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Complementarity With Prior Talks

4



Partition Function Encodes State Dist. and Energy
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• In solid/crystalline phase – contributors to Z directly connect structure 
and energy distributions (vib, rot, elect, config contributions)

• What about soft matter? (ignoring liquid crystals and other weird 
things)
– Liquids, solutions often very heterogeneous
– Interfacial regions (L/L interfaces)
– Gels

• Intrinsically disordered 
– Varying correlation lengths in space. (configuration states harder to 

define)
– Correlation times – how easy to escape out of minima

• Often the dynamical phenomena are a key property of the material



Soft Matter Ensembles - Emulsions
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• Very complex and rich multicomponent phase diagrams

Transport key to separations science



An Energy Landscape Perspective
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***let’s be agnostic to the type of EL at this point

*
Find the global minimum using some approximate Hamiltonian



An Energy Landscape Perspective
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*
*
*

***
Sampling configurational space - finding all relevant local minima on the EL

-index 0 critical points



An Energy Landscape Perspective
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*
*
*

***
Sampling the fluctuations means sampling minima and maxima

-including index 1 CP’s and higher order CP’s for some processes 

**
*

*



Key Challenges for Soft Matter Design
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Energy

If we sample configuration space (using molecular dynamics)
• How to define states?
• How to relate to energy landscape?  (choosing higher dimensional representations)



Key Challenges for Soft Matter Design
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Energy

If we sample configuration space (using molecular dynamics)
• How to define states?
• How to relate to energy landscape?  (choosing higher dimensional representations)

This is a lie



Soft Matter Design Workflow
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Synthesis and 
characterization

Simulations: atomistic & coarse grained

PEL Topology ML w/ UQ

?



Key Challenges for Soft Matter Design
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Energy

If we sample configuration space (using molecular dynamics)
• How to define states?
• How to relate to energy landscape?

Borrow methods from 
computational biophysics?



An Example Using Microemulsions
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*
TODGA



Polar Cosolutes and Reverse Micelle Formation
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q H2O and HNO3 increase TODGA micelle size

q What’s molecular origin of this?
q Can we reduce dimension of the 

EL to be conceptually 
meaningful?



Trajectory
•MD data

Featurization
•Order 
parameters

Dimension 
reduction
•TICA and/or 
PCA

Discretization

Generate 
transition 
matrix for 
MSM 

Analysis

•Clustering

•Kinetics

http://msmbuilder.org/ http://emma-project.org/latest/

Finalizing Number 
of  Microstates

Markov Models
Coarse-graining of  
microstates into macrostates
using PCCA++

Sadhu & Clark, In Prep



Feature Selection
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Features Feature descriptions Features Feature descriptions
P-13 xyz xyz coordinates of 13 polar core 

atoms of TODGA
P-13 distances Intramolecular distances involving 

13 polar core atoms of TODGA.
P-7 xyz xyz coordinates of 7 polar core 

atoms of TODGA
P-7 distances Intramolecular distances involving 

13 polar core atoms of TODGA.
PT-2 torsion Two torsions PT-4 torsions Four torsions



Feature Selection
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polar

Non-polar

Features Feature descriptions Features Feature descriptions
P-13 xyz xyz coordinates of 13 polar core 

atoms of TODGA
P-13 distances Intramolecular distances involving 

13 polar core atoms of TODGA.

P-7 xyz xyz coordinates of 7 polar core 
atoms of TODGA

P-7 distances Intramolecular distances involving 
13 polar core atoms of TODGA.

PT-2 torsion Two torsions PT-4 torsions Four torsions
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Trajectory
•MD data
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Analysis

•Clustering

•Kinetics

Finalizing Number 
of  Microstates

BMSM for Conformational Landscapes
Coarse-graining of  
microstates into macrostates
using PCCA++

q Choose # of dimensions to keep 95% of variance
q 22 dimensions were kept for solutions with no polar solutes (NonPol)
q 20 dimensions were kept for solutions with polar solutes (Pol)

q Discretization of TICA space with k-means using 100 clusters
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of  Microstates

MSM for Conformational Landscapes
Coarse-graining of  
microstates into macrostates
using PCCA++

4 macrostates identified 
in each solution condition

Sadhu & Clark, In Prep
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Microstates and Transitions

27

q 4 coarse-grained macrostates observed in non-polar and polar conditions
q Free energy landscape in terms of independent components of PCA++

non-polar polar



Microstates and Transitions
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q 4 coarse-grained macrostates observed in non-polar and polar conditions
q Free energy landscape in terms of independent components of PCA++

non-polar polar

q Free energy landscapes appear similar…but 
this is misleading.
q What are the structures/configurations in the 

macrostates?



