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Motivation: Stochastic 
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The Gaussian stochastic process is a popular framework for function approximation 
from noisy data.
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Latent function



Sample
Depends on synthesis, processing 
and environmental parameters Select sample 

parameters

Trigger 
measurement

Detector image

Automated data 
analysis

Human Scientist
Where should the next experiment be performed? 

Near what’s interesting? Boldly go where you have 
not explored?

The Human-Driven Experiment Loop

Instrument
Depends on instrument parameters

A function over the 
parameter space 



We need a way to choose optimal measurements 
independent of dimensionality.  

Raster scanning is collecting 
lots of redundant data and only 

works in 2d.

Random data collection might 
work in higher dims but is not 

optimal.  

Intuitive experiment control is 
labor intensive and often 

suboptimal. 



Automated Data 
Analysis/Dim. 

Reduction
PCA, NMF, NNs, Num. 

Integrations, Peak Detection

Intelligent 
Decision Making

Stochastic Processes, 
Optimization

Automated 
Measurements

In Situ/Ex Situ Sample Prep, 3D 
Printing, Robotics, Remote Access

Communication
Infrastructure

By File, ZMQ, S3, Cloud Services

The Autonomous Experiment Loop

Active 
Learning

Instrument
Depends on instrument parameters

Sample
Depends on synthesis, processing 
and environmental parameters

A function over the 
parameter space 

Detector image



Autonomous SAXS Exploration of Nanoscale Ordering in a Blade-Coated 
Polymer-Grafted Nanorod Film
Facility: AFRL and NSLS II | Technique: SAXS | Collabs: Strait, Vaia, Fukuto, Yager, Li |
Achievement: 15% of data required, higher resolution in areas of interest 

Grain Size



Scanning Probe Microscopy

STM / STS 
Structure and 

electronic properties

SiC(0001)

Graphene
WS

2

Investigate Next 
Frontiers in 2D 
Quantum Materials

Thomas, John C., et al. "Autonomous scanning probe microscopy investigations 
over WS2 and Au {111}." npj Computational Materials 8.1 (2022): 1-7.

Defect Identification through Autonomous Scanning Tunneling Spectroscopy
Facility: Molecular Foundry @ LBNL | Technique: STS Microscopy | Collabs: Thomas, Rossi | 
Achievement: ~4% of data required, ~35 hrs vs ~1 mo acq. Time 



Autonomous Steering of ARPES Data Acquisition
Facilities: ALS @ LBNL | Technique: ARPES | Collabs: Melton, Rotenberg, Zwart, Hexemer | 
Achievement: 12% of data required

K-Means-Driven Gaussian Process Data Collection for Angle-Resolved Photoemission Spectroscopy,
Charles N. Melton, Marcus M. Noack, Taisuke Ohta, Thomas E. Beechem, Jeremy Robinson, Xiaotian Zhang, Aaron Bostwick, Chris Jozwiak, 
Roland J. Koch, Petrus H. Zwart, Alexander Hexemer, and Eli Rotenberg
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Adaptive Experimental Design
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Autonomous Control of Synchrotron  Infrared Spectroscopy
Facility: ALS @ LBNL | Technique: IR Spec. Micr. | Collabs: Holman, Zwart, Chen, Lee | Achievement: ~5% of data 
required, collected in ~10% of the time, materials targeted



Other applied-science fields benefit from stochastic function 
approximations and UQ …



Battery-lifetime prediction can be formulated as a stochastic process
Institution: ETA @LBNL | Collabs: Harris, Battaglia, Bakhtian | Achievement/Objective: Early prediction of battery lifetime



Stochastic Climate Modeling via GPs
Institution: CASCADE @LBNL | Collabs: Mark Risser, Bill Collins | Achievement/Objective: Large-Scale Stochastic Climate Models
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Preliminaries: The Basics of 
Gaussian-Processes and 

Autonomous Data Acquisition



Gaussian Processes get their name from a normal distribution over functions

Data



Defining the Covariance, a.k.a. the Kernel Trick

Data

New Point

Stationary 
Kernels



acquisition 
functional

The acquisition functional of the posterior defines a value for every future 
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(will be part of 
advancements)Hig
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Challenges: Approximation 
Accuracy, UQ, Domain 

Awareness, and Scalability



(1) Accurate uncertainty quantification is not 
achieved with standard GPs.
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(2) Standard GPs don’t adhere to physical constraints. 

Ground truth Approximation



(3) Standard GPs might not have (optimal) solutions that satisfy optimization 
constraints. 
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(4) GPs don’t scale well.

~5000 climate stations x 10 000 days

2.5 * 1015 floats

2 * 1016 bytes = 2 * 107 Gbytes RAM

~ 625 000 desktop computers



(5) Advanced GPs lead to tough optimization problems. 
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(5) Advanced GPs lead to tough optimization problems.

(6) Standard GPs don’t work on non-linear spaces.

