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Chemical Separation & Clean Energy

Los Alamos National Laboratory 2

Chemical Separations:
• Critical to almost every aspect of our daily lives

from energy, the medications, to clean water
• Costs ~10 – 15% of total energy used in US

Clean Energy and Nuclear Energy:
• Rare-Earth Elements (Nd, Ho, Dy, Eu, etc) needed for clean 

energy technology, such as wind turbines, EV motors, etc.
• CO2 level à 420ppm, NE is a low-carbon footprint solution
• 20% of nation’s electricity (55% of clean energy in US)
• 80,000+ metric tons of used nuclear fuel in US
• 2,000 metric tons increase each year
• ~$$B annually to deal with the waste
• More nuclear reactors under construction worldwide



Radiotoxicity
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Madic, C. et al,  C.R. Physique, 3, 797-811 (2002)

An3+

Ln3+



An/Ln and Ln/Ln Solvent Extraction Process

Los Alamos National Laboratory 4

Challenges: chemical space is too vast to be manually explored by experiment or theory.
• Aqueous matrix
• Extractant solubility
• Binding kinetics
• Complexation stability

• Organic matrix
• Phase transfer catalysts
• Matrix effect (cooperative 

vs. blocked binding)

• Resin identity
• Bead size
• Solid-state support 

properties

• Holdback agent
• Binding capacity
• Valence adjustment 

agent and rate



The Conventional Way of Discovering a New Extractant
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Steric effects of nitrogen donor ligands

Our hypotheses:
• Preorganization à reduce kinetic binding barrier à improve efficiency
• Planarity à reduce steric repulsion between H atoms à improve efficiency
• Substitution Effects à increase electron donating group à improve efficiency

R Hancock, Chem. Soc. Rev., 2013, 42, 1500-1524

Free ligand Pre-organized ligand

Starting with the literature, observations, chemical intuition



Proposed Extractants Based on the Hypothesis
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Construct Investigation: Binding Energies of Extractants 

Los Alamos National Laboratory 7

AnO2
2+, An = U, Np, Pu 

as model systems for the screening process.



Synthesis and Separation Experimental Validation
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N
NN

Not soluble in non-volatile organic solvents 
➝ not great for liquid/liquid extraction

N
NN

Precursor is soluble in n-octanol, still 
has the pre-organized N donors 

14 13, dpap

n-octanol + 20 mM “L” + 
1 M 2-bromohexanoic acid

0.01 M HNO3 + 
241Am and 155Eu tracers

“L” = terpy “L” = dpap

N
NN

Close integration between theory and experiment 
is critical as cross-validation is highly needed!

X Zhang, SL Adelman, SA Kozimor, BW Stein, ER Batista, P Yang, et al 2022, 61, 11556-11570



Distribution Coefficients and Separation Factors
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• At early times (<15 min), dpap is ~5x better 
than terpy at separating Am from Eu

• Once equilibration has been reached, dpap is 
only ~2x better than terpy.

• Larger separation factors with dpap are due to 
rapid and substantial transport of Am into 
organic phase

• This kind of fundamental knowledge will be 
used to design ligand features for the ML 
model

Time (min) terpy dpap dpap/terpy
- Am D Eu D Am/Eu SF Am D Eu D Am/Eu SF Am D Eu D SF
5 0.20 0.04 4.62 12.77 0.56 23 64 13 5
15 0.25 0.05 4.63 25.59 1.13 23 101 21 5
30 0.37 0.07 5.12 16.90 1.09 16 45 15 3
60 0.39 0.07 5.24 31.73 2.49 13 82 34 2
120 0.38 0.07 5.08 30.47 3.01 10 81 40 2
1440 0.33 0.06 5.31 39.55 3.13 13 122 51 2

X Zhang, SL Adelman, SA Kozimor, BW Stein, ER Batista, P Yang, et al 2022, 61, 11556-11570



Local Exploration vs. the Vast Chemical Space
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N
NN

Missed chemistry
Nd/Tb/Dy 98% ! 
Am/Eu 97%!



Approach: SeparationML
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Am Separation

LANL Super Separator
Cinema/ ESCALATE

ML for Separation
PADRE

Workflow Management
High-throughput simulations

Ligand design

Follow the data!

Complex workflow management is a necessity.



Challenges of Applying Data-Science for An/Ln Separation
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What is Needed: Data!!!

• High-throughput randomized uniform 
experimental data covering the vast 
chemical space. 