Microstates and Transitions
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q Very different transition probabilities are observed, different conformational 
ensembles comprise a macrostate

non-polar polar



Microstates and Transitions
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q Very different transition probabilities are observed, different conformational 
ensembles comprise a macrostate

non-polar polar

q Free energy landscapes appear similar…but 
this is misleading.
q What are the structures/configurations in the 

macrostates?



Manual Comparisons of Conformations
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Nonpol Nonpol Nonpol
Pol Pol Pol

* * *eclipsed conf.
higher dipole



q Polar solute changes the free energy barrier of dihedral rotation 
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q Obtained from well-
tempered metadynamics
simulation 

Polar Solute – Conformation Relationships



q Polar solute changes the free energy barrier of dihedral rotation 

33

q Obtained from well-
tempered metadynamics
simulation 

Polar Solute – Conformation Relationships

• This was very hard – it took a long 
time

• It does not easily scale across 
space and time 
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Alternative Approaches for Defining States

Graph Theory and Topological Data Analysis
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Alternative Approaches for Defining States

Graph Theory and Topological Data Analysis



Graph Theory Tools for Soft Matter Structure

• Graph representations of chemical systems
– Molecular graphs à date back to 1870’s
– intermolecular/interparticle interactions --> identify micelles

• Descriptors of graph connectivity & patterns (similar to 
molecular graphs)
– Local and non-local, spectral GT approaches

• Hierarchical partitioning
– Robust cluster or community analysis

• Time dependent evolution

36



Birth of Structure Theory (Aided by Graph Theory)
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Arthur 
Cayley

• Derived generating functions to identify all possible 
isomers of tree alkanes with a given number of nodes



GT and Chemistry Over Time (Some Highlights)

• Chemical reaction mechanisms 
based upon minimal edge 
changes and distances btw. 
adjacency matrices of reactants 
and products

• Principle of minimal structure 
change – Kolbe 1850

38
Fujita, S. J. Chem. Inf. Comput. Sci. 1986, 26, 4, 205–212; Balaz, V. et. al. Disc. Appl. Math 1992, 35, 1-19. 
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Quantum graphs – many different types here, though original formulation was for 
electron movement as in a wire along bonds (relevant to understanding 
magnetism, e- transport, and a wealth of condensed matter physics applications)

GT and Chemistry Over Time (Some Highlights)

Pauling, L. J. Chem. Phys. 4, 673 (1936); Ruedenberg, K.; Scherr, C. W. J. Chem. Phys. 21, 1565 (1953)



Graph Theory Tools for Soft Matter Structure

• Graph representations of chemical systems
– Molecular graphs à date back to 1870’s
– Intermolecular/interparticle interactions --> identify micelles

• Descriptors of graph connectivity & patterns (similar to 
molecular graphs)
– Local and non-local, spectral GT approaches

• Hierarchical partitioning
– Robust cluster or community analysis

• Time dependent evolution

40



Molecular Graphs and Partition Functions

41

***also some work relating Shannon Entropy to thermodynamic entropy, etc.



Graph Theory Tools for Soft Matter Structure

• Graph representations of chemical systems
– Molecular graphs à date back to 1870’s
– Intermolecular/interparticle interactions --> identify micelles

• Descriptors of graph connectivity & patterns (similar to 
molecular graphs)
– Local and non-local, spectral GT approaches

• Hierarchical partitioning in soft matter
– Robust cluster or community analysis

• Time dependent evolution

42



Our Contributions to Descriptors

Spectral	GT	side:

• Determining	Polyhedral	Arrangements	of	Atoms	Using	PageRank,	Journal	of	
Mathematical	Chemistry, 2012,	50,	2342.	

• Novel	Analysis	of	Cation	Solvation	Using	Graph	Theoretic	Approaches,	Journal	of	Physical	
Chemistry	B,	2012,	116,	4263.

----many	applications	ensued---

• PageRank	as	a	Collective	Variable	to	Study	Complex	Chemical	Transformations	and	
Their	Energy	Landscapes,	Journal	of	Chemical	Physics,	2019,	150,	134102.

Centrality	Measures:

• Deconstructing	the	Confinement	Effect	upon	the	Organization	and	Dynamics	of	Water	in	
Hydrophobic	Nanoporous Materials:	Lessons	Learned	from	Zeolites,	Journal	of	Physical	
Chemistry	C,	2017,	121,	22015	

---many	applications	using	different	measures	to	understand	speciation---
43



Graph Theory Tools for Soft Matter Structure

• Graph representations of chemical systems
– Molecular graphs à date back to 1870’s
– Intermolecular/interparticle interactions --> identify micelles

• Descriptors of graph connectivity & patterns (similar to 
molecular graphs)
– Local and non-local, spectral GT approaches

• Hierarchical partitioning in soft matter
– Robust cluster or community analysis

• Time dependent evolution

44



From Molecules to Micelles

45



Hierarchical Graph Partitioning 

• Modularity optimization helps identifying cluster in a 
generalized manner 

• Find cluster partition that maximizes Q

Edge weight 
between pair 
of nodes

ki total of all of the edges weights to node i
n total of all of the edges weights in A

0 if i and j in different clusters, 1 otherwise

Total number of nodes (may 
also be ‘n”)

46Newman, M. E. PNAS 2006, 113, 8577.; Blondel, et. al. J. Stat. Mech. 2008 P1008.



