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Scale-up: Extending systems and processes 
that were developed in the laboratory to 
function in the real world

Device and process scale-up comes with 
significant technical challenges and risk

Typical challenges:
• Data-driven models perform best when 

interpolating, extrapolation is inherently 
uncertain, and therefore risky

• Increasing ranges of scale (spatial, temporal) 
often lead to new/enriched physics

• High-fidelity physics-based models may capture 
new physics, but are typically too expensive for 
design/optimization work

• Operational regimes of existing experiments are 
limited, and new experiments are expensive

Scale-up of complex systems 
and associated risks



NREL    |    3

Goal: reduce scale-up challenges by integrating multi-
fidelity modeling and optimal compute resource use

Optimize the use of finite resources 
to achieve a specific science goal

Connect models with experiments to drive 
experiment design and data acquisition needs

Goal-oriented 
solutions

Multi-fidelity models 
and real-time 

experiment synergy

Optimization and 
uncertainty 

management
Control of extrapolation uncertainty 

through targeted active learning

Adaptive Computing

Orchestration of a multi-fidelity model hierarchy 
and/or experiment campaign to arrive at the best 
goal-based solution with well-characterized 
uncertainty given finite resources
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Most applications feature an assortment of 
models of widely varying fidelities, developed 
for different purposes:

• Experiment: “Truth”, but limited operational 
regime

• High-fidelity simulations: Physics-based 
(PDE/ODE), costly

• Lower fidelity levels: reduced physics, coarser 
meshes, less costly

• Data-driven surrogates: AI/ML, PINNs, 
Gaussian Processes (GPs), really cheap

Key capability: multi-fidelity 
modeling

Fig: Exploiting information from multiple 
fidelity levels can increase surrogate accuracy
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Black-box expensive optimization: high fidelity 

min𝑓𝑓(𝑥𝑥)
𝑠𝑠. 𝑡𝑡.𝑔𝑔𝑖𝑖 𝑥𝑥 ≤ 0, 𝑖𝑖 = 1, … , 𝐼𝐼

𝑥𝑥 ∈ Ω

Objective function to minimize
Constraint functions
Parameter domain

Black box𝑥𝑥 𝑓𝑓(𝑥𝑥)
𝑔𝑔𝑖𝑖(𝑥𝑥)

𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥
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Surrogate models approximate the expensive 
function

𝑓𝑓 𝑥𝑥 = 𝑚𝑚𝑓𝑓 𝑥𝑥 + 𝑒𝑒𝑓𝑓 𝑥𝑥
𝑔𝑔𝑖𝑖 𝑥𝑥 = 𝑚𝑚𝑔𝑔𝑖𝑖 𝑥𝑥 + 𝑒𝑒𝑔𝑔𝑖𝑖(𝑥𝑥)

Surrogate of the objective function

Surrogate of the constraint function

Throughout the optimization, we let the surrogate model guide the search for 
improved solutions

Different types of surrogate models exist:
• Radial basis functions

• Gaussian Process models
• Multivariate adaptive regression splines

• Polynomials
• …..
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Surrogate model based 
optimization loop

Initial experimental design

Evaluate expensive 
objective function

Fit/Update surrogate 
model

Select new evaluation 
point

RBF, GP, polynomial ..

Guided by surrogate model

Stop?
No

Return best 
solution found

Yes

Needs adaptation for 
problems with constraints, 
integers, failed evaluations, 
noise, multiple conflicting 
objective functions

Black box

Stop when compute 
budget used up
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Surrogate model guided sampling
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Exploiting multiple fidelity levels

Correcting the low-fidelity model:

• Multiplicative: �𝑦𝑦ℎ𝑓𝑓 𝑥𝑥 = 𝜌𝜌 𝑥𝑥 ∗ 𝑦𝑦𝑙𝑙𝑓𝑓(𝑥𝑥)

• Hybrid: 
• �𝑦𝑦ℎ𝑓𝑓(𝑥𝑥) = 𝜌𝜌 𝑥𝑥 ∗ 𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 𝛿𝛿(𝑥𝑥) (𝜌𝜌 const.)
• �𝑦𝑦ℎ𝑓𝑓 𝑥𝑥 = 𝑤𝑤 𝑥𝑥 ∗ 𝜌𝜌 𝑥𝑥 ∗ 𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 1 − 𝑤𝑤 𝑥𝑥 ∗ (𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 𝛿𝛿(𝑥𝑥)), 𝑤𝑤 ∈ [0,1]

• Additive: �𝑦𝑦ℎ𝑓𝑓(𝑥𝑥) = 𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 𝛿𝛿 𝑥𝑥

How do we make use of multiple fidelity levels during active learning?