• High-throughput theoretical data through 
advanced simulations 
– Screen millions of ligands/extractants 
– Form chemically sensible An/Ln complexes
– Manage thousands of calculations 

simultaneously
– Quantum-based simulations for bond forming & 

breaking
– Long-timescale molecular dynamics simulations 

across interfaces



Approach: SeparationML
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Am Separation

LANL Super Separator
Cinema/ ESCALATE

ML for Separation
PADRE

Workflow Management
High-throughput simulations

Ligand design

Follow the data!

Complex workflow management is a necessity.
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Workflow of a Kd Measurement Using  Extraction Resins
(in a regular lab)

Step 2

Assay Solution

Step 3

Weigh and condition resins

Step 4
Contact resins with 241Am 

Step 5

Assay Aliquot of filtrate

Step 6

Calculate Kd

Step 7

Waste disposal

Am HCl
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Agent
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Adjustment

Agent

Los Alamos National Laboratory



Summary: Matrix Effects on Am Processing

342 experiments later

• TEHDGA and TODGA >> m-CMPOTBP and m-
CMPODAAP >> Rare Earth (RE) resin.

• TEHDGA and TODGA also provide a release
mechanism via controlling acid concentration

Seven Tested Properties
Extractant identity Binding capacity
Phase transfer catalysts Bead size 
Matrix effect Binding kinetics
Aqueous matrix

BT Arko, SL Adelman, et al,  Ind Eng Chem Res, 2021, 60, 14282–14296

HCl (M)

16Los Alamos National Laboratory



Automating Separations: LANL Super Separator

5/13/23 |   17Los Alamos National Laboratory

Dispensing Solutions

10 to 10000 mL of solution
with 2% to 10% error

Weighing Solids

2.0 mg of resin ± 0.2 mg

Installed in February 2021

LANL Super Separator

Increases 
throughput

Human error Cost Saving$
Efficient

• Makes it easier to develop a new process.
• Makes it easier to optimize an operational

process with the confines of an existing safety
envelope. 17



Los Alamos National Laboratory

Automating Separations: LANL Super Separator

• Automation increases throughput and 
minimizes human error.

• Commissioned U and Th; transuranics soon

Selective Precipitation

Precipitation 
Agent

PO

R
O

R
R

Am3+

Am3+

Organic Solvent

Aqueous Solution

Solvent Extraction Extraction Chromatography

Am3+

PO

R
O

R
R

Am3+ Bead

Adsorbed 
Extractant

18

Stosh
Kozimor

Sara
Adelman



Interfacing the robot with ML: ESCALATE
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• Provides an abstraction layer between chemists + ML model with the Robot
– Reduce complicated interaction between many pieces of software and databases

• A major software engineering task
– Enables closed-loop interaction between ML and the Robot

• Data from robot curated to ML model
• API for humans or algorithms to specify new experiments

– Enables easy visualization of large dataset through single web application

19

Super Separator Super Separator

Josh Schrier, Fordham Univ.



Interactive Virtualization of High-dimensional Data

Los Alamos National Laboratory

• Cinema Science tool allows 
interactive data analysis and 
visualization of theory, ML, 
and experimental data, 
especially large volume and 
high-dimension

• 3D molecular viewer, regular 
expression queries, other 
advanced features added by 
SeparationML team

• Collaboration with DOE-
ASCR, ECP, SciDAC
programs:
Data Science at Scale. 

20

https://cinemascience.github.io/

https://cinemascience.github.io/


Approach: SeparationML

Los Alamos National Laboratory 21

Am Separation

LANL Super Separator
Cinema/ ESCALATE

ML for Separation
PADRE

Workflow Management
High-throughput simulations

Ligand design



The ML Model: Motivating Observation

Los Alamos National Laboratory

• Errors in different models often cancel: 
calculated energy differences are often 
much more precise than absolute 
values. 

• “Chemistry informed ML”:  Can this be 
applied to the ML models as well?

