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Challenge - Global carbon emissions
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Challenge - Resources and sustainability




The world needs:
Better materials




The world needs:
More batteries




The world needs:
Diverse solutions
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Energy and Materials Division

Materials Discovery Battery Manufacturing Carbon Neutrality
Better materials are needed for To make more batteries, we must perfect Which diverse solutions are viable
breakthrough performance battery manufacturing. depends on economics, society, and policy.
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A typical project

Unique Tailored Al-powered
1 Data Generating Process 3 Analysis 4 Feedback
i g [ i

At universities, national labs,
or internal to TRl

Applications: batteries, fuel cells, fundamental materials
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Our tools for compute
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Challenges with accelerating materials discovery

Efficiency is too low Experimental feedback Lack of theory to
is very difficult enable design
Our approach Our approach Our approach
Automation & closed loop discovery. Al powered data analysis. Actionable input to experiments
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K] »
Shijing Amalie
Sun Trewartha

)
N Battery state of health

RESJ\QJ%I%UTE Data-driven and physics-driven approaches




How long do we expect a battery to last?

Chemistry History Environment

... infinite ways to charge and discharge (use), leading to diverse lifespans
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Electrical cycling testing provides insight at all stages of
the battery life cycle

Cell R&D

Module & Pack

Cell Production

Design

System
Integration

Consumer Use

2nd Life &
Recycling

Rapid capacity tests
provide feedback and

new battery chemistry

guidance to innovation in

Tight production
standards and quality
control aim to prevent
bad batteries from being
used

BMS aims to prevent
failure from environment
and operator behavior
through monitoring

Cycling data diagnoses
state of health of
batteries to judge
suitability for 2nd life

... traditional multi-factor systems optimization requires testing until end of life,
This process takes years.
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Challenges of battery cycling data

Testing systems are designed for low-throughput,

manua / testing test_time date_time step_time step_index cycle_index current voltage charge_capacity ¢
1 0000100 1.494646e+09 -1780.003052 0 0 0.0 3301788 0.0
2 9998300 1.494646e+09 -1770.004883 0 0 0.0 3301751 0.0
° Each testing system has its own format 3 20002001 1.494646e+09 -1760.001221 0 0 0.0 3301784 0.0
L . 4 30000601 1.494646e+09 -1750.002563 0 0 0.0 3301805 0.0
* Metadata is Vlta”y important but not stored 5 30.000700 1.494646e+09 -1750.002441 0 0 0.0 3301805 0.0
6 40001900 1.494646e+09 -1740.001343 0 0 0.0 3301790 0.0

e They may not distinguish cycle types - e.g.
Diagnostics vs accelerated aging
e Time-series is not necessarily the most

helpful format for every problem

e Traditional battery cycling takes
months per battery

e Feedback and optimization takes years

MACCOR

WODEL 1299

TOYOTA
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BEEP: Battery Evaluation and Early Prediction

pip install beep Support multiple cycler manufacturers including:
e Maccor e Neware

https://qgithub.com/TRI-AMDD/beep e Arbin e Indigo I
e Biologic e Novonix (NEW) I pandas

O Product Team Enterprise Explore Marketplace Pricing Search Signin  Sign up

& TRI-AMDD / beep ' pubi L\ Notifications % Fork 47 7% star 66

Code -) Issues 25 11 Pullrequests 6 » Actions 3 Projects J Security |~ Insights

¥ master ~ ¥ 24 branche Q ags Go to file Code ~ About

4“) Testing - main 'passing coverage B Battery evaluation and early prediction

{™ ardunn Fix docs (#664) 1=

BEEP is a set of tools designed to support Battery Evaluation and Early github

Prediction of cycle life corresponding to the research of the
the

beep
docs

docs_src

scripts

BEEP enables parsing and handling of electrochemical battery cycling data via

coveragerc ts fro erage 1S agc Releases ‘68

data objects reflecting cycling run data, experimental protocols, featurization,

)

and modeling of cycle life with machine learning. Currently BEEP supports: gltignore om CollateTes 2yearsago | ©) v2022.816.16