𝑦𝑦𝑙𝑙𝑓𝑓(𝑥𝑥) 𝛿𝛿(𝑥𝑥)

Ground truth

𝑦𝑦𝑙𝑙𝑓𝑓 𝑥𝑥 + 𝛿𝛿 𝑥𝑥
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Exploiting multi-fidelity information

Build a surrogate model for the low(er) 
fidelity function

• Allow more samples than for high-fidelity 
function

• Use this surrogate to decide where to focus the 
search in the high-fidelity function

• Low fidelity model does not have to be accurate

Build a surrogate model for the high-
fidelity function

• Fewer samples are affordable
• Surrogate is less accurate (built on less data)
• Surrogate can be used to make (final) sample 

decisions
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Gaussian Process: Using multiple fidelity 
information in one model

Red = high-fidelity evaluations
Black = Lower fidelity evaluations

Combining high and lower fidelity information 
can lead to better approximation surface 
(compare to true contours)

Python package surrogate 
modeling toolbox (SMT)
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GP-based sampling methods

Expected improvement balances local and global search

𝑚𝑚𝐺𝐺𝐺𝐺 is the GP prediction
𝑠𝑠 is the standard deviation of the GP predictions
𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is the best function value found so far
𝜙𝜙,Φ are the normal density and cumulative distribution

Probability of improvement – mostly local search Lower confidence bound

𝜅𝜅 – adjustable parameter 
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GP based sampling in 1d

Expected improvement

Probability of improvement 

Upper confidence bound

Maximization 
problem
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Maximize the expected 
improvement to select a new point

Expected improvement surface is multimodal and can become flat –
making it difficult to find the global maximum…

…requires development of other sampling strategies, 
guided by low-fidelity model
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Sampling with candidate points

Add random perturbations to (select) variables of the best point(s) 
found so far

• Maximize a merit function that trades off 
predicted function value and distance to 
already evaluated points 

• Low function value -> local search
• Large distance -> global search

• Select 𝑁𝑁 new points for potential 
evaluation
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Multi-fidelity sampling: 
when to ignore the low-fidelity model

• Make use of as much information as is available
• Surrogate of high-fidelity model
• Low-fidelity (cheap) information – what if this 

one is very inaccurate/uncorrelated?
• Surrogate of the difference as a selection 

constraint

Difference between high-
and low-fidelityLow-fidelity modelHigh-fidelity ground truth SM of high-fidelity model

1. Define auxiliary function 𝑎𝑎(𝑥𝑥) using 
the surrogate model predictions

2. Optimize 𝑎𝑎(𝑥𝑥) to find 𝑥𝑥𝑛𝑛𝑏𝑏𝑛𝑛
3. If −𝛿𝛿 ≤ 𝑑𝑑 𝑥𝑥𝑛𝑛𝑏𝑏𝑛𝑛 ≤ 𝛿𝛿 probe with low 

fidelity model first, otherwise ignore 
and evaluate high-fidelity model 
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Goal: reduce scale-up challenges by integrating multi-
fidelity modeling and optimal compute resource use

Optimize the use of finite resources 
to achieve a specific science goal

Connect models with experiments to drive 
experiment design and data acquisition needs

Goal-oriented 
solutions

Multi-fidelity models 
and real-time 

experiment synergy

Optimization and 
uncertainty 

management
Control of extrapolation uncertainty 

through targeted active learning

Adaptive Computing

Orchestration of a multi-fidelity model hierarchy 
and/or experiment campaign to arrive at the best 
goal-based solution with well-characterized 
uncertainty given finite resources
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Key capability: diverse compute 
resources

Edge DatacenterCloud

Experiment

Resource manager: 
how much and what kind of 

resources do I have available?