• We have developed a “pairwise” ML 
method that addresses key challenges 
of:
– uncertainty quantification 
– limited size datasets

22

Experiment

Computation

110 kcal/mol

100 kcal/mol

31 kcal/mol

20 kcal/mol

10 kcal/mol

11 kcal/mol
M Tynes, W Gao, DJ Burrill, ER Batista, D Perez, P Yang, 
N Lubbers, J. Chem. Inf. Model, 2021, 61, 3846-3857



Conventional ML

Los Alamos National Laboratory 23

Train: For each molecule in the training set 

ML ML Energy

Minimize |ML energy – reference energy| 

Predict: For each new molecule

ML ML Energy

Single 
prediction



ML Model: Pairwise Difference Regression (PADRE)
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Train: For each pair of molecules in the training set 

ML ML Energy 
Difference

Minimize |ML difference| – |reference difference| 



ML Model: Pairwise Difference Regression (PADRE)

Los Alamos National Laboratory 25

Predict: For each new molecule

Training 
set

New 
molecule

ML

ML

ML 
Difference

ML 
Difference

Predicted 
energy = 
Training 

energy + ML 
difference 

Predicted 
energy = 
Training 

energy + ML 
difference 

Ensemble 
of 

predictions



PADRE Algorithm Overview
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M Tynes, W Gao, DJ Burrill, ER Batista, D Perez, P Yang, N Lubbers, 
J. Chem. Inf. Model, 2021, 61, 8, 3846–3857

Mike
Tynes



PADRE: Features & Performance
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A chemistry-informed ML model 
Pairwise difference regression:

• Predict relative quantities, e.g. 
Separation Factors

• n2 data augmentation
• Train on all pairs
• Improve prediction by 10%

• ML meta-algorithms for arbitrary base 
regressors

• Simple RF+PADRE is competitive 
with more complex NN

• Redox, solubility, and BE

• Provides a useful UQ metric
• Competitive with state-of-the-art 

chemical candidate selection 

ML Energy 
Difference

PADRE 

Pair
ML



Approach: SeparationML
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Am Separation

LANL Super Separator
ESCALATE

ML for Separation
PADRE

Workflow Management
High-throughput simulations

Ligand design



Database

High-throughput Quantum Simulations
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Vulcan,  Suggest new 
extractants factoring in 
synthesizability, pH, 
solubility … 

Architector, Generate 
chemically-sensible 
extractant-actinide complexes

ESCALATE, improved 
for separation science

EPO, train DFTB 
parameters

pyiron, complex workflow management 
package for all-level calculations 
simultaneously using HPC to enable 
automatous discovery

ADF/Gaussian, 
DFT calculations

Mineva, calculate 
topological chemical 
descriptors 



Calculating Separation Factors

Los Alamos National Laboratory 30JM Keith, ER Batista, Inorg Chem 51, 13–15 (2012). AE Clark,  P Yang, JC Shafer,  in Experimental and Theoretical Approaches to 
Actinide Chemistry 2018, pp 237-282 ; AE Clark, MJ Service, et al, Ion Exchange and Solvent Extraction, Vol 23, 147, 2019



An Example of Calculating Separation Factors

Los Alamos National Laboratory 31JM Keith, ER Batista, Inorg Chem 51, 13–15 (2012). AE Clark,  P Yang, JC Shafer,  in Experimental and Theoretical Approaches to 
Actinide Chemistry 2018, pp 237-282 ; AE Clark, MJ Service, et al, Ion Exchange and Solvent Extraction, Vol 23, 147, 2019

kcal/mol
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New extractants

Architector build complexes

pyiron/ADF to DFT-relax 5-lowest GFN2-xTB 
conformers

Swap Metal for other Metals + Re-optimize

Calculate ΔΔGrxn Swapping Metals/Ligands

Workflow for Calculating Separation Factors



A Must: Building Chemically Sensible 3D Structures of 
f-Element Complexes

Los Alamos National Laboratory 33

How to form 3D structures as a function of ligands, 
metal, coordination number,  counter ions?



Generating 3D Structure In Chemistry

Los Alamos National Laboratory 341 Thomassen, C. Journal of Algorithms 10, 568-576 (1989). 

• Degrees of abstraction in 
chemistry:
– 1D = Chemical Formula
– 2D = Molecular Graph
– 3D = Atomic Positions            

( Electronic Structure!)

• Moving from 3D->1D = relatively 
easy

• Moving from 1D->3D = much 
harder!

• 2D -> 3D complexity alone is NP-
hard

• d-block: molsimplify, DENOPTIM, 
Molassembler

• f-block: no tools available

C6H6 



Architector Design Overview

Los Alamos National Laboratory 35

      Inputs
Metal, Coordination Number, Ligands, Coordinating atoms (CAs)

       
Metal: Ce
Coordination Number: 8
Ligands (SMILES, CAs): 
1. c1ccc(nc1)c1ccccn1, (4, 11)
2. CC(C)(C)c1cc([Se]c2cc(cc(c2[O-])C(C)(C)C)
C(C)(C)C)c([O-])c(c1)C(C)(C)C, (7,14,24) (x2)