Journal of Physical Chemistry B, 2021, 125, 3986-3993

• Do in multiple passes to 
coarse-grain and obtain 
hierarchical partitioning



Modularity Optimization in Time

48

Journal of Chemical Theory and 
Computation, 2022, 18, 7043 –
7051



• Define “temporal” communities – with user defined constraints upon 
changes to node composition

• Increased computational efficiency by using statistics of edge 
addition/deletion in time

Modularity Optimization in Time

49
Journal of Chemical Theory and Computation, 2022, 18, 7043 – 7051



Temporal Communities for Separations
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Transport key to separations science



Temporal Graph Theory Analyses
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Molecular dynamics of an actively transporting oil/water interface

Journal of Chemical Theory and Computation, 2022, 18, 7043 – 7051
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Graph Theory and Comp. Topology as a Framework
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Graph Theory and Comp. Topology as a Framework

1. Choose a ball radius 
that forms the complex

2. Vary ball radius and 
track how components 
change



Persistent Homology – Distance Filtered Graphs
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Persistent Homology

• Graphs formed by different 
distance filtrations of point cloud 
data

• Recording the number of 
components of the simplicial 
complex (zero dimensional 
information, β0)

• Recording the number of holes 
in the simplicial complex (1-
dimensional information, β1)



Structures of Surfactant Aggregates

55
Journal of Molecular Liquids, 2022, 345, 117743.; 
Journal of Physical Chemistry B, 2020, 124, 10822.



• Not only for point cloud data, but also functions

• Filtration starts from the lowest to highest – sublevelset

• Filtration starts from highest to lowest - superlevelset

56

Sub- or Superlevelset Persistent Homology
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Sublevelset PH for Separations

58

Transport key to separations science



Sublevelset PH

• Molecular dynamics of surfactants at oil/water interfaces

59

Create time-dependent density images

Journal of Chemical Theory and Computation, 2023, In Press
https://doi.org/10.26434/chemrxiv-2023-vwrxj

https://doi.org/10.26434/chemrxiv-2023-vwrxj
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PH Descriptors
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Journal of Chemical Theory and Computation, 2023, In Press
https://doi.org/10.26434/chemrxiv-2023-vwrxj

• Goal – capture organization at surface by surfactants

• Excess Betti Curves
– Compares the real betti curves with those from purely random 

images (at same density)

• Persistent entropy – measures variations in persistent lifetimes of the 
components

• Non-ideality index for surfaces – if surfactants don’t interact we know 
# of components, variations indicate non-ideal interactions

https://doi.org/10.26434/chemrxiv-2023-vwrxj
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Non-transporting interfaces

Transporting interfaces



What have we learned?

• Huge number of tools available for creating new 
representations of “states” in soft matter systems

• Across lengthscales (locally, globally)

• Capturing dynamical phenomena

• Now…how do we connect to energy landscapes?
– Brute force mapping along collective variables (like PR)
– Use dynamical information to obtain energetics (Markov)
– Encode topological information

• Use to predict EL?

64



Compact Representations of PELs
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Sublevelset Persistent Homology of PEL

66Journal of Chemical Physics, 2021, 154, 114114

A B C D E F G H I

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

semi-infinite

semi-infinite

finite

finite



Higher Dimensionality Information is Impt!
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(A) (B)

(C) (D)

q Distinguishing between PEL
q Understanding chemical dynamics
q Relevance of 2nd order pathways

Phys. Chem. Chem. Phys., 2019, 21, 12837-12842



Sublevelset PH of PEL
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• Visualization of higher-dimensions of PEL (no dim. red. needed!)
• Capturing more information about PEL topology

• Bar lengths are barrier heights
• # of bars are # of barriers
• Include all indices of critical points (all dimensions of PEL)

• Create a platform for quantifying differences in PEL in high-
dimensional space?

• What patterns emerge and can they be used for predicting PEL?