Y __ADMIN.md

“BEEP: A Python Library for Battery Evaluation and Early Prediction,” P.K. Herring et al., SoftwareX 11, 100506 (2020).
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https://github.com/TRI-AMDD/beep

BEEP makes battery cycling data ML ready

Highlight #1 - structuring: process data from &
multiple hardware vendors into one common
data structure. structure.json
/ 7\
Biologic Maccor Arbin .. ' = ‘/. .
L 2 2 2 ‘
Validate Feature Sets

Check schema, naming

convention and project E V
parameters. Flag Model & .
anomalies. Outcome l

Prediction
Structure

Parse data and metadata from any
cycler format into a standard data

structure for processing,
visualization, and ML.

Highlight # 2 — feature extraction: transform
¥ structured data into ML-ready feature objects,
structure.json alongside corresponding metadata.

“BEEP: A Python Library for Battery Evaluation and Early Prediction,” P.K. Herring et al., SoftwareX 11, 100506 (2020). ~
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BEEP provides programmatic scheduling of testing

A pool of test conditions

Project parameters —L Test parameters
* ML suggested
Procedure template * Manual inputs

| |

Protocol generator

¥ @ ¥

Biologic Maccor Arbin

“BEEP: A Python Library for Battery Evaluation and Early Prediction,”

© 2023 Toyota Research Institute. Public

Highlight #3 - scheduling:
e Communicate with hardware to launch
high-throughput experiments
e Reduce manual errors and expedite
scheduling
e Protocols convertible between cyclers

P.K. Herring et al., SoftwareX 11, 100506 (2020).
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BEEP automation enables data-driven degradation prediction

Raw Device Cycling Data Physics-based Feature Feature Matrix ML Degradation Prediction
\Voltage

Extraction & Selection

e ™
®
Early cycle AV, AV,, ...,AV, ®
Current NA E AQ,AQ,, ..., AQ,

time

Voltage
Predicted

<
' X
/—\/—\_L_r [ AE4, AE,, ..., AE, >

time N /

Py
D

Capacity

Observed

e Large, diverse cycling dataset collected and processed automatically
e Machine learning based analysis: extracting subtle signals from battery cycling data to
offer actionable, interpretable insights into cell internal state
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High-throughput testing at SLAC

D3BATT

=
| M!l’ [ ;

Data-Driven Design of Li-ion Batteries

A | =mmsey
;]

4
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Professor Will Chueh
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High-throughput testing at SLAC

D3BATT
Data-Driven Design of Li-ion Batteries

Professor Will Chueh

Airflow S3 Sagemaker
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Challenge: full aging tests are time-consuming

0.95

Discharge capacity (Ah)
o
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Challenge: full aging tests are time-consuming

: Can we stop testing here?
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“Data-driven prediction of battery cycle life before capacity degradation,” K.A. Severson et al., Nat Energy 4, 383 (2019).
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Previously at TRI: early-prediction reduces test time by 10x

e Features from early cycle predict - |
cycle life 8 2,000 H m
e ML predictions made before observed 2 | m
decrease in capacity % | A. A
e > 90% accuracy using first 100 aging P A A
81,000 H
cycles on LFP cells o | 20}
U 7 10_
® | A .1
k3] -5000 500
-8 O | |
& 0 1,000 2,000

® Train ™ Primary test A Secondary test

“Data-driven prediction of battery cycle life before capacity degradation,” K.A. Severson et al., Nat Energy 4, 383 (2019).
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New dataset: diverse usage with standardized diagnostics

Battery Aging Trajectory

\es 54 Diagnostic Cycle
o6& 4.25-
?‘6\(\ MaximuEn8 epeats
Q

S = B 4.00-
& <4 F $3.75-
Chemistries ¢3Discharging = Dl 2
Protocols > ol 0]
‘G N A 23.50-
33 SA- S
18 4 p 3.00- HPPC 1C
ASOC Ranges Temperature: g, . . ' Cycle RPT
E 21 Diagnostic cycle 2.75- |
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1 o—
Protocols 107 9 Cells a Time [hrs]
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-~ Stanford/TRI 2020 (LFP) 1 1

