semantics means no way

to get the synchronization wrong!

11

Tasks: The Big Idea (2/3)

• Big idea: write sequential code, let the system distribute it

x = f()

y = g(x)

z = h(x)

k(y, z)

f

hg

k
The system determines when

messages need to be sent to move

data between nodes

Node 0

Node 1

copy

copy

12

Tasks: The Big Idea (3/3)

• Big idea: write sequential code, let the system accelerate it

x = f()

y = g(x)

z = h(x)

k(y, z)

f

hg

k
The system automatically moves data

to/from GPU, no CUDA required

Node 0

Node 1

copy

copy

GPU GPU

copy

copy

13

Pygion Basics

• We will describe the Legion programming model using

bindings for Python called Pygion

• Concepts apply to C++ and Regent as well

A task is a function

The bodies of tasks execute

sequentially

Execution begins at main

Tasks call other tasks

Tasks can execute in parallel

14

Pygion: Regions

rgb rgb rgb rgb

rgb rgb rgb rgb

rgb rgb rgb rgb

rgb rgb rgb rgb

Data is stored in regions

Regions are like multi-

dimensional arrays, have:

• set of indices (ispace)

• set of fields (fspace)

15

Ways Regions are Not Like Arrays

Regions can:

• Move between machines

• Move to CPU or GPU memory

• Have zero or more copies stored

• Have different layouts

• All of the above can change

dynamically

rgb rgb rgb rgb

rgb rgb rgb rgb

rgb rgb rgb rgb

rgb rgb rgb rgb

bgr bgr bgr bgr

bgr bgr bgr bgr

bgr bgr bgr bgr

bgr bgr bgr bgr

r r r r g g g g b b b b

r r r r g g g g b b b b

r r r r g g g g b b b b

r r r r g g g g b b b b

16

Pygion: Privileges

• Regions are passed to

tasks by reference

• Must specify privileges

used to access data

• Privileges include:

• Read

• Write

• Reduce +, *, min, max,

…

• Privileges can specify

fields

17

A Simple Timestep Loop in Pygion?

grid0 grid1

g
h
o

s
t0

g
h
o

s
t1

Note: this is not idiomatic Pygion

18

A Key Difference Between the Task-Based Systems

• How do you represent large grids?

• Can’t fit on a single node

• Other task-based systems (Dask):

• Create a region for each subgrid

• And also for each ghost/halo

• Pygion, Legion:

• Create one region

• And partition it

grid0 grid1

g
h
o

s
t0

g
h
o

s
t1

grid (the whole thing)

19

Pygion: Partitioning

• Partitions divide

regions into

subregions

• Conceptually, a

coloring on the region

• Important: subregions

are views, not copies

• As if there is only one

copy of the region in

memory

region

sample partitions

20

A Simple Timestep Loop in Pygion (with Partitioning)

for t = 0, T do

for c = 0, 1 do

do_physics(grid[c], ghost[c])

end

for c = 0, 1 do

update_ghost(grid[c])

end

end

grid ghost

These partition the same region

Launch a task per color

No more ghost region argument?

Because it refers to the same data,

ghost is now updated automatically

21

A Simple Timestep Loop in Pygion (with Partitioning)

for t = 0, T do

for c = 0, 1 do

do_physics(grid[c], ghost[c])

end

for c = 0, 1 do

update_ghost(grid[c])

end

end

grid ghost

@task(privileges([RW(‘x’),

R(‘y’)])

def do_physics(grid, ghost):

…

@task(privileges([R(‘x’),

RW(‘y’)])

def update_ghost(grid):

…

Important: use different fields, otherwise

tasks cannot run in parallel!

Privileges are updated to include fields

22

Timestep Loop: Execution

grid ghost

dp[0] dp[1]

grid[0].x,y

g
h
o

s
t[

0
].
y

grid[1].x,y

g
h
o

s
t[

1
].
y

ug[0] ug[1]

grid[0].x grid[1].x

grid[0].y

g
h
o

s
t[

0
].
y

grid[1].y

g
h
o

s
t[

1
].
y

for t = 0, T do

for c = 0, 1 do

do_physics(grid[c], ghost[c])

-- W(x) R(y), R(y)

end

for c = 0, 1 do

update_ghost(grid[c]) -- W(y), R(x)

end

end

dp[0] dp[1]

23

More on Partitioning

Equal partitioning

partition(equal, r,

ispace(int2d, {2,1}))

Partition by field (e.g., METIS)

run_metis(r) -- W(color)

partition(r.color,

ispace(int1d, 2))

24

Dependent Partitioning

Partition by field (METIS)
s = partition(cell.color)

Preimage (partition of edges)
t = preimage(edge, s, edge.cell)

Image (partition of cells)
u = image(cell, t, edge.cell)

Subtract (partition of cells)
v = u - s

25

Pygion Examples: Stencil

Weak scaling Stencil on Piz Daint – main task ported to Pygion, leaf tasks in

Regent
Source: Slaughter, Elliott. “Pygion: Flexible, Scalable Task-Based Parallelism with Python”, PAW-ATM 2019

26

Pygion Examples: Circuit

Weak scaling Circuit on Piz Daint – circuit simulation on unstructured graph

– main task in Pygion, leaf tasks in Regent
Source: Slaughter, Elliott. “Pygion: Flexible, Scalable Task-Based Parallelism with Python”, PAW-ATM 2019

27

Pygion Examples: Pennant

Weak scaling Pennant on Piz Daint – Lagrangian hydrodynamics simulation

on 2D unstructured mesh – main task in Pygion, leaf tasks in Regent
Source: Slaughter, Elliott. “Pygion: Flexible, Scalable Task-Based Parallelism with Python”, PAW-ATM 2019

28

Pygion GPU support

• Previous three weak-scaling examples used GPUs with

Python

• Regent is a compiler built on top of Lua and Terra

• First class support for Legion programming model

• Regent can generate code for AMD and Nvidia GPUs

with Intel support coming soon

• Regent tasks can be called from Pygion

• Underlying Legion runtime is the same regardless of

language user space application is written in

• Pygion and Regent have similar scaling properties

29

Regent Example: S3D

Weak scaling S3D on Frontier - Direct Numerical Simulation of Turbulent Combustion

30

S3D In-situ Visualization

Simulation Tasks

Viz tasks

• Legion runtime allows for efficient use of resources

• Viz tasks on CPU perfectly overlapped with simulation

tasks on GPU

31

How does visualization have no impact on simulation?

• Tasks can register different variants CPU, GPU

• Mapper API allows users to select:

• Which processor a task executes on, CPU or GPU

• Make copies of data (known as instances in Legion terms)

• Select which memories instances live in sys mem,

framebuffer, zero-copy, …

• Select what layout instances have

• And more!

• Mapper allows for portability between machines

32

Summary

• Legion is a task-based data-centric parallel programming

model

• Legion ecosystem provides different options for writing

portable and scalable HPC applications:

• cuNumeric – drop-in, distributed, GPU-accelerated

replacement for NumPy

• Pygion – Python Bindings for Legion

• Regent – Language with first class support for Legion and

GPU code generation

• C++ - Can always drop back to this if needed