Solve stochastic discrete 
optimization problem

Resource Management

Optimal computing strategy driven by specific output quantity of interest
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• What resources are available when?
• Formulate as optimization problems with 

stochasticity
• Implement solutions as constraints for multi-

fidelity sampling
• Eventually must exploit asynchronous 

parallel computations

Compute resource optimization 
problem

• Enumerate the user-defined simulation types 
(fidelity levels)

• Possible hardware configurations (# of CPUs, GPUs)
• Corresponding calculation duration
• Measurement noise estimate (aleatoric 

uncertainty)
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Compute resource allocation with 
stochasticity

𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 ∈ 𝑎𝑎𝑎𝑎𝑔𝑔max
𝑥𝑥∈𝒳𝒳

𝑎𝑎(𝑥𝑥)
1. Select sample points (e.g., maximize EI with multi-start; candidate point approach)

2. Get total resource limit 𝑇𝑇 and per level resource limit 𝑇𝑇𝑗𝑗 and allocate compute resources

max
bji∈ 0,1 k

�
𝑗𝑗=1

𝐽𝐽

𝑎𝑎𝑗𝑗 𝑥𝑥𝑖𝑖 ∗ 𝑏𝑏𝑗𝑗𝑖𝑖
𝑎𝑎𝑗𝑗 the benefit of evaluating 𝑥𝑥𝑖𝑖 at fidelity level 𝑗𝑗, e.g., 
𝑎𝑎𝑗𝑗 captures accuracy or other QoI

�
𝑗𝑗=1

𝐽𝐽

�
𝑖𝑖=1

𝑁𝑁

𝑏𝑏𝑗𝑗𝑖𝑖 ∗ 𝑡𝑡𝑗𝑗(𝑥𝑥𝑖𝑖 , 𝜁𝜁𝑗𝑗𝑖𝑖) ≤ 𝑇𝑇

𝑏𝑏𝑗𝑗𝑖𝑖 = �1if 𝑥𝑥𝑖𝑖 evaluated with fidelity level 𝑗𝑗
0 else

Total resource restriction

∑𝑖𝑖=1𝑁𝑁 𝑏𝑏𝑗𝑗𝑖𝑖 ∗ 𝑡𝑡𝑗𝑗 𝑥𝑥𝑖𝑖 , 𝜁𝜁𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇𝑗𝑗 ∀𝑗𝑗 Resource restriction on fidelity level 𝑗𝑗

𝐽𝐽 ∗ 𝑁𝑁 binaries 
to optimize

𝑡𝑡𝑗𝑗 resource consumption at level 𝑗𝑗 𝜁𝜁𝑖𝑖𝑗𝑗 ∼ ?
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AC framework

AC driver

Surrogate 
models

Sampling 
methods

Define outer loop 
application:

• UQ
• Optimization

• Sensitivity 
analysis

Simulations
• Fidelity lvl 1
• Fidelity lvl 2

• …
• Fidelity lvl M

Statistics, 
analysis, 

visualization

AC common software stack

Application 
specific code

Check resource 
availability

• Data center
• Edge
• Cloud

• Experiment

Resource manager



Energy Storage

Virtual 
House

ARIES – Advanced Research on Integrated Energy Systems

Data store 
and Control 
Center

Various RE generation 
leading to grid needs

Neighborhood

Real House

Community

Community scale real and 
emulated buildings, equipment, 
electric vehicles, etc.

Generation

Demand

AC Challenge: How do 
we build a transferable 
framework to assess the 
available flexibility?



How much demand flexibility is 
available to support the grid

Goal: Understand, evaluate, and predict the demand flexibility a device, building, or a 
community can provide:
• Optimizing or shaping the energy demand to support grid conditions
• Providing a way to tap into extra demand flexibility in extreme situations

Challenge: Computing the anticipated energy demand and the opportunities to exploit 
optimal control is computationally expensive
• Data from real-world observations and complex building simulation models to evaluate the available 

flexibility in the community thru:
• Control of HVAC, lighting, water heating, etc. individually or in combination
• Aggregating the demand profile to the distribution network and grid

• Use surrogate models and understand where they are too inaccurate and additional real-world data 
and/or complex full-scale simulation data must be collected

• Computational cost in deployment settings is substantially more acute than in the lab setting



Sources and characteristics of 
uncertainty

Limitations of surrogate models: surrogate 
models can only be created for a subset of 
model parameter distributions, number of 
dimensions, etc.
• Building energy models have 1000s of 

parameters with 100s that are important
• Will not represent all possible building 

types/configurations/equipment classes
• Sampling of only a subset of weather 

conditions is possible
• Limited transferability across geographic 

locations

Trust in the surrogate requires uncertainty 
quantification

Building modelsCollection of 
detailed building 

models

Building modelsDerived 
surrogate models

Ranges of parameters

Community/urban/city scale

Weather Variability



ARIES AC framework definitions

Objectives: controls-oriented questions around energy and heating/cooling
• Peak shaving, load shifting, preheating/precooling
• Assess impact of higher efficiency equipment (e.g., LED lighting)