CELEST 2022
Argonne 2023
This Work (NCA)

0 250 500 750 1000 1250 1500
Cycle Number

e 363 cells tested until the end of 1st lifetime on NCA/Gr + SiOx cells’
e 218 cycling conditions with diverse discharge profiles unexplored previously

e Standardized diagnostics enable comprehensive health evaluation and comparison

“Interpretable Data-Driven Modeling Reveals Complexity of Battery Aging”, Bruis van Vlijmen et al., DOI: 10.26434/chemrxiv-2023-zdI2n (2023).
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https://doi.org/10.26434/chemrxiv-2023-zdl2n

Early-prediction using physically meaningful features

Prediction models — Health map
GTCTN N W g
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Health map generated from early prediction models provide actionable insights to battery

design and optimization

“Interpretable Data-Driven Modeling Reveals Complexity of Battery Aging”, Bruis van Vlijmen et al., DOI: 10.26434/chemrxiv-2023-zdI2n (2023).
TOYOTA
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https://doi.org/10.26434/chemrxiv-2023-zdl2n

Battery state of health - continuing challenges

Efficiency is too low

Experimental feedback
is very difficult

Lack of theory to
enable design

e Early prediction for
cycling

e [Efficient / fast
simulation

of battery lifecycle

e Datasets: diverse

battery chemistries

e (Characterization

Datasets: other points

Models that
accounting for relevant
Processes in
physics-based models
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The infinite search space
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CAMD: Computational Autonomy for Materials Discovery

Ag-Ba-O

Check Synthesis Discovery

User chooses chemical system, e.g. Ag-Ba-O

Enter a hyphen-separated list of elements (e.g. "Fe-V" or "Mn-S-P")

5066d1:

4953b2:

0af323:

92534b:

Start Synthesis Discovery

AB2C2-2-c-ac-f-63-Ag-Ba-0-
AB2C2-2-c-e-f-63-Ag-Ba-0-

AB2C4-1-a-d-j-139-Ag-Ba-0-
AB2C4-2-a-g-h-70-Ag-Ba-0-

AB2C4-2-e-ac-hi-74-Ag-Ba-0-
a2abee:

Total materials discovered

CAMD displays real-time results on frontend

[
(=}

AgaAgBaAg;

CAMD stores structures and data

Iteration
0,

BaAg BasAg:;

https://qithub.com/4FRI-AMDD/CAMD
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https://github.com/TRI-AMDD/CAMD

Active learning to discover materials

—

.
% %{ Analyze Automated

##‘l

Select structures

Select chemical Generate structures (ML)
system h

Ca-Ru-O #

R R

Simulate (DFT)

“Autonomous Intelligent Agents for Accelerated Materials Discovery” J.H. Montoya et al., Chem Sci 11, 8517-8532 (2020). r ToYo

© 2023 Toyota Research Institute. Public. 34
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Active learning to discover materials
OQMD

The Open Quantum
Materials Database

]

% T4
g % o T Automated
= ~

EF
E

Ca-Ru-O -

L R

Select structures

Select chemical Generate structures (ML)
system Q
Simulate (DFT)

'A.
e B o vy

O
Batch Ecs docker

S3

Chem Sci 11, 8517-8532 (2020). f ovo

‘Autonomous Intelligent Agents for Accelerated Materials Discovery” J.H. Montoya et al.,
9 RESEARCH INSTITUTE
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CAMD finds new (meta)stable structures

photocatalyst

Mg

“Novel inorganic crystal structures predicted using autonomous simulation agents”, W. Ye, X. Lei, et al., Sci Data 9, 302 (2022).
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CAMD finds a lot of metastable structures

https://data.matr.io/7/

30000
25000 CAMD discovers 2-3 new structures
20000 1 \F/)v(latrh;]rgﬁﬁ)o meV of the convex hull
150001 CAMD spends $3.00 per metastable
10000 - structure