(7) Sometimes Gaussianity just doesn’t cut it.
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Advancements: Flexible 
Non-Stationary and Compactly 

Supported Kernel Designs



Kernels can be utilized to increase the flexibility of the function approximation and 
to inject domain-awareness into the model

Stationary Kernels:

Non-Stationary Kernels:

f,g can be any operator (NN, RBS, piecewise 
linear or constant)

(1)

(2)

(3)

(4)

Customized stationary and non-stationary 
kernels can give GPs superpowers … 



Parametric Non-Stationary Deep Kernel

d…Euclidean distance
l… length scale
     … signal variance … width parameter

Stationary

Non-stationary kernels can make UQ much more realistic.



d…Euclidean distance
l… length scale
     … signal variance

… width parameter

Non-stationary kernels can make UQ 
much more realistic.





Accurate treatment of noise is 
vital for a successful AE.



(1) Accurate uncertainty quantification is not achieved with standard GPs.                                            
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(4) GPs don’t scale well.

(5) Advanced GPs lead to tough optimization problems.

(6) Standard GPs don’t work on non-linear spaces.
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Kernels can constrain the function space (RKHS) to only allow for 
physically-viable solutions
Facilities: Thales @ ILL, Grenoble, France | Technique: Neutron Scattering | Collabs: Boehm, Mutti, Weber | Achievement: 
Constraining the RKHS to 6-fold symmetric functions
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Physics Knowledge in the Form of Periodicity for X-Ray Scattering
Facility: NIST, CFN, NSLS II | Technique: SAXS,GISAXS | Collabs: Yager, Fukuto, Seppala | Achievement: Use of non-stationary kernels to 
learn and exploit local characteristics

https://docs.google.com/file/d/1F7ZZBU0JfZAey61T1YfN4AbBTWiCrwwr/preview


(1) Accurate uncertainty quantification is not achieved with standard GPs.

(2) Standard GPs don’t adhere to physical constraints.

(3) Standard GPs might not have (optimal) solutions that satisfy 

optimization constraints.

(4) GPs don’t scale well.

(5) Advanced GPs lead to tough optimization problems.

(6) Standard GPs don’t work on non-linear spaces.

(7) Sometimes Gaussianity just doesn’t cut it.

Kernels can do even more…



Material combinatorial 
library 

Autonomous exploration of multidimensional material state-spaces underlying 
self-assembly of copolymer mixtures
Facility: CFN & NSLS II at BNL | Technique: small angle x-ray scattering | Collabs: Russel, Fukuto, Yager | Achievement:  Optimal mapping 
of a 5-dim. material state-space

 
Structural classification using semi-supervised clustering scheme

Identification of non-native structural motifs

decision-making
gp model

 

   

 

    

   

 



 

What do we know about the physics:

1. Space distances are isotropic in 2 directions and 
anisotropic in time direction.

2. The model function is in [0,1].
3. The sum across all 8 tasks at any position in the input 

space is 1.
4. 1st order differentiability in all directions

Autonomous exploration of multidimensional material state-spaces underlying 
self-assembly of copolymer mixtures
Facility: CFN & NSLS II at BNL | Technique: small angle x-ray scattering | Collabs: Russel, Fukuto, Yager | Achievement:  Optimal mapping 
of a 5-dim. material state-space
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gp2Scale: Exact Gaussian Processes on Millions of Data Points
— let kernels discover, not induce, sparsity

Building Block 1: Ultra-Flexible, Compactly Supported and 
Non-Stationary Kernels Building Block 2: HPC Distributed Covariance 

Computation

Building Block 3: MCMC Constrained Training
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The Traditional Training/Optimization Workflow needs a 
Large Number of Function Evaluations and Blocks the 
Main Thread
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Minimizing Number of Function Evaluations: 
Asynchronous Distributed Training

Kill/Restart/Ingest New Data



Optimization of the Log-Likelihood with HGDL
Using High Performance Asynchronous Distributed Optimization for Robust and 
Efficient GP Training.  

HGDL yields:
1. a set of unique solutions
2. HPC readiness of training and prediction
3. asynchronous training
4. Measure for uniqueness of solutions

Optimization Challenges: Ill-Posedness, Non-Uniqueness, Costly 
Func. Evals + High-Dim., Blocking Execution
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Synergy: 
Community and 

Software



gpCAM is a CAMERA project that is the result of a broad collaboration between 
many institutions and facilities. 



CASE: A Community for Autonomous Scientific Experimentation

Established in 2021
217+ members

https://autonomous-discovery.lbl.gov/



The product is three APIs

HGDL: Asynchronous Distributed 
Optimizer 

fvGP: A flexible 
multi-task Gaussian 

process tool 

    pip install hgdl
    

    pip install fvgp
    

    pip install gpcam
    

from gpcam.autonomous_experimenter import AutonomousExperimenterGP
from instrument import instrument
import numpy as np

parameters = np.array([[3.0,45.8],
                       [4.0,47.0]])
init_hyperparameters = np.array([1,1,1])

hyperparameter_bounds =  np.array([[0.01,100],[0.01,100.0],[0.01,100]])

my_ae = AutonomousExperimenterGP(parameters, instrument, init_hyperparameters,
                                 hyperparameter_bounds,  init_dataset_size=10)

my_ae.train()

my_ae.go()

gpcam.lbl.gov

def instrument(data):
    for entry in data:
        entry["value"] = np.sin(np.linalg.norm(entry["position"]))
    return data

62000 downloads
21 facilities and counting
A GUI, called Tsuchinoko, is being 
developed by Ron Pandolfi
pip install tsuchinoko

https://gpcam.lbl.gov/
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