Example: Cambridge Structural Database Refcode = CONPEC 

User interactions

      Outputs
Ranked-order (by GFN2-xTB energy) complexes 

MG Taylor, DJ Burrill, J Janssen,  ER Batista, D Perez, P Yang Nature Communications, In press, 2023

https://github.com/lanl/Architector

Michael 
Taylor



Architector – 3D Molecule Generation Workflow
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Input 
Chemistry

Metal 
Center 
Library/ 
Ligand-
Metal 

Mapping

Generate 
Ligand 

Conformers 

Assemble 
/Relax 

Complexes

Remove 
Duplicates

Output 
Structures

Iterate over Metal Center Symmetries

HO

O
N N

OH

O

OH

O

OH

O

H2O N+
O

-O O-

Architector

from architector import 
 build_complex

OUT = build_complex(IN)



Computational Tools Needed for the Architector Workflow
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Python:
Input/Output 
Dictionary / YAML
Handles Connections 
Between Software

Atomic Simulation 
Environment:
1. Non-forcefield 

Calculations
2. Structural Data

Extended Tight Binding:  
1. Tight Binding 

Calculations
2. GFN- Forcefield 

Calculations

OpenBabel: 
1. SMILES Conversion including 
charge handling
2. Ligand initial conformer generation
3. Forcefield Relaxations

Architector

from architector import 
 build_complex

OUT = build_complex(IN)



Architector Visualization

Los Alamos National Laboratory

• Visualization routine integrated with jupyter notebooks – broad use-
cases for visualization (dynamic grid visualization)

38MG Taylor, DJ Burrill, J Janssen,  ER Batista, D Perez, P Yang Nature Communications, In press, 2023 

https://github.com/lanl/Architector



Finding New Conformers Beyond CSD Database

Los Alamos National Laboratory 39

• Gas phase or liquid phase conformers can dramatically differ from 
crystalized structures. Conformer sampling can be vital. 

• CREST1 needs 3D structure as input, vs. Architector only needs 2D input 

1 P Pracht, F Bohle, S Grimme, Phys Chem Chem Phys, 2020, 22, 7169-7192

Architector
CREST



Architector Performance
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https://github.com/lanl/Architector

conda install -c conda-forge architector

• Benchmarked on over 
6,500 experimental 
structures.

• “Embarassingly parallel” 
99% finished in under 12 
hours on 500 cores.

• Vast majority (95%) 
produced at least one 
conformer within 10 
kcal/mol or lower than 
experimental structures.

• Diverse conformer 
generation for higher-
energy symmetries.

Browser-based webserver for the community 
is coming. –Based on NERSC SPIN

MG Taylor, DJ Burrill, J Janssen,  ER Batista, D Perez, P Yang Nature Communications, In press, 2023 

https://github.com/lanl/Architector


Database

High-throughput Quantum Simulations
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Vulcan,  Suggest new 
extractants factoring in 
synthesizability, pH, 
solubility … 

Architector, Generate 
chemically-sensible 
extractant-actinide complexes

ESCALATE, improved 
for separation science

EPO, train DFTB 
parameters

pyiron, complex workflow management 
package for all-level calculations 
simultaneously using HPC to enable 
automatous discovery

ADF/Gaussian, 
DFT calculations

Mineva, calculate 
topological chemical 
descriptors 



Large-Scale Quantum-based Simulations are needed

Los Alamos National Laboratory 42

6150 atom ML2 + H2O + octanol
Largest SCC-DFTB calculation!

Screening of large number of structures 

Dynamic behavior needs long time scale 
simulations to cross the interface.

1907 atom 
terpy + H2O + octanol

12 extractants, pH depend forms
2 metals, 2 counter ions, 5 conformers

~2200 DFT jobs
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• DFTB is a semi-empirical method derived from DFT
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• Why DFTB (LATTE)?
• Fast: Roughly ~100X faster than DFT

Linear-scaling algorithm available for large systems
• XLBOMD formalism removes the expensive SCF iterations at each time step

• Accurate
DFT level accuracy for forces and energies with good parameterization
Self-consistent-charge ensures describing the quantum nature of chemical bonds

Band structure 
energy

Charge 
transfer energy

spin energy empirical 
repulsive pair 

potential

Density Functional Tight Binding (DFTB)

Marc Cawkwell
LANL

Method Time/time step (s)