5000+ CAMD’s infrastructure is scalable

S Q <Py ped P W 9 el ot o 065)} (N 1y
9 2

“Novel inorganic crystal structures predicted using autonomous simulation agents”, W. Ye, X. Lei, et al., Sci Data 9, 302 (2022).
© 2023 Toyota Research Institute. Public. 37 ( TOYOTA
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https://data.matr.io/7/

We tried to make CAMD materials

“Computer-assisted discovery and rational synthesis of ternary oxides”, J.H. Montoya et al., DOI: 10.26434/chemrxiv-2023-n4pz9 (2023).

TOYOTA

\ RESEARCH INSTITUTE


https://doi.org/10.26434/chemrxiv-2023-n4pz9

Six CAMD inspired systems were selected

O

Li
@]

Li
@]

Ca

“Computer-assisted discovery and rational synthesis of ternary oxides”, J.H. Montoya et al., DOI: 10.26434/chemrxiv-2023-n4pz9 (2023).
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https://doi.org/10.26434/chemrxiv-2023-n4pz9

Materials discovery workflow

AT ﬂ
Im = @ Ul
SQuUID

Calcination
0000 Confirmation of

Human Synthesis
(In-situ XRD)

Q00 .

new material

decisions Cr 2
O O CaRu; 05" Ca;Ru;0y,
_ CaRuOs  _CaRuyOyo
0 0 || nleno o
5

Select target

Select
. precursors stoichiometries
Experiment k.
Rietveld
refinement

CAMD

T(((O*

A

# o4 ’.
Ca-Ru-O ‘ % - § ;' Analyze Automated
s X W
. Select structures
Sele:;sct&;i\mlcd Generate structures (ML) ‘ /&/
Simulate (DFT)
Computer-assisted discovery and rational synthesis of ternary oxides”, J.H. Montoya et al., DOI: 10.26434/chemrxiv-2023-n4pz9 (2023)
40 TOYOTA
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https://doi.org/10.26434/chemrxiv-2023-n4pz9

A new material predicted by CAMD was synthesized

Ca Ru Ca Ru

CAMD predicted a novel material containing Ru,
a common element in catalyst materials.

In-situ, variable temp XRD experiments confirm a
new phase exists, appears 700-1100°C

in-situ XRD

“Computer-assisted discovery and rational synthesis of ternary oxides”, J.H. Montoya et al., DOI: 10.26434/chemrxiv-2023-n4pz9 (2023).
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https://doi.org/10.26434/chemrxiv-2023-n4pz9

Other examples start to sound the same

10* designed on the computer 10° confirmed in the lab

CIF-619e1d
(14/mmm)

x  Raw data
—— Calculated
Background
—— Difference
| caruo,
(14/mmm)

~2 years pass I

Intensity (a.u.)
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Computation-mediated discovery - challenges

Efficiency is too low

Experimental feedback

is very difficult

Lack of theory to
enable design

Automating expt and
expt analyses

Datasets: dark data
Data-driven analyses

Datasets: defect
structures

Datasets: kinetic
properties

Integrate data-theory
Multiscale models
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\ ...and more research
TOYOTA Polymers, catalysts, ML
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A\ Outlook

RESJ\QJ%I#TUTE Bridging the gap between experiment & simulation




Challenges with accelerating materials discovery

Efficiency is too low Experimental feedback Lack of theory to
is very difficult enable design
Our approach Our approach Our approach
Automation & closed loop discovery. Al powered data analysis. Actionable input to experiments
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Outlook

e Highlights
o Battery lifetime
o Novel materials

e Workflow software allows better integration of compute and experiment

e Industry research uses minimal or mid-scale compute -- but also will
benefit from exascale compute to address fundamental questions
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Thank You
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