Sublevelset PH of Conformational PEL

69Journal of Chemical Physics, 2021, 154, 114114



Sublevelset PH of Conformational PEL
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q What’s notable about these barcodes?
q # of n-dimensional bars



Sublevelset PH of Conformational PEL
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q What’s notable about these barcodes?
q # of n-dimensional bars

q Birth and death times of features
q Relative energy differences of minima and maxima
*

*



Sublevelset PH of Conformational PEL
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q What’s notable about these barcodes?
q # of n-dimensional bars

q Birth and death times of features
q Relative energy differences of minima and maxima

*

* *
*



Sublevelset PH of Conformational PEL
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q What’s notable about these barcodes?
q # of n-dimensional bars

q Birth and death times of features
q Relative energy differences of minima and maxima

** * *



Sublevelset PH of Conformational PEL
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A B C D E F G H I

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

• Relate configuration 
to energy, local 
topology



Patterns in the barcodes for n-alkanes

• The rotation about 1 dihedral has a PEL that can be plotted on 
the circle (1-dim torus)

• 6 critical points for each dihedral PEL (3 maxima and 3 
minima)

• For every added C-atom, add a 

• dihedral degree of freedom

75
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Patterns in the barcodes for n-alkanes

• The rotations of butane are 2x in pentane, all rotations are 
translated copies

• True as n C-atoms are added to alkane PEL

• PEL are nested functions if they are constructed additively

• Mathematically prove the # of bars in k-dimensions, birth 
and death times for any n-alkane

Journal of Chemical Physics, 2021, 154, 114114



Predicted Sublevelset PH
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Extensions to Any Additive Intramolecular Potential

78

• Energy landscape 

• is a function over a product space

• These are composed of building block functions

• Thus 

• Building blocks could be on the circle (dihedrals), HO’s, etc.

J. Chem. Phys. 2023 158, 164104



Extensions to Any Additive Intramolecular Potential

79
J. Chem. Phys. 2023 158, 164104



Extensions to Any Additive Intramolecular Potential

80
J. Chem. Phys. 2023 158, 164104



Extensions to Any Additive Intramolecular Potential

81
J. Chem. Phys. 2023 158, 164104



Extensions to Any Additive Intramolecular Potential
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• The sublevel set filtration 
for V is a “tensor product” 
of the sublevelset
filtrations of gn



Branched Alkane Examples

83

Building block units Building block functions



Branched Alkane Examples
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Building block sublevel set PH Building block functions



Mathematical Construction of the PH
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q Generalizing the prior work

(A) (B)

(C) (D)

*

*

q n building block functions on the circle
q Domain of V is
q n-dimensional torus has k-dimensional 

homology of rank
q The semi-infinite bars in a filtration space 

recover the homology of the space - thus

*



Mathematical Construction of the PH
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• How to know total # of bars?
• semi-infinite + finite bars

(A) (B)

(C) (D)
• Every building block function is a Morse function, hence 

every V is a Morse function
• Birth and death times correspond directly to CP’s (pi) of V

belong to semi-infinite bars

must be split between the birth and death times of the finite bars

• # of CP’s is even on the circle – thus                   is even

*

*

?

?

*
?



Mathematical Construction of the PH
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• # of finite bars is then

(A) (B)

(C) (D)



Mathematical Construction of the PH
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• How many bars in each dimension?
• Use the # of bars in n to identify # of bars in n+1 (nested aspect of Vn)
• Begin with any building block function
• Example dihedral angle (on the circle) – 6 CPs, 3 k=0 bars

q Suppose these come from the following:



Mathematical Construction of the PH
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• Does this equation hold as n (# building blocks) is increased?

where



Mathematical Construction of the PH
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• If you know the # of bars of each dimension of the building block, then 
there is a finite # of combinations of how to add them (Kunneth formula)

• Find each k-dimensional bar in Vn+1 in terms of the sublevelset persistence 
bars of Vn and gn+1



Mathematical Construction of the PH
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# of bars of each dimension k for a given n building blocks



Sublevel set Persistence of 2,2-dimethylpentane

92



Topology of 2,2-dimethylpentane PEL
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• 7-dim dihedral angle 
PEL

• 840,000 total CP’s
• 32 global minima
• 186 index-0 local 

minima under 1 
kcal/mol

• 1,200 index-0 CP 
before you overcome 
any index-1 barriers 
at 2.75 kcal/mol



Topology of change to PEL w/bond addition

94



New Opportunities

95

• Direct connection between structure and location on a PEL

• Learn about patterns in EL barriers and minima related to structure and 
changes to composition of the system

• Experimental design strategies à stabilizing specific structure or 
dynamic phenomena for the application of interest

• Employ in enhanced sampling of EL à accelerate computational workflows

***other great into on applied topology can be found on the AATRN YouTube 
(Henry Adams)



Soft Matter Design Workflow
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Synthesis and 
characterization

Simulations: atomistic & coarse grained

Structure Analysis PEL Topology ML w/ UQ
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