• Some component changes come in from community questions, renewable 
energy mandates, prioritize based on carbon footprint

• ResStock /ComStock libraries for components 
• Widespread EV charging



Modeling ecosystem
• EnergyPlus is high fidelity model (1-30 minutes per building for a year simulation w/ 

1min timestep, heavy on I/O)
• OCHRE, struggles in some locations, residential only (E+ does residential and 

commercial)
• 3R2C lumped capacitance ROM (4-5 hrs to train) for model predictive control w/ 

15min to 1 hour timestep (works for residential and commercial)
• Models are deterministic and highly nonlinear (issues with using ROM outside of 

intended regime)

Parameterizations
• Need to preserve explicit component representation
• Building thermodynamics should be independent of component selection

ARIES AC framework definitions



Challenges
• Scaling simulation and control to larger communities
• Discrete optimization
• ROM accuracy is a function of component choice

Test case going forward
• Pena station with ~150 buildings

• 50 defined so far
• Multifamily buildings are challenging, EnergyPlus extra expensive

• EnergyPlus and 3R2C ROM already built

• UrbanOpt usually used to generate model inputs, but have a little more info for Pena 
station

ARIES AC framework definitions



Example application: virtual 
engineering of biofuels

• Process lignocellulose-rich biomass into 
biofuel

• 3 step chemical processes
• Pretreatment: fast simulation
• Enzymatic hydrolysis: surrogate or CFD 

calculation
• Bioreaction: surrogate or CFD 

calculation



AC specifics for virtual engineering

• Objective: maximum reactor-averaged oxygen 
uptake rate

• Inputs: order 10 chemical and processing design 
parameters

• Fidelity Lvl 1: HF simulation (pretreatment, 
enzymatic hydrolysis, bioreactor)

• 32 CPU-cores @ 57 hours
• Fidelity Lvl 2: HF pretreatment, LF Lignocellulose 

model, and HF bioreactor
• {72 CPU-cores @ 4 hours, or 32 CPU-cores @ 9 

hours}
• Could add simulation type that varies the time 

to steady state/grid resolution

Parameter name Double
or Int*

Default Min Max

Fraction of solids that is 
xylan

Double 0.263 0 1

Fraction of solids that is 
glucan

Double 0.4 0 1

Porous fraction of the 
biomass particles

Double 0.8 0 1

Initial concentration of acid Double 0.0001 0 1

Steam temperature (C) Double 150 3.8 250.3

Fraction of insoluble solids Double 0.745 0 1

Enzymatic load Double 30 0 1000

FIS_0 target Double 0.05 0 1

Gas velocity (m/s) Double 0.08 0.01 0.1

Column height (m) Double 40 10 50

Column diameter (m) Double 5 1 6

Bubble diameter (m) Double 0.006 0.003 0.008

OUR_max (mol/m^3/hr) Double 88.71 5 100

*Integers require adjustment of the MF methods



Preliminary tests on virtual 
engineering app

• 8 parameters, 9 random samples from LHS, 10 
iterations

• Run for 5 minutes on 1 core, low fidelity models 
only

• Max Oxygen Uptake Rate = 0.06723323
• For some parameter settings, we obtained  NaNs

– The low fidelity models used may not be valid 
across the entire parameter space (hidden 
constraints – we know how to deal with these)

Parameter name VE 
default

Min Max Final

Fraction of solids that is xylan 0.263 0 1 0.32

Fraction of solids that is glucan 0.4 0 1 0.29

Porous fraction of the biomass 
particles

0.8 0 1 0.64

Initial concentration of acid 1e-4 0 1e-3 (1) 1e-3

Steam temperature (C) 150 3.8 250.3 170

Fraction of insoluble solids 0.745 0 0.99 (1) 0.99

Enzymatic load 30 0 1000 57

FIS_0 target 0.05 0.005 (0) 1 0.005

(No multi-fidelity business yet)
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Adaptive computing: optimizing the use of computational 
resources to target deficiencies and challenges related to 
scale-up

Reliable scale-up of 
laboratory experiments

Efficient use of 
computational resources and 
reduction of associated costs 

Reliable scale-up of power 
systems

Adaptive computing:
Novel generalized 

framework

enables

enables

enables
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