Full convergence + diag 1.100

Zero SCF + diag 0.590

Zero SCF + sparse SP2 0.427

Zero SCF + sparse SP2 (GPU) 0.552

1560 atom H2O + octanol



DFTB Energies, Forces, and Reactivity

Los Alamos National Laboratory

RMSE= 0.875
R2= 0.990

RMSE= 0.454
R2= 0.925

Th-O: Liu, Aguirre, Cawkwell, Batista, Yang, to be submitted.
U-O-H: Carlson, Cawkwell, Batista, Yang, JCTC. 2020, 16, 3073
Am-O-H: Taylor, Burrill, Cawkwell, Lubbers, Batista, Yang, to be submitted

Challenges of DFTB parameterization: 
§ Large number of parameters
§ Limited availability of training data for 

large chemical space

44



EPO: Parameterization of DFTB for f-Elements

Initial guess

Reference 
data

EPO
Numerical 

optimization
DFTB model
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Krishnapriyan, Yang, Niklasson, Cawkwell, JCTC, 13, 6191 (2017) 
NF Aguirre, A Morgenstern, MJ Cawkwell, ER Batista, P Yang, Chem. Theory Comp. 2020, 16, 1469

• The ‘EPO’ code iteratively improves a DFTB parameterization to minimize an objective 
function that measures the errors in the binding energy and forces vs. DFT.

• Terms needing parameterization are radial dependences of bond integrals and pair 
potentials, Hubbard U, and on-site energies.

Los Alamos National Laboratory 45



DFTB Training Workflow 

Los Alamos National Laboratory

• Traditional method requires extensive user knowledge and careful training
• Manual effort required for each black/teal arrow

46

Select targeted chemistry       
(e.g. An-C-N-O-H)

Generate initial DFTB parameters

Create small set for DFT reference

Fit DFTB parameters

Use DFTB parameters to generate 
new DFT references

Train ML potential on DFT-DFTB

Check MLTB convergence

Trained MLTB parameters

Initial Steps: Optimization Loop :

DFT 
Dataset

MLTB 
converged?
yes

no
Machine Learning / MLTB



DFTB Training Workflow – Automation Improvements!

Los Alamos National Laboratory

• Extensive Workflow Management Development is underway.

47

Select targeted chemistry       
(e.g. An-C-N-O-H)

Generate initial DFTB parameters

Create small set for DFT reference

Fit DFTB parameters

Use DFTB parameters to generate 
new DFT references

Train ML potential on DFT-DFTB

Check MLTB convergence

Machine Learning / MLTB

Architector
+

Active 
Learning



Database

High-throughput Quantum Simulations
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Vulcan,  Suggest new 
extractants factoring in 
synthesizability, pH, 
solubility … 

Architector, Generate 
chemically-sensible 
extractant-actinide complexes

ESCALATE, improved 
for separation science

EPO, train DFTB 
parameters

pyiron, complex workflow management 
package for all-level calculations 
simultaneously using HPC to enable 
automatous discovery

ADF/Gaussian, 
DFT calculations

Mineva, calculate 
topological chemical 
descriptors 



Efficient Workflow Management for High-throughput 
Chemistry Simulations

Los Alamos National Laboratory 49

Enable up-scaling of high-
throughput simulations for 
chemistry
• Developed dynamically-scaling 

workflow
• Provides simulation protocol  

provenance 
• New interfaces to chemistry codes: 

ADF, xTB, Gaussian, etc.

Features:
• Highly scalable 
• User-friendly interface
• Independent of HPC infrastructure 

J. Janssen, et al., Comp. Mat. Sci. 
161 (2019) http://pyiron.org



High-throughput Chemistry Simulations at Scale

Los Alamos National Laboratory 50

Construct a complex hierarchical workflows with the building blocks  
you’ve heard about in this workshop: 

Run

LATTE ACE

Batch

Simulation Workflow

Run Run

Queuing System of HPC

Data Management

Firewall

Experiment

Interface

Experimental Robot

Promising solution coming from this NME 
IPAM long program!

Michael Taylor
Jan Janssen
Danny Perez



Exascale Future: What is needed? 

Los Alamos National Laboratory

• Exascale needs:
– Integration/Centralization of databases across multiple compute 

resources 

–Strategies for handling calculation/experimental failures.

–Prioritization strategies for “promising” chemistries (e.g. identify and 
prioritize chemistries on the fly)

–Metrics for quality of computational predictions vs. experimental 
validations.

–Hierarchical workflows need to be interoperable, adaptive, robust
such as pyiron+flux

51



Summary

Los Alamos National Laboratory 52

Robust and interoperative hierarchical workflow management 
is the key to accelerate discovery of separation science.
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